1. Politano, A. and G. Chiarello, "The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films," Prog. Surf. Sci., Vol. 90, No. 2, 144-193, May 2015.
doi:10.1016/j.progsurf.2014.12.002
2. Politano, A. and G. Chiarello, "Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices," Nanoscale, Vol. 5, No. 17, 8215-8220, Sep. 2013.
doi:10.1039/c3nr02027d
3. Politano, A. and G. Chiarello, "Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices," Appl. Phys. Lett., Vol. 102, No. 20, 201608, Apr. 2013.
doi:10.1063/1.4804189
4. Politano, A., "Interplay of structural and temperature effects on plasmonic excitations at noble-metal interfaces," Philos. Mag., Vol. 92, No. 6, 768-778, Feb. 2012.
doi:10.1080/14786435.2011.634846
5. Politano, A., "Plasmonic modes confined in nanoscale thin silver films deposited onto metallic substrates," J. Nanosci. Nanotechnol., Vol. 10, No. 2, 1313-1321, Feb. 2010.
doi:10.1166/jnn.2010.1834
6. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.
doi:10.1038/nature01937
7. Wu, M., Z. H. Han, and V. Van, "Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale," Opt. Express, Vol. 18, No. 11, 11728-11736, 2010.
doi:10.1364/OE.18.011728
8. Dai, D. X. and S. L. He, "Low-loss hybrid plasmonic waveguide with double low-index nano-slots," Opt. Express, Vol. 18, No. 17, 17958-17966, 2010.
doi:10.1364/OE.18.017958
9. Oulton, R. F., V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics, Vol. 2, No. 8, 496-500, 2008.
doi:10.1038/nphoton.2008.131
10. Chu, H. S., E. P. Li, P. Bai, and R. Hegde, "Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components," Appl. Phys. Lett., Vol. 96, No. 22, 221103, 2010.
doi:10.1063/1.3437088
11. Bian, Y. S., Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, "Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides," IEEE Photon. Technol. Lett., Vol. 23, No. 13, 884-886, 2011.
doi:10.1109/LPT.2011.2141981
12. Holmgaard, T. and S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Phy. Rev. B, Vol. 75, No. 24, 245405, 2007.
doi:10.1103/PhysRevB.75.245405
13. Xiao, J., J. S. Liu, Z. Zheng, Y. S. Bian, and G. J. Wang, "Design and analysis of a nanostructure grating based on a hybrid plasmonic slot waveguide," J. Opt., Vol. 13, No. 10, 105001, 2011.
doi:10.1088/2040-8978/13/10/105001
14. Lou, F., Z. C. Wang, D. X. Dai, L. Thylen, and L. Wosinski, "Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides," Appl. Phys. Lett., Vol. 100, No. 24, 241105, 2012.
doi:10.1063/1.4729018
15. Bian, Y. S. and Q. H. Gong, "Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges," Laser Photonics Rev., Vol. 8, No. 4, 549-561, 2014.
doi:10.1002/lpor.201300207
16. Zhang, X. Y., A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, "Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides," Opt. Express, Vol. 18, No. 18, 18945-18959, 2010.
doi:10.1364/OE.18.018945
17. Su, Y. L., Z. Zheng, Y. S. Bian, Y. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, "Low-loss silicon-based hybrid plasmonic waveguide with an air nanotrench for sub-wavelength mode confinement," Micro & Nano Letters, Vol. 6, No. 8, 643-645, 2011.
doi:10.1049/mnl.2011.0298
18. Chen, L., X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, "A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration," J. Lightwave Technol., Vol. 30, 163-168, 2012.
doi:10.1109/JLT.2011.2179008
19. Krishnan, A., C. J. Regan, L. G. de Peralta, and A. A. Bernussi, "Resonant coupling in dielectric loaded plasmonic waveguides," Appl. Phys. Lett., Vol. 97, No. 23, 231110, 2010.
doi:10.1063/1.3525160
20. Dionne, J. A., K. Diest, L. A. Sweatlock, and H. A. Atwater, "Plasmostor: A metal-oxide-Si field effect plasmonic modulator," Nano Letters, Vol. 9, No. 2, 897-902, 2009.
doi:10.1021/nl803868k
21. Song, Y., J.Wang, M. Yan, and M. Qiu, "Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter," J. Opt., Vol. 13, No. 7, 075502, 2011.
doi:10.1088/2040-8978/13/7/075502
22. Chu, H. S., P. Bai, E. P. Li, and W. R. J. Hoefer, "Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: Compact size and high optical performance for nanophotonic circuits," Plasmonics, Vol. 6, No. 3, 591-597, 2011.
doi:10.1007/s11468-011-9239-y
23. Krasavin, A. V. and A. V. Zayats, "Silicon-based plasmonic waveguides," Opt. Express, Vol. 18, No. 11, 11791-11799, 2010.
doi:10.1364/OE.18.011791
24. Morita, M., T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, "Growth of native oxide on a silicon surface," J. Appl. Phys., Vol. 68, No. 3, 1272-1281, 1990.
doi:10.1063/1.347181
25. Kubota, H. and A. Kawai, "Native oxide growth on Si(100) surface in liquid environment," J. Photopolym. Sci. Tec., Vol. 20, No. 6, 823-824, 2007.
doi:10.2494/photopolymer.20.823
26. Johnson, P. B. and R. W. Christy, "Optical constants of noble metals," Phy. Rev. B, Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370
27. Dai, D. X., X. W. Guan, and S. L. He, "Hybrid nanoplasmonic waveguides and nanophotonic integrated devices on silicon," Proc. SPIE, Vol. 8628, 862808, 2013.
doi:10.1117/12.2007917
28. Xiao, Y. F., B. B. Li, X. Y. Hu, Y. Li, and Q. H. Gong, "High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip," J. Phys. B, At. Mol. Opt. Phys., Vol. 43, No. 3, 035402, 2010.
doi:10.1088/0953-4075/43/3/035402
29. Zhu, S. Y., G. Q. Lo, and D. L. Kwong, "Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform," IEEE Photon. Technol. Lett., Vol. 24, No. 14, 1224-1226, 2012.
doi:10.1109/LPT.2012.2199979
30. Ketzaki, D. A., O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, "Electromagnetically induced transparency with hybrid silicon-plasmonic traveling-wave resonators," J. Appl. Lett., Vol. 114, No. 11, 113107, 2013.
31. Lou, L., L. Thylen, and L. Wosinski, "Hybrid plasmonic microdisk resonators for optical interconnect applications," Proc. SPIE, Vol. 8781, 87810X, 2013.
doi:10.1117/12.2017108
32. Song, Y., J. Wang, M. Yan, and M. Qiu, "Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor," J. Opt., Vol. 13, No. 7, 075001, 2011.
doi:10.1088/2040-8978/13/7/075001
33. Pozar, D. M., Microwave Engineering, Wiley, 1998.
34. Hsieh, C. H., C. M. Kuo, Y. T. Chu, and K. C. Leou, "Design of an ultralow loss silicon plasmonic waveguide and high performance devices," IEEE Photon. Technol. Lett., Vol. 27, No. 10, 1096, 2015.
doi:10.1109/LPT.2015.2407875
35. Lipka, T., A. Harke, O. Horn, J. Amthor, and J. Muller, "Amorphous silicon as high index photonic material," Photonic Materials, Devices, and Applications III, Vol. 8429, SPIE --- International Society Optical Engineering, Bellingham, 2009.
36. Zhu, S. Y., G. Q. Lo, and D. L. Kwong, "Low-loss amorphous silicon wire waveguide for integrated photonics: Effect of fabrication process and the thermal stability," Opt. Express, Vol. 18, No. 24, 25283-25291, 2010.
doi:10.1364/OE.18.025283