Vol. 84
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-05-31
The Properties of the Electromagnetic Scattering from a Sinusoidal Water Wave
By
Progress In Electromagnetics Research C, Vol. 84, 147-160, 2018
Abstract
Within the framework of the higher-order Kirchhoff approximation, the properties of the electromagnetic scattering from sinusoidal water waves are presented, and the theoretical formulas up to third-order for describing the scattering field and its spectrum are derived. It shows that not only the spectral peaks which correspond to phase velocity of the water wave but also other discrete harmonic peaks can be found from the theoretical spectrum model. And the Doppler shifts of the spectral peaks are all integral multiple of the sinusoidal wave's frequency. For the backscattering field from a sinusoidal wave, the higher-order resonant peaks would also be found at different scattering angles, and the values of these peaks decrease with the scattering angle. On the other hand, the comparisons with the MoM demonstrate that the contributions of the slope-dependent terms can be generally neglected if the amplitude of the sinusoidal wave is small. However, if the waves slope is larger, the impact of the second order scattering becomes obvious and cannot be omitted.
Citation
Yunhua Wang, Yue Yu, Yanmin Zhang, and Honglei Zheng, "The Properties of the Electromagnetic Scattering from a Sinusoidal Water Wave," Progress In Electromagnetics Research C, Vol. 84, 147-160, 2018.
doi:10.2528/PIERC18032006
References

1. Holliday, D., "Resolution of a controversy surrounding the Kirchhoff approach and the small perturbation method in rough surface scattering theory," IEEE Trans. Antennas Propag., Vol. 35, No. 1, 120-122, 1987.
doi:10.1109/TAP.1987.1143978

2. Ishimaru, A. and J. S. Chen, "Scattering from very rough metallic and dielectric surfaces: a theory based on the modified Kirchhoff approximation," Waves in Random Media, Vol. 1, No. 1, 21-34, 1991.
doi:10.1088/0959-7174/1/1/003

3. Thorsos, E. I., "The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acoust. Soc. Am., Vol. 86, No. 1, 261-277, 1989.
doi:10.1121/1.398342

4. Soto-Crespo, J. M., M. Nieto-Vesperinas, and A. T. Friberg, "Scattering from slightly rough random surfaces: A detailed study on the validity of the small perturbation method," J. Opt. Soc. Am. A, Vol. 7, No. 7, 1185-1201, 1990.
doi:10.1364/JOSAA.7.001185

5. Mouche, A. A., F. Collard, B. Chapron, K. F. Dagestad, G. Guitton, J. A. Johannessen, V. Kerbaol, and M. W. Hansen, "On the use of Doppler shift for sea surface wind retrieval from SAR," IEEE Trans. Geosci. Remote Sensing, Vol. 50, No. 7, 2901-2909, 2012.
doi:10.1109/TGRS.2011.2174998

6. Barrick, D. E., "Extraction of wave parameters from measured HF radar sea-echo Doppler spectra," Radio Sci., Vol. 12, 415-424, 1977.
doi:10.1029/RS012i003p00415

7. Johnson, J. T., R. J. Burkholder, J. V. Toporkov, D. R. Lyzenga, and W. J. Plant, "A numerical study of the retrieval of sea surface height profiles from low grazing angle radar data," IEEE Trans. Geosci. Remote Sensing, Vol. 47, No. 3, 1641-1650, 2009.
doi:10.1109/TGRS.2008.2006833

8. Hwang, P. A., M. A. Sletten, and J. V. Toporkov, "A note on Doppler processing of coherent radar backscatter from the water surface: With application to ocean surface wave measurements," J. Geophys. Res., Vol. 115, C03026, 2010.

9. Chae, C. S. and J. T. Johnson, "A study of sea surface range-resolved Doppler spectra using numerically simulated low-grazing-angle backscatter data," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 6, 3452-3460, 2013.
doi:10.1109/TGRS.2012.2223216

10. Wang, Y. H. and Y. M. Zhang, "The measurement of sea surface profile with X-band coherent marine radar," Acta Oceanol. Sin., Vol. 34, No. 9, 65-70, 2015.
doi:10.1007/s13131-015-0731-7

11. Chapron, B., F. Collard, and F. Ardhum, "Direct measurements of ocean surface velocity from space: Interpretation and validation," J. Geophys. Res., Vol. 110, C07008, 2005.

12. Johannessen, J. A., V. Kudryavtsev, D. Akimov, T. Eldevik, N. Winther, and B. Chapron, "On radar imaging of current features; Part 2: Mesoscale eddy and current front detection," J. Geophys. Res., Vol. 110, C07017, 2005.

13. Kudryavtsev, V., D. Akimov, J. A. Johannessen, and B. Chapron, "On radar imaging of current features. Part 1: Model and comparison with observations," J. Geophys. Res., Vol. 110, C07016, 2005.

14. Karaev, V., M. Kanevsky, and E, Meshkov, "The effect of sea surface slicks on the Doppler spectrum width of a backscattered microwave signal," Sensors, Vol. 8, 3780-3801, 2008.
doi:10.3390/s8063780

15. Mei, C. C., Michael Stiassnie Theory and Applications of Ocean Surface Waves: Part I --- Linear Aspect, 3rd Ed., World Scientific Publishing, 2017.

16. Toporkov, J. V. and G. S. Brown, "Numerical simulations of scattering from time-varying randomly rough surfaces," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 4, 1616-1625, 2000.
doi:10.1109/36.851961

17. Johnson, J. T., J. V. Toporkov, and G. S. Brown, "A numerical study of backscattering from time-evolving sea surfaces: Comparison of hydrodynamic models," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 11, 2411-2420, 2001.
doi:10.1109/36.964977

18. Hayslip, A. R., J. T. Johnson, and G. R. Baker, "Further numerical studies of backscattering from time-evolving nonlinear sea surfaces," IEEE Trans. Geosci. Remote Sensing, Vol. 41, No. 10, 2287-2293, 2003.
doi:10.1109/TGRS.2003.814662

19. Saillard, M., P. Forget, G. Soriano, M. Joelson, P. Broche, and P. Currier, "Sea surface probing with L-band Doppler radar: Experiment and theory," C. R. Physique, Vol. 6, 675-682, 2005.
doi:10.1016/j.crhy.2005.06.008

20. Zavorotny, V. U. and A. G. Voronovich, "Two-scale model and ocean radar Doppler spectra at moderate- and low-grazing angles," IEEE Trans. Antennas Propagat., Vol. 46, No. 1, 84-92, 1998.
doi:10.1109/8.655454

21. Romeiser, R. and D. R. Thompson, "Numerical study on the Along-Track interferometric radar imaging mechanism of oceanic surface currents," IEEE Trans. Geosci. Remote Senging, Vol. 38, No. 1, 446-458, 2000.
doi:10.1109/36.823940

22. Wang, Y. H., Y. M. Zhang, and C. F. Zhao, "Doppler spectra of microwave scattering fields from nonlinear oceanic surface at moderate- and low-grazing angles," IEEE Trans. Geosci. Remote Sensing, Vol. 50, No. 4, 1104-1116, 2012.
doi:10.1109/TGRS.2011.2164926

23. Wang, Y. H., Y. M. Zhang, and L. X. Guo, "Microwave Doppler spectra of sea echoes at high incidence angles: Influences of large-scale waves," Progress In Electromagnetics Research B, Vol. 48, 99-113, 2013.
doi:10.2528/PIERB12123004

24. Wang, Y. H., Y. M. Zhang, H. M. Li, and G. Chen, "Doppler spectrum of microwave SAR signals from two-dimensional time-varying sea surface," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 10, 1265-1276, 2016.
doi:10.1080/09205071.2016.1186575

25. Miret, D., G. Soriano, F. Nouguier, et al. "Sea surface microwave scattering at extreme grazing angle: Numerical investigation of the Doppler shift," IEEE Trans. Geosci. Remote Sensing, Vol. 52, No. 11, 7120-7129, 2014.
doi:10.1109/TGRS.2014.2307893

26. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Volume II Radar Remote Sensing and Surface Scattering and Emission Theory, Artech House, 1986.

27. Wen, B. Y. and K. Li, "Frequency shift of the Bragg and non-Bragg backscattering from periodic water wave," Scienti c Reports, 1-7, 2016.

28. Franceschetti, G., A. Iodice, and D. Riccio, "Scattering from dielectric random fractal surfaces via Method of Moments," IEEE Trans. Antennas Propag., Vol. 38, No. 4, 1644-1655, 2000.