Vol. 62
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-04-16
On the Optimization of Halbach Arrays as Energy Storage Media
By
Progress In Electromagnetics Research B, Vol. 62, 277-288, 2015
Abstract
In the paper presented here the optimization of Halbach arrays as storage media for mechanical potential energy is investigated with numerical simulations using FEMM and analytical calculations using the Maxwell stress tensor. Two opposing Halbach arrays form a ``magnetic spring'' and mechanical potential energy is stored when this structure is compressed. It is here seen that the wavelength of the magnetization in the material and the dimensions greatly in fluence the stored energy density. A clear region of maximum is identified which leads to important conclusions on how the material should be employed. The suggested approach for storing energy have advantages and approximately 250 kJ/m3 can be reached. The main drawback is the large prize of rare earth metals such as Neodymium.
Citation
Daniel Mansson, "On the Optimization of Halbach Arrays as Energy Storage Media," Progress In Electromagnetics Research B, Vol. 62, 277-288, 2015.
doi:10.2528/PIERB15021104
References

1. Ter-Gazarian, A. G., Energy Storage for Power Systems, 2nd Ed., The Institution of Engineering and Technology, 2011.
doi:10.1049/PBPO063E

2. Huggins, R. A., Energy Storage, Springer Science+Business Media, 2010.
doi:10.1007/978-1-4419-1024-0

3. Rosen, Rosen, M. A., Ed., Energy Storage, Nova Science Publishers Inc., 2012.

4. Grijalva, S. and M. U. Tariq, "Prosumer-based smart grid architecture enables a flat, sustainable electricity industry," IEEE PES Innovative Smart Grid Technologies (ISGT), 1-6, 2011.
doi:10.1109/ISGT.2011.5759167

5. Zheng, J., D. W. Gao, and L. Li, "Smart meters in smart grid: An overview," IEEE Green Technologies Conference, 57-64, 2013.

6. Supermagnete, , Available: http://www.supermagnete.de/eng/.

7. Mansson, D., "On the suitability of using Halbach arrays as potential energy storage media," Progress In Electromagnetics Research B, Vol. 58, 151-166, 2014.
doi:10.2528/PIERB14010704

8. Finite Element Method Magnetics, , Available: http://www.femm.info/.

9. Meeker, D., Force on a taper plunger magnet, Available: http://www.femm.info/wiki/RotersExample.

10. Vizimag, , Available at: http://www.softpedia.com/get/Science-CAD/Vizimag.shtml.

11. Mallinson, J. C., "One-sided fluxes --- A magnetic curiosity?," IEEE Trans. Magnetics, Vol. 9, 678-682, 1973.
doi:10.1109/TMAG.1973.1067714

12. Halbach, K., "Physical and optical properties of rare earth cobalt magnets," Nuclear Instruments and Methods in Physics Research, Vol. 187, 109-117, Aug. 1981.
doi:10.1016/0029-554X(81)90477-8

13. Wolfram Demonstrations Projects, , Available at: http://demonstrations.wolfram.com/FieldsOfMagnetArray/.

14. Griffiths, D. J., Introduction to Electrodynamics, 3rd Ed., Prentice-Hall Inc., 1999.

15. Shute, H. A., J. C. Mallinson, D. T. Wilton, and D. J. Mapps, "One-sided fluxes in planar, cylindrical, and spherical magnetized structures," IEEE Trans. Magnetics, Vol. 36, No. 2, 440-451, Mar. 2000.
doi:10.1109/20.825805

16. Lang, J. H., "A comparative analysis of torque production in Halbach and conventional surface-mounted permanent-magnet synchronous motors," IEEE Industry Applications Conference, Vol. 1, 657-663, Oct. 8-12, 1995.

17. McDonald, K. T., "Methods of calculating forces on rigid magnetic media," Physics Class. Ph., arXiv: physics/0312027, 2003.

18. WolframAlpha, , Available at: http://www.wolframalpha.com/.

19. MATLAB Version R2012b, , The MathWorks, Inc., Natick, Massachusetts, United States, 2012.