Vol. 34
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-12-16
Coplanar-Pgl Transitions on High Resistivity Silicon Substrate in the 57-64 GHz Band and Influence of the Probe Station on the Performances
By
Progress In Electromagnetics Research M, Vol. 34, 79-87, 2014
Abstract
We present Coplanar-Planar Goubau Line (PGL) transitions designed on high-resistivity Silicon to characterize a PGL using microwave probing. These transitions are optimized in the 57-64 GHz frequency band to present excellent electrical performances despite the field disturbance of the measurement setup. As the transitions are positioned on a probe station chuck, a glass substrate is added between the transition under test and the metallic chuck to minimize the disturbance. 3-D full-wave electromagnetic field simulations performed on a commercial software and on-wafer measurements show almost comparable results in term of scattering matrix parameters. Low losses are attained with a measured average transmission parameter of 2.5 dB at 60 GHz for a length of 8 mm of a back-to-back structure with the transitions at the extremities. The measured average insertion loss and return loss per transition are better than 1.36 dB and 11 dB, respectively, with a bandwidth greater than 7% at 60 GHz for a length of 1 mm (about a half of the wavelength at 60 GHz).
Citation
Marjorie Grzeskowiak, Julien Emond, Gaelle Lissorgues, Stephane Protat, Frederique Deshours, Elodie Richalot, and Odile Picon, "Coplanar-Pgl Transitions on High Resistivity Silicon Substrate in the 57-64 GHz Band and Influence of the Probe Station on the Performances," Progress In Electromagnetics Research M, Vol. 34, 79-87, 2014.
doi:10.2528/PIERM13110704
References

1. Kuri, T., K. Kitayama, A. Stohr, and Y. Ogawa, "Fiber-optic millimeter-wave downlink system using 60 GHz-band external modulation," Journal of Lightwave Technology, Vol. 17, 799-806, 1999.
doi:10.1109/50.762895

2. Yang, T. H., C. F. Chen, T. Y. Huang, C. L. Wang, and R. B. Wu, "A 60 GHz LTCC transition between microstrip line and substrate integrated waveguide," Asia-Pacific Conference Proceedings --- | Microwave Conference Proceedings, Vol. 1, 2005.
doi:10.1109/TMTT.2010.2050094

3. Bulja, S. and D. Mirshekar-Syahkal, "Novel wideband transition between coplanar waveguide and microstrip line," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 7, 1851-1857, 2010.
doi:10.1109/EUMC.2007.4405145

4. Patrovsky, A., M. Daigle, and K.Wu, "Millimeter-wave wideband transition from CPW to substrate integrated waveguide on electrically thick high-permittivity substrates," 2007 European Microwave Conference, 138-141, 2007.
doi:10.1109/TMTT.2005.859862

5. Stephens, D., P. R. Young, and I. D. Robertson, "Millimeter-wave substrate integrated waveguides and filters in photoimageable thick-film technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 12, 3832-3838, 2005.

6. Boone, J., S. Krishnan, and S. Bhansali, "Silicon based vertical micro-coaxial for high frequency packaging technologies ," Progress In Electromagnetics Research B, Vol. 50, 1-7, 2013.
doi:10.1049/el.2010.3262

7. Enayati, A., S. Brebels, W. Deraedt, and G. A. E. Vandenbosch, "Vertical via-less transition in MCM Technology for millimetre-wave applications," Electronics Letters, Vol. 46, No. 4, 287-288, 2010.

8. Gauthier, G. P., L. P. Katehi, and G. M. Rebeiz, "W-band finite ground coplanar waveguide (FGCPW) to microstrip transition," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 1, 107-109, 1998.
doi:10.1109/ICCPS.2012.6384277

9. Xia, L. and R. Xu, "Broadband LTCC transition from coaxial connector to stripline for 60 GHz application," International Conference on Computational Problem-Solving (ICCP), 52-54, 2012.

10. Zandieh, A., N. Ranjkesh, S. Safavi-Naeini, and M. Basha, "A low loss CPW to dielectric waveguide transition for millimeter-wave hybrid integration," Antennas and Propagation Society International Symposium (APSURSI), 1-2, 2012.
doi:10.1049/el.2010.0986

11. El-Gibari, M., D. Averty, C. Lupi, M. Brunet, H. Li, and S. Toutain, "Ultra-broad bandwidth and low-loss GCPW-MS transitions on low k-substrates," Electronics Letters, Vol. 46, No. 13, 931-933, 2010.
doi:10.1049/iet-map.2010.0025

12. Xu, Y., C. Nerguizian, and R. G. Bosisio, "Wideband planar goubau line integrated circuit components at millimetre waves," IET Microwave, Antennas Propagation, Vol. 5, No. 8, 882-885, 2011.
doi:10.1109/LMWC.2005.859976

13. Treizebre, A., T. Akalin, and B. Bocquet, "Planar excitation of goubau transmission lines for THz BioMEMS," IEEE Microwave and Wireless Letters, Vol. 15, No. 12, 886-888, 2005.
doi:10.1049/iet-map.2013.0093

14. Xu, Y. and R. G. Bosisio, "Wideband planar Goulau line (PGL) couplers and six-port circuits compatible with short range (60 GHz) radio," IET Microwaves, Antennas Propagation, Vol. 7, No. 12, 985-990, 2013.
doi:10.1109/LAWP.2013.2278035

15. Sanchez-Escuderos, D., M. Ferrando-Battaler, J. I. Herranz, and M. Cabedo-Fabres, "Periodic leaky-wave antenna on planar Goubau line at millimeter-wave frequencies," IEE Antennas and Wireless Propagation Letters, Vol. 12, 1006-1009, 2013.
doi:10.1002/mop.26470

16. Emond, J., M. Grzeskowiak, G. Lissorgues, S. Protat, F. Deshours, E. Richalot, and O. Picon, "A low planar Goubau line and a coplanar-PGL transition on high resistivity Silicon substrate in the 57--64 GHz band, ," Microwave and Optical Letters, Vol. 54, No. 1, 164-168, 2012.

17. Grzeskowiak, M., J. Emond, S. Protat, G. Lissorgues, F. Deshours, E. Richalot, and O. Picon, "Optimization on of a quasi loss less air-cavity inverted microstrip line form microwave frequencies and comparison with the coplanar line at 60 GHz," Progress In Electromagnetics Research, Vol. 43, 67-78, 2013.

18. "On-wafer vector network analyzer calibration and measurements," Application Note.
doi:10.1002/mop.20812

19. Safwat, M. E., "Study of microstrip mode in RF on-wafer probes," Microwave and Optical Letters, Vol. 45, No. 4, 324-328, 2005.
doi:10.1002/mop.27245

20. Ghaff, , F. A. and A. Shamim, "Design of silicon-based fractal antennas," Microwave and Optical Letters, Vol. 55, No. 1, 180-186, 2013.