Vol. 161
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-04-20
Efficiency of Millimeter Wave Mobile Terminal Antennas with the Influence of Users
By
Progress In Electromagnetics Research, Vol. 161, 113-123, 2018
Abstract
The effect of users on the efficiency of mobile terminal antennas at 15 GHz, 28 GHz and 60 GHz is studied in this paper. It is performed using three four-element planar arrays. The first operates at 15 GHz with a bandwidth of 0.74 GHz, the second at 28 GHz with a bandwidth of 2.5 GHz and finally the third antenna at 60 GHz with bandwidth of 12.5 GHz. The effect of a user's finger is studied when being placed on four different locations over each antenna element, with six distances between the antenna and user's finger. The losses due to the increased shadowing are studied in terms of radiation efficiency (RE), matching efficiency (ME) and two additional multiple-input-multiple-output (MIMO) parameters i.e., envelop correlation coefficient (ECC) and multiplexing efficiency (MUX). For antennas operating at 28 and 60 GHz, the minimum frequency shift is observed when the finger is placed at 1.5 mm distance from the antenna, whereas for 15 GHz, the minimum resonance shift is observed when the finger is at 2 mm distance. Losses of up to 80% and 70% are observed for RE and MUX, respectively, when the finger is placed at 0 mm for all antennas compared to the case without user (WU). Finally, it is observed that the ME and envelop correlation coefficient losses are insignificant regardless of the antenna and finger variation.
Citation
Rizwan Khan, Azremi Abdullah Al-Hadi, and Ping Jack Soh, "Efficiency of Millimeter Wave Mobile Terminal Antennas with the Influence of Users," Progress In Electromagnetics Research, Vol. 161, 113-123, 2018.
doi:10.2528/PIER18012409
References

1. Ying, Z., K. Zhao, T. Bolin, J. Helander, D. Sj¨oberg, S. He, A. Scannavini, L. J. Foged, and G. Nicolas, "Study of phased array in UE for 5G mm wave communication system with consideration of user body effect," 10th European Conference on Antennas and Propagation (EuCAP), 1-2, IEEE, April 2016.

2. El Shorbagy, M., R. M. Shubair, M. I. AlHajri, and N. K. Mallat, "On the design of millimetre-wave antennas for 5G," 16th Mediterranean Microwave Symposium (MMS), 1-4, IEEE, November 2016.

3. Liu, J., A. Vosoogh, A. U. Zaman, and J. Yang, "Design and fabrication of a high-gain 60-GHz cavity-backed slot antenna array fed by inverted microstrip gap waveguide," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 2117-2122, 2017.
doi:10.1109/TAP.2017.2670509

4. Zhou, R., D. Liu, and H. Xin, "A wideband circularly polarized patch antenna for 60 GHz wireless communications," Wireless Engineering and Technology, Vol. 3, 97-105, June 2012.
doi:10.4236/wet.2012.33016

5. Chen, X., L. Tian, P. Tang, and J. Zhang, "Modelling of human body shadowing based on 28 GHz indoor measurement results," 84th Vehicular Technology Conference (VTC-Fall), 1-5, IEEE, 2016.

6. Manabe, T., Y. Miura, and T. Ihara, "Effects of antenna directivity and polarization on indoor multipath propagation characteristics at 60 GHz," IEEE Journal on Selected Areas in Communications, Vol. 14, No. 3, 441-448, 1996.
doi:10.1109/49.490229

7. Zhao, K., C. Gustafson, Q. Liao, S. Zhang, T. Bolin, Z. Ying, and S. He, "Channel characteristics and user body effects in an outdoor urban scenario at 15 and 28 GHz," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6534-6548, 2017.
doi:10.1109/TAP.2017.2740959

8. Karadimas, P., B. Allen, and P. Smith, "Human body shadowing characterization for 60-GHz indoor short-range wireless links," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1650-1653, 2013.
doi:10.1109/LAWP.2013.2294563

9. Rappaport, T. S., S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5g cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

10. Ojaroudiparchin, N., M. Shen, and G. Pedersen, "Multi-layer 5G mobile phone antenna for multi-user mimo communications," 23rd Telecommunications Forum Telfor (TELFOR), 559-562, November 2015.

11. Hong, W., K. Baek, Y. Lee, and Y. G. Kim, "Design and analysis of a low-profile 28 GHz beam steering antenna solution for future 5g cellular applications," MTT-S International Microwave Symposium (IMS), 1-4, IEEE, June 2014.

12. Zhao, K., J. Helander, D. Sjoberg, S. He, T. Bolin, and Z. Ying, "User body effect on phased array in user equipment for the 5G mmWave communication system," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 864-867, 2017.
doi:10.1109/LAWP.2016.2611674

13. Dussopt, L., Y. Lamy, S. Joblot, J. Lantri, H. Salti, P. Bar, H. Sibuet, B. Reig, J.-F. Carpentier, C. Dehos, and P. Vincent, "Silicon interposer with integrated antenna array for millimeter-wave shortrange communications," Microwave Symp. Int. MTT-S. Dig., IEEE, Montreal, Canada, June 17–22, 2012.

14. Wu, T., T. S. Rappaport, and C. M. Collins, "The human body and millimeter-wave wireless communication systems: Interactions and mplications," International Conference on Communications (ICC), 2423-2429, IEEE, June 2015.

15. Zhadobov, M., N. Chahat, R. Sauleau, C. Le Quement, and Y. Le Drean, "Millimeter-wave interactions with the human body: State of knowledge and recent advances," International Journal of Microwave and Wireless Technologies, Vol. 3, No. 2, 237-247, 2011.
doi:10.1017/S1759078711000122

16. Heino, M., C. Icheln, and K. Haneda, "Finger effect on 60 GHz user device antennas," 10th European Conference on Antennas and Propagation (EuCAP), 1-5, IEEE, April 2016.

17. Li, Y., Y. Luo, and G. Yang, "12-port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications," IEEE Access, 2017.

18. Ying, Z., K. Zhao, T. Bolin, S. He, A. Scannavini, L. J. Foged, and G. Nicolas, "Multiplexing efficiency of high order MIMO in mobile terminal for 5G communication at 15 GHz," International Symposium on Antennas and Propagation (ISAP), 594-595, IEEE, October 2016.

19. Sharawi, M. S., "Current misuses and future prospects for printed multiple-input, multiple-output antenna systems [wireless corner]," IEEE Antennas and Propagation Magazine, Vol. 59, No. 2, 162-170, 2017.
doi:10.1109/MAP.2017.2658346

20. Tian, R., B. K. Lau, and Z. Ying, "Multiplexing efficiency of MIMO antennas with user effects," International Symposium on Antennas and Propagation Society (APSURSI), 1-2, IEEE, July 2012.

21. Athley, F., A. Derneryd, J. Friden, L. Manholm, and A. Stjernman, "MIMO performance of realistic UE antennas in LTE scenarios at 750 MHz," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1337-1340, 2011.
doi:10.1109/LAWP.2011.2177237