Vol. 126
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-03-21
Fast 3-d Microwave Imaging Method Based on Subaperture Approximation
By
Progress In Electromagnetics Research, Vol. 126, 333-353, 2012
Abstract
In this paper, the subaperture approximation (SA) method for 3-D microwave imaging is presented based on the sparsity of 3-D image. The idea is that the sparsity information can be extracted from the lower resolution image obtained using the subaperture of the (virtual) array and be used for high-resolution imaging to reduce the imaging region. Thus, a recursion procedure that can significantly reduce the computational cost is established. Compared with the surface-tracing-based method, the SA method can avoid the loss of isolated scatterers. The feasibility is verified by using experimental data. After analysis, the SA method can reduce the computational cost from two aspects: reducing the array element number needed to be processed and the pixels needed to be processed. The computational cost is mainly related to the target characteristics (the sparsity ratio and the topological structure), and decreases with the increase of the sparsity ratio. When the sparsity ratio is larger than 97.6%, the computational cost can be lower than 10% of the 3-D back-projection (BP) method.
Citation
Ke-Fei Liao, Xiao-Ling Zhang, and Jun Shi, "Fast 3-d Microwave Imaging Method Based on Subaperture Approximation," Progress In Electromagnetics Research, Vol. 126, 333-353, 2012.
doi:10.2528/PIER12011106
References

1. Li, F., X. Chen, and K.-M. Huang, "Microwave imaging a buried object by the GA and using the S11 parameter," Progress In Electromagnetics Research, Vol. 85, 289-302, 2008.
doi:10.2528/PIER08081401

2. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001

3. Ren, X.-Z., L. H. Qiao, and Y. Qin, "A three-dimensional imaging algorithm for tomography SAR based on improved interpolated array transform," Progress In Electromagnetics Research, Vol. 120, 181-193, 2011.

4. Li, N.-J., C.-F. Hu, Y.-X. Zhao, and J. J. Wei, "A new method of near-field three dimensional synthetic aperture radar imaging," PIERS Proceedings, 71-74, Cambridge, USA, Jul. 5-8, 2010.

5. Li, C. and D.-Y. Zhu, "A residue-pairing algorithm for InSAR phase unwrapping," Progress In Electromagnetics Research, Vol. 95, 341-354, 2009.
doi:10.2528/PIER09070706

6. Klare, J., "Digital beamforming for a 3D MIMO SAR --- Improvements through frequency and waveform diversity," IGARSS 2008, V17-V20, Boston, MA, United States, Jul. 2008.

7. Teng, H. T., H.-T. Ewe, and S. L. Tan, "Multifractal dimension and its geometrical terrain properties for classification of multiband multi-polarized SAR image," Progress In Electromagnetics Research, Vol. 104, 221-237, 2010.
doi:10.2528/PIER10022001

8. Yu, L. and Y. Zhang, "CSAR imaging with data extrapolation and approximate GLRT techniques," Progress In Electromagnetics Research M, Vol. 19, 209-220, 2011.
doi:10.2528/PIERM11062904

9. Chan, T.-K., Y. Kuga, and A. Ishimaru, "Experimental studies on circular SAR imaging in clutter using angular correlation function technique," IEEE Trans. Geoscience and Remote Sensing, Vol. 37, No. 5, 2192-2197, Part 1, Sep. 1999.
doi:10.1109/36.789616

10. Bryant, M. L., L. L. Gostin, and M. Soumekh, "3-D E-CSAR imaging of a T-72 tank and synthesis of its SAR reconstructions," IEEE Trans. Aerospace and Electronic Systems, Vol. 39, No. 1, 211-227, Jan. 2003.
doi:10.1109/TAES.2003.1188905

11. Axelsson, S. R. J., "Beam characteristics of the three-dimensional SAR in curved or random paths," IEEE Trans. Geoscience and Remote Sensing, Vol. 42, No. 10, 2324-2334, Oct. 2004.
doi:10.1109/TGRS.2004.834802

12. Mahafza, B. R. and M. Sajjadi, "Three-dimensional SAR imaging using linear array in transverse motion," IEEE Trans. Aerospace and Electronic Systems, Vol. 32, No. 1, 499-510, Jan. 1996.
doi:10.1109/7.481296

13. Jun, S., X. Zhang, J. Yang, and C. Wen, "APC trajectory design for one-active" linear-array three-dimensional imaging SAR," IEEE Trans. on Geoscience and Remote Sensing, Vol. 48, No. 3, 1470-1486, Mar. 2010.
doi:10.1109/TGRS.2009.2031430

14. Du, L., Y.-P. Wang, W. Hong, et al. "A three-dimensional range migration algorithm for downward-looking 3D-SAR with single-transmitting and multiple receiving linear array antennas ," EURASIP Journal on Advances in Signal Processing, Vol. 2010, 1-15, 2010.
doi:10.1155/2010/957916

15. Zhang, D.-H. and X.-L. Zhang, "Downward-looking 3-D linear array SAR imaging based on chirp scaling algorithm," 2nd Asian-Paci¯c Conference on Synthetic Aperture Radar, APSAR 2009, 1043-1046, 2009.

16. Shi, J., X. Zhang, J. Yang, and Y. Wang, "Surface-tracing-based LASAR 3-D imaging method via multiresolution approximation," IEEE Trans. Geoscience and Remote Sensing, Vol. 46, No. 11, Part 2, 3719-3730, Nov. 2008.

17. Jun, S., X. Zhang, J. Yang, and K. Liao, "Experiment results on one-active" LASAR," IEEE Radar Conference 2009, 1-4, Pasadena, CA, United States, May 2009.

18. Sheen, D., D. McMakin, and T. Hall, "Near-field three-dimensional radar imaging techniques and applications," Applied Optics, Vol. 49, No. 19, E83-E93, Jul. 2010.
doi:10.1364/AO.49.000E83

19. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, 1997.

20. Ward Cheney, Will light "A Course in Approximation Theory,", Brooks/Cole, Paci¯c Grove, CA, 2000.

21. Koo, V. C., Y. K. Chan, V. Gobi, M. Y. Chua, C. H. Lim, C.-S. Lim, C. C. Thum, T. S. Lim, Z. Bin Ahmad, K. A. Mahmood, M. H. Bin Shahid, and C., "A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring ," Progress In Electromagnetics Research, Vol. 122, 245-268, 2011.

22. Wang, Y.-P., L. Du, W. Hong, et al. "Effect of linear array elements spacing on angle imaging performance of downward-looking 3D-SAR," IGARSS 2009, IV570-IV573, Cape Town, South Africa, Jul. 2009.

23. Wei, S.-J., X.-L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

24. Freeman, A. and S. L. Durden, "A three-component scattering model for polarimetric SAR data," IEEE Trans. on Geoscience and Remote Sensing, Vol. 36, No. 3, 953-973, May 1998.
doi:10.1109/36.673687

25. Yamaguchi, Y., T. Moriyama, M. Ishido, and H. Yamada, "Four-component scattering model for polarimetric SAR image decomposition," IEEE Trans. on Geoscience and Remote Sensing, Vol. 43, No. 8, 1699-1706, Aug. 2005.
doi:10.1109/TGRS.2005.852084

26. Franceschetti, G., A. Iodice, and D. Riccio, "A canonical problem in electromagnetic backscattering from buildings," IEEE Trans. on Geoscience and Remote Sensing, Vol. 40, No. 8, 1787-1801, Aug. 2002.
doi:10.1109/TGRS.2002.802459

27. Ausherman, D., A. Kozma, J. Walker, H. Jones, and E. Poggio, "Developments in radar imaging," IEEE Trans. Aerospace and Electronic Systems, Vol. 363, Jul. 20, 1984.

28. Socas-Navarro, H., "Polarimetric calibration of large-aperture telescopes II: The sub-aperture method," J. Opt. Soc. Am. A, Vol. 22, 907-912, 2005.
doi:10.1364/JOSAA.22.000907