Vol. 84
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-05-18
Torque Ripple Suppression Control of Bearingless Brushless DC Motor in Wide Speed Regulation Range
By
Progress In Electromagnetics Research C, Vol. 84, 87-101, 2018
Abstract
Bearingless brushless DC (BBLDC) motor in the flywheel energy storage system has advantages of low energy consumption, high critical speed and better speed adjustment performance. However, torque ripple exists inevitably due to the current commutation of the BBLDC motor and the wide range of speed changes when the flywheel energy storage system charges and discharges. In this frame, an approach of combining the direct torque control (DTC) with the current prediction control (CPC) is proposed to suppress torque ripple in wide speed regulation range. In this paper, the mathematical model of the BBLDC motor is given, and the principle of DTC scheme is introduced. On the basis of analyzing the causes of commutation torque ripple when using DTC scheme, CPC scheme is employed to minimize the commutation torque ripple by controlling the changes of phase current during commutation. During the non-commutation, the DTC is selected, and the CPC is selected during the commutation. Results show that the proposed approach is feasible, and torque ripple is effectively suppressed both in high speed and low speed. Moreover, this method has no effect on the suspension performance.
Citation
Yukun Sun, Kuan Zhang, Ye Yuan, and Fan Yang, "Torque Ripple Suppression Control of Bearingless Brushless DC Motor in Wide Speed Regulation Range," Progress In Electromagnetics Research C, Vol. 84, 87-101, 2018.
doi:10.2528/PIERC18032105
References

1. Ooshima, M. and C. Takeuchi, " Magnetic suspension performance of a bearingless brushless DC motor for small liquid pumps ," IEEE Transactions on Industry Applications, Vol. 47, No. 1, 72-78, 2011.
doi:10.1109/TIA.2010.2091233

2. Sun, Y., F. Yang, and Y. Yuan, "Control of out-rotor bearingless brushless DC motor," 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), 624-627, IEEE, 2017.
doi:10.1109/YAC.2017.7967485

3. Takahashi, I. and T. Noguchi, "A new quick-response and high-efficiency control strategy of an induction motor," IEEE Transactions on Industry Applications, Vol. 5, 820-827, 1986.
doi:10.1109/TIA.1986.4504799

4. Ozturk, S. B. and H. A. Toliyat, Direct torque and indirect flux control of brushless DC motor, Vol. 16, No. 2, 351-360, IEEE/ASME Transactions on Mechatronics, 2011.

5. Wang, W. H. and H. B. Huang, "Research on commutation fluctuation self-adaptive control suppression strategy for brushless DC motor," 2012 10th World Congress on Intelligent Control and Automation (WCICA), 265-269, IEEE, 2012.
doi:10.1109/WCICA.2012.6357880

6. Kim, D. K., K. W. Lee, and B. I. Kwon, "Commutation torque ripple reduction in a position sensorless brushless DC motor drive," IEEE Transactions on Power Electronics, Vol. 21, No. 6, 1762-1768, 2006.
doi:10.1109/TPEL.2006.882918

7. Fakham, H., M. Djemai, and K. Busawon, "Design and practical implementation of a back-EMF sliding-mode observer for a brushless DC motor ," IET Electric Power Applications, Vol. 2, No. 6, 353-361, 2008.
doi:10.1049/iet-epa:20070242

8. Kumar, B. P. and C. M. C. Krishnan, "Comparative study of different control algorithms on brushless DC motors," 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE), 1-5, IEEE, 2016.

9. Liu, Y., Z. Q. Zhu, and D. Howe, "Direct torque control of brushless DC drives with reduced torque ripple," IEEE Transactions on Industry Applications, Vol. 41, No. 2, 599-608, 2005.
doi:10.1109/TIA.2005.844853

10. Pan, H., M. Gu, and J. Gu, "A kind of simplified structure direct torque control method for brushless DC motor ," 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC), 1480-1483, IEEE, 2013.

11. Li, D., J. Yang, and Y. Dou, "Comparison analysis for pure torque loop control of brushless DC motor," 2016 19th International Conference on Electrical Machines and Systems (ICEMS), 1-4, IEEE, 2016.

12. Kang, S. J. and S. K. Sul, "Direct torque control of brushless DC motor with no ideal trapezoidal back EMF," IEEE Transactions on Power Electronics, Vol. 10, No. 6, 796-802, 1995.
doi:10.1109/63.471301

13. Lai, Y. S. and J. H. Chen, "new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction," IEEE Transactions on Energy Conversion, Vol. 16, No. 3, 220-227, 2001.
doi:10.1109/60.937200

14. Liu, Y., Z. Q. Zhu, and D. Howe, "Commutation-torque-ripple minimization in direct-torque-controlled PM brushless DC drives," IEEE Transactions on Industry Applications, Vol. 43, No. 4, 1012-1021, 2007.
doi:10.1109/TIA.2007.900474

15. Zhang, J., J. Chai, and X. Sun, "Predictive current control for dual three phase induction machine with phase locked loop based electromotive force prediction," 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 114-117, IEEE, 2014.
doi:10.1109/ICEMS.2014.7013464

16. Park, J., Y. Kwak, and Y. Jo, "Torque ripple reduction of BLDC motor using predicted current control," 2016 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 407-411, IEEE, 2016.
doi:10.1109/ITEC-AP.2016.7512987

17. Wei, G., C. Zhen, and Z. Jing, "Modified current prediction control strategy for suppressing commutation torque ripple in brushless DC motor," Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), 3770-3774, IEEE, 2013.