Vol. 49
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-06-30
Cumulative Distributions of Rainfall Rate Over Sumatra
By
Progress In Electromagnetics Research M, Vol. 49, 1-8, 2016
Abstract
The microwave radio links above 5 GHz suffer from attenuation due to precipitation. The need for employing higher frequencies has therefore encouraged research into rain attenuation due to precipitation. The natural variations of tropical precipitation occur in a wide range of time-scales, so does probably the behavior of radio communication links. This paper examines the variations of cumulative distribution of rainfall in Sumatra from an optical rain gauge measurement with a near continuous record of operation over eleven consecutive years (2002-2012). The worst month statistics were also examined and all results were compared with the ITU-R model. Of some natural variations of rainfall rate investigated, the diurnal variation had the most significant effect on the cumulative distribution of rainfall rate. The ITU-R model overestimated the rainfall rate for the first half of the day (00:00-11:59 LT) whereas it underestimated the rainfall rate until 0.01% of time for the second half of the day (12:00-23:59 LT) before the model starts to overestimate. The ITU model overestimated 52.85% of rainfall rate at 0.01% of time for the first half of the day and underestimates 7.59% for the second half. Considerable differences between the recorded data and the ITU-R model for the annual, seasonal, and intreaseasonal variations are only significant at small time percentage (≤ 0.01%). The relationship of worst month statistics was also slightly different from the ITU-R model. This result reinforces the previous studies on the limitation of the ITU-R model for the tropical region.
Citation
Marzuki Marzuki, Hiroyuki Hashiguchi, Toyoshi Shimomai, and Walter L. Randeu, "Cumulative Distributions of Rainfall Rate Over Sumatra," Progress In Electromagnetics Research M, Vol. 49, 1-8, 2016.
doi:10.2528/PIERM16043007
References

1. Moupfouma, F. and L. Martin, "Modelling of the rainfall rate cumulative distribution for the design of satellite and terrestrial communication systems," Int. J. Satellite Commun., Vol. 13, 105-115, 1995.
doi:10.1002/sat.4600130203

2. Manabe, T., T. Ihara, J. Awaka, and Y. Furuhama, "The relationship of raindrop-size distribution to attenuation experiments at 50, 80, 140, and 240 GHz," IEEE Trans. Antennas Propag., Vol. 35, 1326-1330, 1987.
doi:10.1109/TAP.1987.1144005

3. Yeo, T. S., P. S. Kooi, M. S. Leong, and S. S. Ng, "Microwave attenuation due to rainfall at 21.225 GHz in the Singapore environment," Electron. Lett., Vol. 26, No. 14, 1021-1022, 1990.
doi:10.1049/el:19900661

4. Yeo, T. S., P. S. Kooi, and M. S. Leong, "A two-year measurement of rainfall attenuation of CW microwaves in Singapore," IEEE Trans. Antennas Propag., Vol. 41, No. 6, 709-712, 1993.
doi:10.1109/8.250446

5. Zhou, Z. X., L. W. Li, T. S. Yeo, and M. S. Leong, "Analysis of experimental results on microwave propagation in Singapore’s tropical rainfall environment," Microwave Opt. Technol. Lett., Vol. 21, No. 6, 470-473, 1999.
doi:10.1002/(SICI)1098-2760(19990620)21:6<470::AID-MOP19>3.0.CO;2-5

6. Obiyemi, O. O., J. S. Ojo, and T. S. Ibiyemi, "Performance analysis of rain rate models for microwave propagation designs over tropical climate," Progress In Electromagnetics Research M, Vol. 39, 115-122, 2014.
doi:10.2528/PIERM14083003

7. Mori, S., J. I. Hamada, I. M. Yudi, M. D. Yamanaka, N. Okamoto, F. Murata, N. Sakurai, H. Hashiguchi, and T. Sribimawati, "Diurnal land-sea rainfall peak migration over Sumatera island, Indonesian maritime continent, observed by TRMM satellite and intensive rawinsonde soundings," Mon. Weather Rev., Vol. 132, No. 8, 2021-2039, 2004.
doi:10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2

8. Marzuki, T. Kozu, T. Shimomai, W. L. Randeu, H. Hashiguchi, and Y. Shibagaki, "Diurnal variation of rain attenuation obtained from measurement of raindrop size distribution in equatorial Indonesia," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1191-1196, 2009.
doi:10.1109/TAP.2009.2015812

9. Fiebig, U.-C. and C. Riva, "Impact of seasonal and diurnal variations on satellite system design in V band," IEEE Trans. Antennas Propag., Vol. 52, No. 4, 923-932, 2004.
doi:10.1109/TAP.2004.825650

10. Madden, R. A. and P. R. Julian, "Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific," J. Atmos. Sci., Vol. 28, 702-708, 1971.
doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2

11. Marzuki, H. Hashiguchi, T. Kozu, T. Shimomai, Y. Shibagaki, and Y. Takahashi, "Precipitation microstructure in different Madden-Julian oscillation phases over Sumatra," Atmos. Res., Vol. 168, 121-138, 2016.
doi:10.1016/j.atmosres.2015.08.022

12. Wheeler, M. C. and H. H. Hendon, "An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction," Mon. Weather Rev., Vol. 132, No. 8, 1917-1932, 2004.
doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2

13. Kozu, T., K. K. Reddy, S. Mori, M. Thurai, J. T. Ong, D. N. Rao, and T. Shimomai, "Seasonal and diurnal variations of raindrop size distribution in Asian Monsoon region," J. Meteor. Soc. Japan. Ser. II, Vol. 84A, 195-209, 2006.
doi:10.2151/jmsj.84A.195

14. Radiowave Propagation Series, I.T.U. "Characteristics of precipitation for propagation modelling,", Recommendation ITU-R P.837-5, International Telecommunications Union, Geneva, 2007.

15. Omotosho, T. V., J. S. Mandeep, M. Abdullah, and A. T. Adediji, "Distribution of one-minute rain rate in Malaysia derived from TRMM satellite data," Ann. Geophys., Vol. 31, 2013-2022, doi:10.5194/angeo-31-2013-2013, 2013.

16. Hendon, H. H., "Indonesian rainfall variability: Impacts of ENSO and local air-sea interaction," J. Clim., Vol. 16, No. 11, 1775-1790, 2003.
doi:10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2

17. Radiowave Propagation Series, I.T.U. "The concept of worst month,", Recommendation ITU-R P.581-2, International Telecommunications Union, Geneva, 1990.

18. Chebil, J. and T. A. Rahman, "Worst-month rain statistics for radio wave propagation study in Malaysia," Electron. Lett., Vol. 35, 1447-1449, 1999.
doi:10.1049/el:19990936

19. Radiowave Propagation Series, I.T.U. "Conversion of annual statistics to worst-month statistics,", Recommendation ITU-R P.841-4, International Telecommunications Union, Geneva, 2005.

20. Ting, T. T. and J. S. Mandeep, "Analysis of worst-month relationship with annual rain attenuation in Malaysia," Research Journal of Applied Sciences, Engineering and Technology, Vol. 7, No. 7, 1453-1455, 2014.

21. Aldrian, E. and R. D. Susanto, "Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature," Int. J. of Climatology, Vol. 23, No. 12, 1435-1452, 2003.
doi:10.1002/joc.950

22. Marzuki, H. Hashiguchi, M. K. Yamamoto, S. Mori, and M. D. Yamanaka, "Regional variability of raindrop size distribution over Indonesia," Ann. Geophys., Vol. 31, 1941-1948, doi:10.5194/angeo-31-1941-2013, 2013.