Vol. 48
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-06-14
Efficient Meshing Scheme for Bodies of Revolution-Application to Physical Optics Prediction of Electromagnetic Scattering
By
Progress In Electromagnetics Research M, Vol. 48, 163-172, 2016
Abstract
In this paper, we present an efficient meshing scheme for physical optics calculation of electromagnetic scattering from bodies of revolution. Piecewise linear approximation is used to represent the generatrix and circular perimeter of the body's cross section. This results in quadrilateral meshes and enables the application of multilevel search algorithms for efficient determination of the illuminated portion of the surface. Besides, the physical optics surface integral is reduced to a closed form expression using the Gordon's method. Simulation results con rm the proper accuracy and efficiency of the presented algorithm.
Citation
Zohreh Asadi, and Vahid Mohtashami, "Efficient Meshing Scheme for Bodies of Revolution-Application to Physical Optics Prediction of Electromagnetic Scattering," Progress In Electromagnetics Research M, Vol. 48, 163-172, 2016.
doi:10.2528/PIERM16041102
References

1. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.

2. Uluisik, C., G. Cakir, M. Cakir, and L. Sevgi, "Radar cross section (RCS) modeling and simulation, Part 1: A tutorial review of definitions, strategies, and canonical examples," IEEE Antennas and Propagation Magazine, Vol. 50, No. 1, 115-126, Feb. 2008.
doi:10.1109/MAP.2008.4494511

3. Fan, T., L. Guo, B. Lv, and W. Liu, "An improved backward SBR-PO/PTD hybrid method for the backward scattering prediction of an electrically large target," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 512-515, 2015.

4. Hemon, R., P. Pouliguen, H. He, J. Saillard, and J.-F. Damiens, "Computation of EM field scattered by an open-ended cavity and by a cavity under radome using the iterative physical optics," Progress In Electromagnetics Research, Vol. 80, 77-105, 2008.
doi:10.2528/PIER07110803

5. Della Giovampaola, C., G. Carluccio, F. Puggelli, A. Toccafondi, and M. Albani, "Efficient algorithm for the evaluation of the physical optics scattering by NURBS surfaces with relatively general boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4194-4203, Aug. 2013.
doi:10.1109/TAP.2013.2261447

6. Zhao, Y., X.-W. Shi, and L. Xu, "Modeling with NURBS surfaces used for the calculation of RCS," Progress In Electromagnetics Research, Vol. 78, 49-59, 2008.
doi:10.2528/PIER07082903

7. Youssef, N., "Radar cross section of complex targets," Proceedings of the IEEE, Vol. 77, No. 5, 722-734, May 1989.
doi:10.1109/5.32062

8. Weinmann, F., "Ray tracing with PO/PTD for RCS modeling of large complex objects," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 6, 1797-1806, Jun. 2006.
doi:10.1109/TAP.2006.875910

9. Domingo, M., F. Rivas, J. Perez, R. Torres, and M. F. Catedra, "Computation of the RCS of complex bodies modeled using NURBS surfaces," IEEE Antennas and Propagation Magazine, Vol. 37, No. 6, 36-47, Dec. 1995.
doi:10.1109/74.482030

10. Gordon, W., "Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 4, 590-592, Jul. 1975.
doi:10.1109/TAP.1975.1141105

11. Havel, J. and A. Herout, "Yet faster ray-triangle intersection (using SSE4)," IEEE Transactions on Visualization and Computer Graphics, Vol. 16, No. 3, 434-438, May 2010.
doi:10.1109/TVCG.2009.73

12. Woop, S., C. Benthin, and I. Wald, "Watertight ray/triangle intersection," Journal of Computer Graphics Techniques, Vol. 2, No. 1, 65-82, 2013.

13. Tao, Y.-B., H. Lin, and H.-J. Bao, "Kd-tree based fast ray tracing for RCS prediction," Progress In Electromagnetics Research, Vol. 81, 329-341, 2008.
doi:10.2528/PIER08011305

14. Jin, K.-S., T.-I. Suh, S.-H. Suk, B.-C. Kim, and H. T. Kim, "Fast ray tracing using a space-division algorithm for RCS prediction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 119-126, 2006.
doi:10.1163/156939306775777341

15. Bang, J.-K., B.-C. Kim, S.-H. Suk, K.-S. Jin, and H.-T. Kim, "Time consumption reduction of ray tracing for RCS prediction using efficient grid division and space division algorithms," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 829-840, 2007.
doi:10.1163/156939307780749129

16. Glassner, S., An Introduction to Ray Tracing, Academic Press, 1989.

17. Knoll, A., Y. Hijazi, A. Kensler, M. Schott, C. Hansen, and H. Hagen, "Fast ray tracing of arbitrary implicit surfaces with interval and affine arithmetic," Journal of Computer Graphics Forum, Vol. 28, No. 1, 26-40, 2009.
doi:10.1111/j.1467-8659.2008.01189.x

18. Saad, Y., Numerical Methods for Large Eigenvalue Problems, 2nd Ed., SIAM, 2011.
doi:10.1137/1.9781611970739

19. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., Artech House, 1993.
doi:10.1007/978-1-4684-9904-9

20. Griesser, T. and C. Balanis, "Backscatter analysis of dihedral corner reflectors using physical optics and the physical theory of diffraction," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 10, 1137-1147, Oct. 1987.
doi:10.1109/TAP.1987.1143987

21. Weinmann, F., "Curvature interpolation of facetted surfaces for high-frequency RCS simulations," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, Jul. 2008.

22. Huang, W. F., Z. Zhao, R. Zhao, J. Y.Wang, Z. Nie, and Q. H. Liu, "GO/PO and PTD with virtual divergence factor for fast analysis of scattering from concave complex targets," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2170-2179, May 2015.
doi:10.1109/TAP.2015.2405086

23. Michaeli, A., "Equivalent edge currents for arbitrary aspects of observation," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 3, 252-258, Mar. 1984.
doi:10.1109/TAP.1984.1143303

24. Woo, A., H. Wang, M. Schuh, and M. Sanders, "EM programmer’s notebook-benchmark radar targets for the validation of computational electromagnetics programs," IEEE Antennas and Propagation Magazine, Vol. 35, No. 1, 84-89, Feb. 1993.
doi:10.1109/74.210840

25. [Online], , Available: https://www.feko.info/.

26. Shampine, L., "Vectorized adaptive quadrature in MATLAB," Journal of Computational and Applied Mathematics, Vol. 211, No. 11, 131-140, Feb. 2008.
doi:10.1016/j.cam.2006.11.021

27. Persson, P.-O. and G. Strang, "A simple mesh generator in MATLAB," SIAM Review, Vol. 46, No. 2, 329-345, Jun. 2004.
doi:10.1137/S0036144503429121