Vol. 42
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-06-16
Design of a Low Loss Silicon Based Hybrid Dielectric-Loaded Plasmonic Waveguide and a Compact High Performance Optical Resonator
By
Progress In Electromagnetics Research M, Vol. 42, 135-144, 2015
Abstract
Here we present the design of a low loss top metal silicon (Si) hybrid dielectric-loaded plasmonic waveguide (TM-SiHDLW) and a compact, high performance optical resonator by numerical simulation based on finite element method. The waveguide adopted a thick (200 nm) top metal stripe structure to yield optimal performance due to reduced Ohmic loss in conductor around the stripe edge/corner. Moreover, a relatively thick (150 nm) dielectric spacer between the Si ridge and the metal stripe was employed to achieve both long propagation length and good field confinement. The effect of a thin (10 nm) silicon nitride (SiNx) layer covering the waveguide which was added for minimizing uncertainties on optical properties of SiHDLW resulting from high density of dangling bonds on Si surface was also investigated. Simulation results show that there is no significant degradation on the performance of the TM-SiHDLW. For the proposed plasmonic waveguide, a propagation length of 0.35 mm and a mode area around 0.029 μm2 were demonstrated. The TM-SiHDLW waveguide was then used as the basis for anoptical resonator, which was designed to operate at the fundamental TE011 mode for yielding high quality factor at a relatively small footprint size. A metal enclosure was also adopted to reduce the radiation loss, and a high quality factor of ~1900 was obtained, more than double the results in other disk or ring resonators of comparable size. Compared to the resonatorsbased on a rounded top metal Si hybrid dielectric-loaded plasmonic waveguide (RTM-SiHDLW) which has a much longer propagation length than the TM-SiHDLW, as reported in our previous work, the performance is essentially the same. This is simply because, for the resonators, the radiation loss is the dominate loss mechanism and the dissipation in the waveguide structure itself, thus, contribute little to the final quality factor of the plasmonic resonators.
Citation
Cheng-Hung Hsieh, Yu-Ting Chu, Min-Jyun Huang, Chien-Ming Kuo, and Keh-Chyang Leou, "Design of a Low Loss Silicon Based Hybrid Dielectric-Loaded Plasmonic Waveguide and a Compact High Performance Optical Resonator," Progress In Electromagnetics Research M, Vol. 42, 135-144, 2015.
doi:10.2528/PIERM15042808
References

1. Politano, A. and G. Chiarello, "The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films," Prog. Surf. Sci., Vol. 90, No. 2, 144-193, May 2015.
doi:10.1016/j.progsurf.2014.12.002

2. Politano, A. and G. Chiarello, "Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices," Nanoscale, Vol. 5, No. 17, 8215-8220, Sep. 2013.
doi:10.1039/c3nr02027d

3. Politano, A. and G. Chiarello, "Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices," Appl. Phys. Lett., Vol. 102, No. 20, 201608, Apr. 2013.
doi:10.1063/1.4804189

4. Politano, A., "Interplay of structural and temperature effects on plasmonic excitations at noble-metal interfaces," Philos. Mag., Vol. 92, No. 6, 768-778, Feb. 2012.
doi:10.1080/14786435.2011.634846

5. Politano, A., "Plasmonic modes confined in nanoscale thin silver films deposited onto metallic substrates," J. Nanosci. Nanotechnol., Vol. 10, No. 2, 1313-1321, Feb. 2010.
doi:10.1166/jnn.2010.1834

6. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.
doi:10.1038/nature01937

7. Wu, M., Z. H. Han, and V. Van, "Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale," Opt. Express, Vol. 18, No. 11, 11728-11736, 2010.
doi:10.1364/OE.18.011728

8. Dai, D. X. and S. L. He, "Low-loss hybrid plasmonic waveguide with double low-index nano-slots," Opt. Express, Vol. 18, No. 17, 17958-17966, 2010.
doi:10.1364/OE.18.017958

9. Oulton, R. F., V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics, Vol. 2, No. 8, 496-500, 2008.
doi:10.1038/nphoton.2008.131

10. Chu, H. S., E. P. Li, P. Bai, and R. Hegde, "Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components," Appl. Phys. Lett., Vol. 96, No. 22, 221103, 2010.
doi:10.1063/1.3437088

11. Bian, Y. S., Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, "Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides," IEEE Photon. Technol. Lett., Vol. 23, No. 13, 884-886, 2011.
doi:10.1109/LPT.2011.2141981

12. Holmgaard, T. and S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Phy. Rev. B, Vol. 75, No. 24, 245405, 2007.
doi:10.1103/PhysRevB.75.245405

13. Xiao, J., J. S. Liu, Z. Zheng, Y. S. Bian, and G. J. Wang, "Design and analysis of a nanostructure grating based on a hybrid plasmonic slot waveguide," J. Opt., Vol. 13, No. 10, 105001, 2011.
doi:10.1088/2040-8978/13/10/105001

14. Lou, F., Z. C. Wang, D. X. Dai, L. Thylen, and L. Wosinski, "Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides," Appl. Phys. Lett., Vol. 100, No. 24, 241105, 2012.
doi:10.1063/1.4729018

15. Bian, Y. S. and Q. H. Gong, "Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges," Laser Photonics Rev., Vol. 8, No. 4, 549-561, 2014.
doi:10.1002/lpor.201300207

16. Zhang, X. Y., A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, "Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides," Opt. Express, Vol. 18, No. 18, 18945-18959, 2010.
doi:10.1364/OE.18.018945

17. Su, Y. L., Z. Zheng, Y. S. Bian, Y. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, "Low-loss silicon-based hybrid plasmonic waveguide with an air nanotrench for sub-wavelength mode confinement," Micro & Nano Letters, Vol. 6, No. 8, 643-645, 2011.
doi:10.1049/mnl.2011.0298

18. Chen, L., X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, "A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration," J. Lightwave Technol., Vol. 30, 163-168, 2012.
doi:10.1109/JLT.2011.2179008

19. Krishnan, A., C. J. Regan, L. G. de Peralta, and A. A. Bernussi, "Resonant coupling in dielectric loaded plasmonic waveguides," Appl. Phys. Lett., Vol. 97, No. 23, 231110, 2010.
doi:10.1063/1.3525160

20. Dionne, J. A., K. Diest, L. A. Sweatlock, and H. A. Atwater, "Plasmostor: A metal-oxide-Si field effect plasmonic modulator," Nano Letters, Vol. 9, No. 2, 897-902, 2009.
doi:10.1021/nl803868k

21. Song, Y., J.Wang, M. Yan, and M. Qiu, "Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter," J. Opt., Vol. 13, No. 7, 075502, 2011.
doi:10.1088/2040-8978/13/7/075502

22. Chu, H. S., P. Bai, E. P. Li, and W. R. J. Hoefer, "Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: Compact size and high optical performance for nanophotonic circuits," Plasmonics, Vol. 6, No. 3, 591-597, 2011.
doi:10.1007/s11468-011-9239-y

23. Krasavin, A. V. and A. V. Zayats, "Silicon-based plasmonic waveguides," Opt. Express, Vol. 18, No. 11, 11791-11799, 2010.
doi:10.1364/OE.18.011791

24. Morita, M., T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, "Growth of native oxide on a silicon surface," J. Appl. Phys., Vol. 68, No. 3, 1272-1281, 1990.
doi:10.1063/1.347181

25. Kubota, H. and A. Kawai, "Native oxide growth on Si(100) surface in liquid environment," J. Photopolym. Sci. Tec., Vol. 20, No. 6, 823-824, 2007.
doi:10.2494/photopolymer.20.823

26. Johnson, P. B. and R. W. Christy, "Optical constants of noble metals," Phy. Rev. B, Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370

27. Dai, D. X., X. W. Guan, and S. L. He, "Hybrid nanoplasmonic waveguides and nanophotonic integrated devices on silicon," Proc. SPIE, Vol. 8628, 862808, 2013.
doi:10.1117/12.2007917

28. Xiao, Y. F., B. B. Li, X. Y. Hu, Y. Li, and Q. H. Gong, "High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip," J. Phys. B, At. Mol. Opt. Phys., Vol. 43, No. 3, 035402, 2010.
doi:10.1088/0953-4075/43/3/035402

29. Zhu, S. Y., G. Q. Lo, and D. L. Kwong, "Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform," IEEE Photon. Technol. Lett., Vol. 24, No. 14, 1224-1226, 2012.
doi:10.1109/LPT.2012.2199979

30. Ketzaki, D. A., O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, "Electromagnetically induced transparency with hybrid silicon-plasmonic traveling-wave resonators," J. Appl. Lett., Vol. 114, No. 11, 113107, 2013.

31. Lou, L., L. Thylen, and L. Wosinski, "Hybrid plasmonic microdisk resonators for optical interconnect applications," Proc. SPIE, Vol. 8781, 87810X, 2013.
doi:10.1117/12.2017108

32. Song, Y., J. Wang, M. Yan, and M. Qiu, "Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor," J. Opt., Vol. 13, No. 7, 075001, 2011.
doi:10.1088/2040-8978/13/7/075001

33. Pozar, D. M., Microwave Engineering, Wiley, 1998.

34. Hsieh, C. H., C. M. Kuo, Y. T. Chu, and K. C. Leou, "Design of an ultralow loss silicon plasmonic waveguide and high performance devices," IEEE Photon. Technol. Lett., Vol. 27, No. 10, 1096, 2015.
doi:10.1109/LPT.2015.2407875

35. Lipka, T., A. Harke, O. Horn, J. Amthor, and J. Muller, "Amorphous silicon as high index photonic material," Photonic Materials, Devices, and Applications III, Vol. 8429, SPIE --- International Society Optical Engineering, Bellingham, 2009.

36. Zhu, S. Y., G. Q. Lo, and D. L. Kwong, "Low-loss amorphous silicon wire waveguide for integrated photonics: Effect of fabrication process and the thermal stability," Opt. Express, Vol. 18, No. 24, 25283-25291, 2010.
doi:10.1364/OE.18.025283