Vol. 34
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-09-10
Analysis of a Small UWB Filter with Notch and Improved Stopband
By
Progress In Electromagnetics Research Letters, Vol. 34, 147-156, 2012
Abstract
A microstrip based Ultra-Wideband (UWB) Bandpass Filter (BPF) with a notch at WLAN and simultaneously improved stopband till 18 GHz is proposed. Meander shaped Defected Ground Structures (DGS) are used to implement the notch (which can be increased in width and number) within the passband and double U-shaped DGS present under the input and output feeding lines are used to attain the suppressed stopband. Experimental results are in good agreement with the simulated data.
Citation
Abu Nasar Ghazali, and Srikanta Pal, "Analysis of a Small UWB Filter with Notch and Improved Stopband," Progress In Electromagnetics Research Letters, Vol. 34, 147-156, 2012.
doi:10.2528/PIERL12070103
References

1. Federal Communications Commission "Revision of Part 15 of the Commission's rules regarding ultra-wideband transmission systems," Tech. Rep., ET-Docket 98-153, FCC02-48, Apr. 2002.

2. Hsu, C., F. Hsu, and J. Kuo, "Microstrip bandpass fulters for ultra-wideband (UWB) wireless communications," International Microwave Symposium, Long Beach, CA, USA, Jun. 2005.

3. Li, K., D. Kurita, and T. Matsui, "An ultra-wideband bandpass filter using broadside-coupled microstrip-coplanar waveguide structure," IEEE MTT-S Int. Dig., 675-678, Jun. 2005.

4. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 11, 796-798, Nov. 2005.

5. Wang, H. and L. Zhu, "Ultra-wideband bandpass filter using back to back microstrip to CPW transition structure," Electronics Letters, Vol. 41, No. 24, Nov. 24, 2005.

6. Wang, H., L. Zhu, and W. Menzel, "Ultra-wideband bandpass filter with hybrid microstrip/CPW structure," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 12, 844-846, Dec. 2005.
doi:10.1109/LMWC.2005.860016

7. Li, R., S. Sun, and L. Zhu, "Synthesis design of ultra-wideband bandpass ¯lters with designable transmission poles," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 5, May 2009.

8. An, J., G.-M. Wang, W.-D. Zeng, and L.-X. Ma, "UWB filter using defected ground structure of Von Koch fractal shape slot," Progress In Electromagnetics Research Letters, Vol. 6, 61-66, 2009.
doi:10.2528/PIERL08121309

9. Sun, S. and L. Zhu, "Capacitive ended interdigital coupled lines for UWB bandpass filters with improved out-of-band performances," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 8, Aug. 2006.
doi:10.1109/LMWC.2006.879492

10. Yang, G. M., R. Jin, C. Victoria, V. G. Harris, and N. X. Sun, "Small UWB bandpass filter with notched band," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 3, Mar. 2008.

11. Huang, J.-Q., Q.-X. Chu, and C.-Y. Liu, "Compact UWB filter based on surface-coupled structure with dual notched bands," Progress In Electromagnetics Research, Vol. 106, 311-319, 2010.
doi:10.2528/PIER10062203

12. Chen, J. Z., G.-C. Wu, and C.-H. Liang, "A novel compact ultra-wideband bandpass filter with simultaneous narrow notched band and out-of-band performance improvement," Progress In Electromagnetics Research Letters, Vol. 24, 35-42, 2011.

13. Ting, S. W., K. W. Tam, and R. P. Martins, "Miniaturized microstrip lowpass filter with wide stopband using double equilateral U-Shaped defected ground structure," IEEE Microwave and Wireless Component Letters, Vol. 16, No. 5, 240-242, May 2006.
doi:10.1109/LMWC.2006.873592

14. Zeland Software Inc., IE3D 14.0, , 2008.

15. Hong, J. S. and B. M. Karyamapudi, "A general circuit model for defected ground structures in planar transmission lines," IEEE Microwave and Wireless Component Letters, Vol. 15, No. 10, 706-708, Oct. 2005.
doi:10.1109/LMWC.2005.856832

16. Balalem, A., A. R. Ali, J. Machac, and A. Omar, "Quasi-elliptic microstrip low-pass filters using an interdigital DGS slot," IEEE Microwave and Wireless Component Letters, Vol. 17, No. 8, 586-588, Aug. 2007.
doi:10.1109/LMWC.2007.901769