Vol. 51
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-11-04
Application of Group Theory for Computation Reduction in Microwave Imaging of Human Breast Model at 500 MHz
By
Progress In Electromagnetics Research M, Vol. 51, 165-173, 2016
Abstract
In microwave imaging, accuracy of breast cancer detection depends on complex permittivity profile reconstruction in breast. Inverse scattering problem is solved to reconstruct complex permittivity profile of breast. In this paper, computation time to solve inverse scattering problem is reduced by exploiting symmetry present in breast models using group theory. Forward problem is solved using method of moments. Levenberg-Marquardt algorithm is used to solve inverse scattering problem with and without group theory. Results show that computation time is reduced considerably by exploiting symmetry present in breast models using group theory. At higher SNR, error in complex permittivity reconstruction with group theory is approximately same as error without group theory.
Citation
Hardik N. Patel, and Deepak Ghodgaonkar, "Application of Group Theory for Computation Reduction in Microwave Imaging of Human Breast Model at 500 MHz ," Progress In Electromagnetics Research M, Vol. 51, 165-173, 2016.
doi:10.2528/PIERM16080502
References

1. Patel, H. N. G. and D. Kumar, "Computationally efficient microwave imaging of human breast model using group theory," Proc. IEEE MTTS IMaRC, 81-84, 2015.

2. Rubæk, T. K., S. Oleksiy, and M. Peter, "Computational validation of a 3-D microwave imaging system for breast-cancer screening," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 2105-2115, July 2009.
doi:10.1109/TAP.2009.2021879

3. Livesay, D. E. and K. M. Chen, "Electromagnetic fields induced inside arbitarily shaped biological bodies," IEEE Transaction on Microwave Theory and Techniques, Vol. 22, 1273-1280, 1974.
doi:10.1109/TMTT.1974.1128475

4. Hohmann, G. W., "Three dimensional induced polarization and electromagnetic modeling," Geophysics, Vol. 40, 305-324, 1975.

5. Ghodgaonkar, D. K., O. P. Gandhi, and M. J. Hagmann, "Estimation of complex permittivities of 3D inhomogeneous biological bodies," IEEE Transactions on Microwave Theory and Techniques, Vol. 31, 442-446, 1983.
doi:10.1109/TMTT.1983.1131523

6. Cohoon, D. K., "Reduction of the cost of solving an Integral Equation arising in electromagnetic scattering through the use of group theory," IEEE Transactions on Antennas and Propagation, Vol. 28, No. 1, 104-107, January 1980.
doi:10.1109/TAP.1980.1142277

7. Ghodgaonkar, D. K. and R. Ismail, "Exploiting symmetry in electromagnetic imaging problems by using group representation theory," Bull. Malaysian Math. Sc. Soc., Vol. 23, No. 1, 33-44, 2000.

8. Ney, M. M., A. M. Smith, and S. S. Stuchly, "A solution of electromagnetic imaging using pseudoinverse transformation," IEEE Transactions on Medical Imaging, Vol. 3, No. 4, 155-162, December 1984.
doi:10.1109/TMI.1984.4307675

9. Pichot, C., L. Jofre, G. Peronnet, and J. Bolomey, "Active microwave imaging of Inhomogeneous bodies," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 4, 416-425, April 1985.
doi:10.1109/TAP.1985.1143603

10. Garnero, L., A. Franchois, J.-P. Hugonin, C. Pichot, and N. Joachimowicz, "Microwave Imaging-complex permittivity reconstruction by simulated annealing," IEEE Transaction on Microwave Theory and Techniques, Vol. 39, No. 11, 1801-1807, November 1991.
doi:10.1109/22.97480

11. Belkebir, K., R. E. Kleinman, and C. Pichot, "Microwave imaging - location and shape reconstruction from multifrequency scattering data," IEEE Transaction on Microwave Theory and Techniques, Vol. 45, No. 4, 469-476, April 1997.
doi:10.1109/22.566625

12. Caorsi, S., G. L. Gragnani, M. Pastorino, and M. Rebagliati, "A model driven approach to microwave diagnostics in biomedical applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 10, October 1996.

13. Pastorino, M., "Stochastic optimization methods applied to microwave imaging: A review," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 538-548, March 2007.
doi:10.1109/TAP.2007.891568

14. Fang, Q., P. M. Meaney, and K. D. Paulsen, "Singular value analysis of the jacobian matrix in microwave image reconstruction," IEEE Transactions on Antennas and Wave Propagation, Vol. 54, No. 8, August 2006.

15. Park, C.-S. and B.-S. Jeong, "Reconstruction of a high contrast and large object by using the hybrid algorithm combining a Levenberg-Marquardt algorithm and a genetic algorithm," IEEE Transactions on Magnetics, Vol. 35, No. 3, 1582-1585, May 1999.
doi:10.1109/20.767278

16. Rubk, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton’s method and the CGLS inversion algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2320-2331, August 2007.
doi:10.1109/TAP.2007.901993

17. Andreuccetti, D., R. Fossi, and C. Petrucci, "An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz,", Website at http://niremf.ifac.cnr.it/tissprop/. IFAC-CNR, Florence, Italy, 1997. Based on data published by C. Gabriel, et al., in 1996.

18. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, 1993.
doi:10.1109/9780470544631

19. Pozar, D. M., Microwave Engineering, John Wiley and Sons, 1989.

20. Dianat, S. A. and E. S. Saber, Advanced Linear Algebra for Engineers with MATLAB, CRC Press, 2009.
doi:10.1201/b15839