1. Conciauro, G., et al. "Waveguide modes via an integral equation leading to a linear matrix eigenvalue problem," IEEE Trans. Microwave Theory Techniques,, Vol. 32, 1495-1504, 1984.
doi:10.1109/TMTT.1984.1132880
2. Accatino, L., et al. "Elliptical cavity resonators for dual-mode narrowband filters," IEEE Trans. Microwave Theory Techniques, 2393-2401, 1997.
doi:10.1109/22.643850
3. Wexler, A., "Solution of waveguide discontinuities by modal analysis," IEEE Trans. Microwave Theory Techniques, Vol. 15, 508-517, 1967.
doi:10.1109/TMTT.1967.1126521
4. Chan, K. L. and S. R. Judah, "Mode-matching analysis of a waveguide junction formed by a circular and a larger elliptic waveguide," IEE Proc. Microw. Antennas Propag, Vol. 145, 123-127, 1998.
doi:10.1049/ip-map:19981216
5. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., Ch. 7, Wiley-IEEE Press, 2001.
6. Mazzarella, G., G. Montisci, and , "Accurate modeling of coupling junctions in dielectric covered waveguide slot arrays," Progress In Electromagnetics Research M, Vol. 17, 59-71, 2011.
7. Montisci, G., G. Mazzarella, and G. A. Casula, "Effective analysis of a waveguide longitudinal slot with cavity," IEEE Trans. Antennas Propag., Vol. 60, 3104-3110, 2012.
doi:10.1109/TAP.2012.2196953
8. Mazzarella, G. and G. Montisci, "Wideband equivalent circuit of a centered-inclined waveguide slot coupler," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 1, 133-151, 2000.
doi:10.1163/156939300X00671
9. Casula, G. A., G. Mazzarella, and G. Montisci, "Effective analysis of a microstrip slot coupler," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 9, 1203-1217, 2004.
doi:10.1163/1569393042955333
10. Mazzarella, G. and G. Montisci, "A rigorous analysis of dielectric-covered narrow longitudinal shunt slots with finite wall thickness," Electromagnetics, Vol. 19, 407-418, 1999.
doi:10.1080/02726349908908660
11. Mazzarella, G. and G. Montisci, "Accurate characterization of the interaction between coupling slots and waveguide bends in waveguide slot arrays," IEEE Trans. Microwave Theory Techniques, Vol. 48, 1154-1157, 2000.
doi:10.1109/22.848500
12. Casula, G. A., G. Mazzarella, and G. Montisci, "Effect of the feeding t-junctions in the performance of planar waveguide slot arrays," IEEE Antennas and Wireless Propag. Letters, Vol. 11, 953-956, 2012.
doi:10.1109/LAWP.2012.2213233
13. Chu, L. J., "Electromagnetic waves in elliptic hollow pipes of metal ," J. Appl. Phys., Vol. 9, 583-591, 1938.
doi:10.1063/1.1710459
14. Marcuvitz, N., Waveguide Handbook, Peregrinius, 1986.
doi:10.1049/PBEW021E
15. Kretzschmar, J. G., "Wave propagation in hollow conducting elliptical waveguides," IEEE Trans. Microwave Theory Techniques, Vol. 18, 547-554, 1970.
doi:10.1109/TMTT.1970.1127288
16. Zhang, S. and Y. Chen, "Eigenmodes sequence for an elliptical waveguides with arbitrary ellipticity," IEEE Trans. Microwave Theory Techniques,, Vol. 43, 227-230, 1995.
doi:10.1109/22.362983
17. Shu, C., "Analysis of elliptical waveguides by differential quadrature method," IEEE Trans. Microwave Theory Techniques, Vol. 48, 319-322, 2000.
doi:10.1109/22.821786
18. Weiland, T., "Three dimensional resonator mode computation by finite difference method," IEEE Trans. Magn., Vol. 21, 2340-2343, 1985.
doi:10.1109/TMAG.1985.1064178
19. Fanti , A., G. Mazzarella, and G. Montisci, "Curvilinear vector finite difference approach to the computation of waveguide modes," Advanced Electromagnetics, Vol. 1, 29-37, 2012.
20. Zhao, , Y. J., K. L. Wu, and K. K. M. Cheng, "A compact 2-D full-wave finite-difference frequency-domain method for general guided wave structures," IEEE Trans. Microwave Theory Techniques, Vol. 50, 1844-1848, 2002.
doi:10.1109/TMTT.2002.800447
21. Hwang, J. N., "A compact 2-D FDFD method for modeling microstrip structures with nonuniform grids and perfectly matched layer," IEEE Trans. Microwave Theory Techniques, Vol. 53, 653-659, 2005.
doi:10.1109/TMTT.2004.840569
22. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the ¯nite di®erence frequency domain method," Progress In Electromagnetics Research,, Vol. 67, 1-24, 2007.
doi:10.2528/PIER06083104
23. Podwalski, J., P. Kowalczyk, and M. Mrozowski, "Efficient multiscale finite difference frequency domain analysis using multiple macromodels with compressed boundaries," Progress In Electromagnetics Research, Vol. 126, 463-479, 2012.
doi:10.2528/PIER12012008
24. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.
doi:10.2528/PIERB11092006
25. Lovranos, C. S. and G. A. Kyriacou, "Eigenvalue analysis of curved waveguides employing an orthogonal curvilinear frequency-domain finite-difference method," IEEE Trans. Microwave Theory Techniques, Vol. 57, 594-611, 2009.
doi:10.1109/TMTT.2009.2013314
26. Taflove, A., Advances in Computational Electrodynamics --- The FDTD Method, Artech House, 1995.
27. Xiao, S., R. Vahldieck, and H. Jin, "Full-wave analysis of guided wave structures using a novel 2-D FDTD," IEEE Microwave Guided Wave Lett., Vol. 2, 165-167, 1992.
doi:10.1109/75.134342
28. Choi, D. H. and W. J. R. Hoefer, "The finite-difference-time-domain method and its applications to eigenvalue problems," IEEE Trans. Microwave Theory Techniques, Vol. 34, 1464-1470, 1986.
doi:10.1109/TMTT.1986.1133564
29. Fanti, A. and G. Mazzarella, "Finite differences single grid evaluation of TE and TM modes in metallic waveguides," Loughborough Antennas Propag. Conf., 517-520, Loughborough,UK, 2010.
30. Itoh, T., Numerical Techniques for Microwave and Millimeter-wave Passive Structures, Sect. 1.1, Wiley, 1989.
31. Golub, G. H. and C. F. Van Loan, "The Matrix Computations," The Johns Hopkins University Press, Baltimore MD, 1996.