Vol. 34
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-01-10
A 'Maximum Entropy'-Based Novel Numerical Methodology for Problems in Statistical Electromagnetics
By
Progress In Electromagnetics Research M, Vol. 34, 125-133, 2014
Abstract
This paper presents the development of a novel‘maximum entropy'-based numerical methodology for the solution of electromagnetic problems, where the inputs and system parameters vary statistically. The application of this methodology to the problem of a plane wave impinging on an array of cylindrical conducting rods with stochastic variations in its parameters is then presented. To address this problem, a statistically significant number of replicas of this array of conductors are constructed. The current profiles in these coupled conductors are estimated by using the Method of Moments (MoM). Upon estimation of the current profiles on the conductors, the monostaticradar cross-section is estimated for each replica of the array. The probability density function isthen constructed through the estimation of a finite number of moments from the available output data subject to the constraint of maximum entropy. The methodology is very general in its scope and its application to scatterers with other geometries such as spheres, spheroids and ellipsoids as well as to other application areas would form the basis of our future work.
Citation
Kausik Chatterjee, "A 'Maximum Entropy'-Based Novel Numerical Methodology for Problems in Statistical Electromagnetics," Progress In Electromagnetics Research M, Vol. 34, 125-133, 2014.
doi:10.2528/PIERM13053010
References

1. Holland, R. and R. S. John, "Statistical Electromagnetics," Taylor & Francis, 1999.

2. Manfredi, P. and F. G. Canavero, "Impact of dielectric variability on modal signaling over cable bundles," Proc. ESA Workshop on Aerospace EMC, 1-4, May 2012.

3. De Menezes, L., D. Thomas, and C. Christopoulos, "Accounting for uncertainty in EMC studies," Proc. EMC09, 753-756, 2009.

4. Lallechere, S., S. Girard, P. Bonnet, and F. Paladian, "Enforcing experimentally stochastic techniques in uncertain electromagnetic environments," Proc. ESA Workshop on Aerospace EMC, 1-6, May 2012.

5. Taflove, A. and S. C. Hagness, "Computational Electromagnetics: The Finite-diFFerence Time Domain Method," Artech House, 2005.

6. Hughes, T. J. R., The Finite Element Method, Linear Static and Dynamic Finite Element Analysis, 2000.

7. Harrington, R. F., Field Computation by Moment Methods, IEEE Press Series on Electromagnetic Wave Theory , 1993.
doi:10.1109/9780470544631

8. Xiu, D. and G. E. Karniadakis, "The Wiener-Askey polynomial chaos for stochastic differential equations," SIAM J. Sci. Comput., Vol. 24, No. 2, 619-644, 2002.
doi:10.1137/S1064827501387826

9. Soize, C. and R. Ghanem, "Physical systems with random uncertainties: Chaos representations with arbitrary probability measure," SIAM J. Sci. Comput., Vol. 26, No. 2, 395-410, 2005.
doi:10.1137/S1064827503424505

10. Stievano, I. S., P. Manfredi, and F. G. Canavero, "Parameter variability effects on multiconductor interconnects via hermite polynomial chaos," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, No. 8, 1234-1239, Aug. 2011.
doi:10.1109/TCPMT.2011.2152403

11. Eldred, M., C. Webster, and P. Constantine, "Evaluation of non-intrusive approaches for Wiener-Askey generalized polynomial chaos," 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Apr. 2008.

12. Papoulis, A. and S. U. Pillai, Probability, Random Variable and Stochastic Processes, 4th Ed., 664-673, McGraw Hill, 2002.

13. Konrad, K., "Probability distributions and maximum entropy,".
doi:www.math.uconn.edu/~kconrad/blurbs/analysis/entropypost.pdf.

14. Pathria, R. K., Statistical Mechanics, 2nd Ed., 1999.

15. Shannon, C. E., "A mathematical theory of communication," The Bell System Technical Journal, Vol. 27, 379-423, Jul. 1948.
doi:10.1002/j.1538-7305.1948.tb01338.x

16. Balanis, C. A., Advanced Engineering Electromagnetics, 718-720, John Wiley & Sons, 1989.

17. Miano, G., L. Verolino, and V. G. Vaccaro, "A new numerical treatment for Pocklington's integral equation ," IEEE Tran. on Mag., Vol. 32, No. 3, 918-921, May 1996.
doi:10.1109/20.497391

18. Anders, R., "Minimum continuity requirements for basis functions used with the Pocklington integral equation," Antennas and Propagation Society International Symposium, Vol. 15, 284-287, Jun. 1977.

19. Nazareth, J. L., "Linear and nonlinear conjugate-gradient related methods," Proc. App. Math., Vol. 85, Jan. 1996.