Vol. 105
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-06-11
Derivation of Klein-Gordon Equation from Maxwell's Equations and Study of Relativistic Time-Domain Waveguide Modes
By
Progress In Electromagnetics Research, Vol. 105, 171-191, 2010
Abstract
A initial-boundary value problem for the system of Maxwell's equations with time derivative is formulated and solved rigorously for transient modes in a hollow waveguide. It is supposed that the latter has perfectly conducting surface. Cross section, S, is bounded by a closed singly-connected contour of arbitrary but smooth enough shape. Hence, the TE and TM modes are under study. Every modal field is a product of a vector function of transverse coordinates and a scalar amplitude dependent on time, t, and axial coordinate, z. It has been established that the study comes down to, eventually, solving two autonomous problems. i) A modal basis problem. Final result of this step is de…nition of complete (in Hilbert space, L2) set of functions dependent on transverse coordinates which originates a basis. ii) A modal amplitude problem. The amplitudes are generated by the solutions to Klein-Gordon equation (KGE), derived from Maxwell's equations directly, with t and z as independent variables. The solutions to KGE are invariant under relativistic Lorentz transforms and subjected to the causality principle. Special attention is paid to various ways that lead to analytical solutions to KGE. As an example, one case (among eleven others) is considered in detail. The modal amplitudes are found out explicitly and expressed via products of Airy functions with arguments dependent on t and z.
Citation
Oleg Tretyakov, and Ozlem Akgun, "Derivation of Klein-Gordon Equation from Maxwell's Equations and Study of Relativistic Time-Domain Waveguide Modes," Progress In Electromagnetics Research, Vol. 105, 171-191, 2010.
doi:10.2528/PIER10042702
References

1. Gabriel, G. J., "Theory of electromagnetic transmission structures, Part I: Relativistic foundation and network formalism," Proc. IEEE, Vol. 68, No. 3, 354-366, 1980.
doi:10.1109/PROC.1980.11646

2. Tretyakov, O. A., "Evolutionary waveguide equations," Sov. J. Comm. Tech. Electron. (English Translation of Elektrosvyaz and Radiotekhnika), Vol. 35, No. 2, 7-17, 1990.

3. Tretyakov, O. A., "Essentials of nonstationary and nonlinear electromagnetic field theory," Analytical and Numerical Methods in Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, O. A. Tretyakov (eds.), Chap. 3, Science House Co. Ltd., Tokyo, 1993.

4. Kristensson, G., "Transient electromagnetic wave propagation in waveguides," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 5-6, 645-671, 1995.
doi:10.1163/156939395X00866

5. http://www.emph.com.ua/18/index.htm.

6. Aksoy, S. and O. A. Tretyakov, "Evolution equations for analytical study of digital signals in waveguides," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 12, 1665-1682, 2003.
doi:10.1163/156939303322760209

7. Aksoy, S. and O. A. Tretyakov, "The evolution equations in study of the cavity oscillations excited by a digital signal," IEEE Trans. Antenn. Propag., Vol. 52, No. 1, 263-270, Jan. 2004.
doi:10.1109/TAP.2003.822399

8. Slater, J. C., "Microwave electronics," Rev. Mod. Phys., Vol. 18, No. 4, 441-512, 1946.
doi:10.1103/RevModPhys.18.441

9. Kisun'ko, G. V., Electrodynamics of Hollow Systems, VKAS-Press, Leningrad, 1949 (in Russian).

10. Kurokawa, K., "The expansion of electromagnetic fields in cavities," IRE Trans. Microwave Theory Tech., Vol. 6, 178-187, 1958.
doi:10.1109/TMTT.1958.1124535

11. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice Hall, Englewood Cliffs, NJ, 1973.

12. Borisov, V. V., Transient Electromagnetic Waves, Leningrad Univ. Press, Leningrad, 1987 (in Russian).

13. Tretyakoy, O. A., "Evolutionary equations for the theory of waveguides," IEEE AP-S Int. Symp. Dig., Vol. 3, 2465-2471, Seattle, Jun. 1994.

14. Shvartsburg, A. B., "Single-cycle waveforms and non-periodic waves in dispersive media (exactly solvable models)," Phys. Usp., Vol. 41, No. 1, 77-94, Jan. 1998.
doi:10.1070/PU1998v041n01ABEH000331

15. Slivinski, A. and E. Heyman, "Time-domain near-field analysis of short-pulse antennas --- Part I: Spherical wave (multipole) expansion," IEEE Trans. Antenn. Propag., Vol. 47, 271-279, Feb. 1999.
doi:10.1109/8.761066

16. Nerukh, A. G., I. V. Scherbatko, and M. Marciniak, "Electromagnetics of Modulated Media with Application to Photonics," National Institute of Telecommunications Publishing House,Warsaw, Poland, 2001.

17. Geyi, W., "A time-domain theory of waveguides," Progress In Electromagnetics Research, Vol. 59, 267-297, 2006.

18. Erden, F. and O. A. Tretyakov, "Excitation by a transient signal of the real-valued electromagnetic fields in a cavity," Phys. Rev. E, Vol. 77, No. 5, 056605, May 2008.
doi:10.1103/PhysRevE.77.056605

19. Polyanin, A. D. and A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, FL, 2006.

20. Torre, A., "A note on the Airy beams in the light of the symmetry algebra based approach," J. Opt. A: Pure Appl. Opt., Vol. 11, 125701, Sep. 2009.
doi:10.1088/1464-4258/11/12/125701

21. Polyanin, A. D., Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, FL, 2002.

22. Miller, Jr., W., Symmetry and Separation of Variables, Addison-Wesley Publication Co., Boston, MA, 1977.

23. Vallee, O. and M. Soares, "Airy Functions and Applications to Physics," Imperial College Press, London, England, 2004.

24. Kalnins, E., "On the separation of variables for the Laplace equation in two- and three-dimensional Minkowski space," SIAM J. Math. Anal., Vol. 6, 340-374, 1975.
doi:10.1137/0506033