Vol. 35
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-02-24
Simple Methods to Raise the Robustness and Efficiency of the Incomplete Cholesky Preconditioners for FEM Simulation of Electromagnetic Problems
By
Progress In Electromagnetics Research M, Vol. 35, 49-56, 2014
Abstract
In this paper, the finite element method (FEM) is applied to the analysis of three-dimensional (3D) electromagnetic structures. The incomplete Cholesky (IC) preconditioner based on shifted operators is used to solve the finite element linear systems. Several strategies are adopted to raise the efficiency and robustness of the preconditioner. Numerical experiments for several microwave devices demonstrate the superior numerical convergence and robustness of the proposed preocnditioner.
Citation
Xue Wei Ping, Caixia Bian, Xinghui Yin, and Jiaqi Chen, "Simple Methods to Raise the Robustness and Efficiency of the Incomplete Cholesky Preconditioners for FEM Simulation of Electromagnetic Problems," Progress In Electromagnetics Research M, Vol. 35, 49-56, 2014.
doi:10.2528/PIERM13111401
References

1. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, Inc., New York, 2002.

2. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetic, IEEE Press, New York, 1998.
doi:10.1109/9780470544655

3. Zhang, Y. Q. and D. B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603

4. Harrington, R. F., Field Computation by Moment Methods Malabar, Krieger Publishing Company, Florida, 1983.

5. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.
doi:10.2528/PIER07122502

6. Hano, M., T. Miyamura, and M. Hotta, "Three-dimensional finite element eddy current analysis by using high-order vector elements," Electrical Engineering in Japan, Vol. 147, No. 4, 60-67, 2004.
doi:10.1002/eej.10306

7. Holmgaard, T. and S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Physical Review B, Vol. 75, 245405, 2007.
doi:10.1103/PhysRevB.75.245405

8. Politano, A., "Interplay of structural and temperature e®ects on plasmonic excitations at noble-metal interfaces," Philosophical Magazine, Vol. 92, No. 6, 768-778, 2012.
doi:10.1080/14786435.2011.634846

9. Politano, A. and G. Chiarello, "Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices," Nanoscale, Vol. 5, No. 17, 8215-8220, 2013.
doi:10.1039/c3nr02027d

10. Politano, A., V. Formoso, and G. Chiarello, "Dispersion and damping of gold surface plasmon," Plasmonics, Vol. 3, 165-170, 2008.
doi:10.1007/s11468-008-9070-2

11. Politano, A., V. Formoso, and G. Chiarello, "Evidence of composite plasmon{phonon modes in the electronic response of epitaxial graphene," Journal of Physics: Condensed Matter, Vol. 25, 345303, 2013.
doi:10.1088/0953-8984/25/34/345303

12. Cajan, H., L. Pichon, and C. Marchand, "Finite element method for radiated emissions in EMC analysis," IEEE Transactions on Magnetics, Vol. 36, No. 4, 964-967, 2000.
doi:10.1109/20.877602

13. An, X. and Z.-Q. Lu, "An efficient finite element-boundary integral method solving electromagnetic scattering problems," Microwave and Optical Technology Letters, Vol. 51, No. 9, 2065-2071, 2009.
doi:10.1002/mop.24538

14. Wei, X. C., E. P. Li, and Y. J. Zhang, "Efficient solution to the large scattering and radiation problem using the improved finite-element fast multipole method," IEEE Transactions on Magnetics, Vol. 41, No. 5, 1684-1687, 2005.
doi:10.1109/TMAG.2005.846083

15. Chen, R. S., X. W. Ping, E. K. N. Yung, C. H. Chan, et al. "Application of diagonally perturbed incomplete factorization preconditioned conjugate gradient algorithms for edge finite element analysis of Helmholtz equations," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 5, 1604-1608, 2006.
doi:10.1109/TAP.2006.874358

16. Chen, X., K. C. Toh, and K. K. Phoon, "A modified SSOR preconditioner for sparse symmetric indefinite linear systems of equations," International Journal for Numerical Methods in Engineering, Vol. 65, No. 6, 785-807, 2006.
doi:10.1002/nme.1461

17. Ping, X. W. and T. J. Cui, "The factorized sparse approximate inverse preconditioned conjugate gradient algorithm for ¯nite element analysis of scattering problems," Progress In Electromagnetics Research, Vol. 98, 15-31, 2009.
doi:10.2528/PIER09071703

18. Dyczij-Edlinger, R. and O. Biro, "A joint vector and scalar potential formulation for driven high frequency problems using hybrid edge and nodal finite elements," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 1, 15-23, 1996.
doi:10.1109/22.481380

19. Zhu, J., X. W. Ping, R. S. Chen, Z. H. Fan, and D. Z. Ding, "An incomplete factorization preconditioner based on shifted Laplace operators for FEM analysis of microwave structures," Microwave and Optical Technology Letters, Vol. 52, No. 5, 1036-1042, 2010.
doi:10.1002/mop.25111

20. Teixeira, F. L. and W. C. Chew, "Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves," Microwave and Optical Technology Letters, Vol. 17, No. 4, 231-236, Mar. 1998.
doi:10.1002/(SICI)1098-2760(199803)17:4<231::AID-MOP3>3.0.CO;2-J

21. George, A. and J. W. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice Hall, Englewood Cliffs, NJ, 1981.

22. Sieverding, T. and F. Arndt, "Field theoretical CAD of open or aperture matched T-junction coupled rectangular waveguide structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 2, 353-363, 1992.
doi:10.1109/22.120109

23. Ise, K., K. Inoue, and M. Koshiba, "Three-dimensional finite-element method with edge elements for electromagnetic waveguide discontinuities," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 8, 1289-1295, 1991.
doi:10.1109/22.85402