Vol. 83
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-04-28
Ku-Band Suspended Meshed Patch Antenna Integrated with Solar Cells for Remote Area Applications
By
Progress In Electromagnetics Research C, Vol. 83, 245-254, 2018
Abstract
A new structure design of a dual-band suspended microstrip meshed patch antenna integrated with a polycrystalline silicon solar cell for Ku-band satellite applications is proposed and presented. This antenna element is a basic building block for a Ku-band meshed array antenna used for two-way satellite internet and TV applications at rural and remote locations. The antenna covers the operating frequency range from 11.7 GHz to 12.22 GHz downlink band and from 14.0 GHz to 14.5 GHz uplink band allocated by the ITU to the Regions 1 and 2. While achieving 500 MHz bandwidth across each band, fully covering the Ku-band uplink and downlink frequency bands, the antenna offers a single element gain of 6.05 dBi in the downlink band and 7.61 dBi in the uplink band. The antenna has been fabricated and measured, and good agreement is achieved between the experimental and simulated results. In addition, a good compromise between RF performance and optical transparency is obtained. The overall visible light transmission is found to be approximately 87%. A compact low-profile antenna element is also achieved.
Citation
Farhat M. E. Nashad, Stephen Foti, David Smith, Michael Elsdon, and Okan Yurduseven, "Ku-Band Suspended Meshed Patch Antenna Integrated with Solar Cells for Remote Area Applications," Progress In Electromagnetics Research C, Vol. 83, 245-254, 2018.
doi:10.2528/PIERC18020608
References

1. Vaccaro, S., J. R. Mosig, and P. de Maagt, "Two advanced solar antenna ``SOLANT" designs for satellite and terrestrial communications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 2028-2034, Aug. 2003.
doi:10.1109/TAP.2003.815424

2. Lee, R., E. Clark, D. Wilt, A. Pal, F. Miranda, C. Mueller, et al. "Integrated solar cell array antenna for satellite and terrestrial communications," 2005 IEEE Antennas and Propagation Society International Symposium, 231-234, 2005.
doi:10.1109/APS.2005.1551529

3. Maharaja, M. and C. Kalaiselvan, "Integration of antennas and solar cells for satellite and terrestrial communication," International Journal of Scientific and Research Publications, Vol. 3, 2013.

4. Dreyer, P., M. Morales-Masis, S. Nicolay, C. Ballif, and J. Perruisseau-Carrier, "Copper and transparent-conductor reflectarray elements on thin-film solar cell panels," IEEE Transactions on Antennas and Propagation, Vol. 62, 3813-3818, 2014.
doi:10.1109/TAP.2014.2316539

5. Bendel, C., J. Kirchhof, and N. Henze, "Application of photovoltaic solar cells in planar antenna structures," Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, 220-223, 2003.

6. Baccouch, C., D. Bouchouicha, H. Sakli, and T. Aguili, "Patch antenna based on a photovoltaic cell with a dual resonance frequency," Advanced Electromagnetics, Vol. 5, No. 3, 42-49, Nov. 11, 2016.
doi:10.7716/aem.v5i3.425

7. Roo-Ons, M. J., S. V. Shynu, M. J. Ammann, S. J. McCormack, and B. Norton, "Transparent patch antenna on a-Si thin-film glass solar module," Electronics Letters, Vol. 47, No. 2, 85-86, Jan. 2011.
doi:10.1049/el.2010.7397

8. Shynu, S. V., M. J. Ons, P. McEvoy, M. J. Ammann, S. J. McCormack, and B. Norton, "Integration of microstrip patch antenna with polycrystalline silicon solar cell," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 12, 3969-3972, Dec. 2009.
doi:10.1109/TAP.2009.2026438

9. Shynu, S., M. R. Ons, M. Ammann, S. Gallagher, and B. Norton, "Inset-fed microstrip patch antenna with integrated polycrystalline photovoltaic solar cell," The Second European Conference on Antennas and Propagation, 2007, EuCAP 2007, 1-4, 2007.

10. Tanaka, M., Y. Suzuki, K. Araki, and R. Suzuki, "Microstrip antenna with solar cells for microsatellites," Electronics Letters, Vol. 31, 5-6, 1995.
doi:10.1049/el:19950010

11. Yurduseven, O., D. Smith, and M. Elsdon, "A transparent meshed solar monopole antenna for UWB applications," 2014 8th European Conference on Antennas and Propagation (EuCAP), 2145-2149, 2014.
doi:10.1109/EuCAP.2014.6902233

12. Fawole, O. and R. Baktur, "Multifunction solar panel antenna for cube satellites," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, 2012.

13. Yurduseven, O., D. Smith, N. Pearsall, I. Forbes, and D. Johnston, "A meshed multiband solar patch array antenna," Antennas and Propagation Conference (LAPC), 2012 Loughborough, 1-5, 2012.

14. Elsdon, M., O. Yurduseven, and X. Dai, "Wideband metamaterial solar cell antenna for 5 GHz Wi-Fi communication," Progress In Electromagnetics Research C, Vol. 71, 123-131, 2017.
doi:10.2528/PIERC16110302

15. O’Conchubhair, O., P. McEvoy, and M. J. Ammann, "Dye-sensitized solar cell antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 352-355, 2017.
doi:10.1109/LAWP.2016.2576687

16. Turpin, T. W. and R. Baktur, "Meshed patch antennas integrated on solar cells," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 693-696, 2009.
doi:10.1109/LAWP.2009.2025522

17. Yasin, T. and R. Baktur, "Circularly polarized meshed patch antenna for small satellite application," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1057-1060, 2013.
doi:10.1109/LAWP.2013.2280131

18. Balanis, C., Antenna Theory Analysis and Design, 3rd Ed., John Wiley & Sons, Inc., Publication, 2005.