Vol. 14
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-05-01
Remote Sensing with Tdmf Radar: Some Preliminary Results
By
Progress In Electromagnetics Research Letters, Vol. 14, 79-90, 2010
Abstract
HF radar in ocean remote sensing makes use of electromagnetic waves of 10m to 100m wavelength from the rough sea surface to measure surface current and ocean wave parameter. Recently, a new time division multiple frequency HF radar system called OSMAR2009 has been developed by the Wuhan University. One main advantage of the system is that it is of great help in extracting current parameters and significant wave height. A further advantage is the ability to avoid interference. In addition, this technique offers the opportunity to measure the current shear. These advantages are gained by transmitting time division multiple frequency chirp instead of one frequency chirp. This paper introduces the technical design and the advantage of OSMAR2009 and describes the remote sensing experiment implemented in East China sea during 2009, followed by the field results and the brief analysis of such results.
Citation
Songhua Yan, Xiongbin Wu, and Zezong Chen, "Remote Sensing with Tdmf Radar: Some Preliminary Results," Progress In Electromagnetics Research Letters, Vol. 14, 79-90, 2010.
doi:10.2528/PIERL10022405
References

1. Liang, D., P. Xu, L. Tsang, Z. Gui, and K.-S. Chen, "Electromagnetic scattering by rough surfaces with large heights and slopes with applications to microwave remote sensing of rough surface over layered media," Progress In Electromagnetics Research, Vol. 95, 199-218, 2009.
doi:10.2528/PIER09071413

2. Wu, Z.-S., J.-J. Zhang, and L. Zhao, "Composite electromagnetic scattering from the plate target above a one-dimensional sea surface: Taking the diffraction into account," Progress In Electromagnetics Research, Vol. 92, 317-331, 2009.
doi:10.2528/PIER09032902

3. Chen, H., M. Zhang, D. Nie, and H.-C. Yin, "Robust semi-deterministic facet model for fast estimation on EM scattering from ocean-like surface ," Progress In Electromagnetics Research B, Vol. 18, 347-363, 2009.
doi:10.2528/PIERB09100508

4. Yang, S., H. Ke, X. Wu, J. Tian, and J. Hou, "HF radar ocean current algorithm based on MUSIC and the validation experiments," IEEE Journal of Oceanic Engineering, Vol. 30, No. 3, 601-617, 2005.
doi:10.1109/JOE.2005.858370

5. Teague, C. C., J. F. Vesecky, and Z. R. Hallock, "A comparison of multifrequency HF radar and ADCP measurements of near-surface currents during COPE-3," IEEE J. of Oceanic Eng., Vol. 26, No. 3, 399-405, July 2001.
doi:10.1109/48.946513

6. Zhang, X., G. Feng, and D. Xu, "Blind direction of angle and time delay estimation algorithm for uniform linear array employing multi-invariance MUSIC," Progress In Electromagnetics Research Letters, Vol. 13, 11-20, 2010.
doi:10.2528/PIERL09102611

7. Mau, J.-C., D.-P. Wang, D. S. Ullman, and D. L. Codiga, "Comparison of observed (HF radar, ADCP) and model barotropic tidal currents in the New York bight and block island sound ," Estuarine, Coastal and Shelf Science, Vol. 72, 129-137, 2007.
doi:10.1016/j.ecss.2006.10.011

8. Son, Y.-T., S.-H. Lee, C.-S. Kim, J. C. Lee, and G.-H. Lee, "Surface current variability in the Keum River Estuary (South Korea) during summer 2002 as observed by high-frequency radar and coastal monitoring buoy," Continental Shelf Research, Vol. 27, 43-63, 2007.
doi:10.1016/j.csr.2006.08.008

9. Mau, J.-C., D.-P. Wang, D. S. Ullman, et al. "Model of the long island sound outflow: Comparison with year-long HF radar and doppler current observation," Continental Shelf Research, Vol. 28, 1791-1799, 2008.
doi:10.1016/j.csr.2008.04.013

10. Barrick, D. E., "Dependence of second-order sidebands in HF sea echo upon sea state ," IEEE G-AP Int. Symp. Digest., 194-197, 1971.

11. Howell, R. and J. Walsh, "Measurement of ocean wave spectra using narrow-beam HF radar," IEEE J. Oceanic Eng., Vol. 18, 296-305, 1993.
doi:10.1109/JOE.1993.236368

12. Green, J. J., "Discretising Barrick's equations," Proceedings of Wind over Waves II: Forecasting and Fundamentals of Applications, 219-232, S. G. Sajjadi and J. C. R. Hunt (eds.), IMA and Horwood, 2003.

13. Green, J. J. and L. R. Wyatt, "Row-action inversion of the Barrick-Weber equations," American Meteorological Society, March, 2006.

14. Essen, H. H., K. W. Gurgel, and T. Schlick, "On the accuracy of current measurements by means of HF radar," IEEE J. Oceanic Eng., Vol. 25, 472-480, 2000.
doi:10.1109/48.895354

15. Emery, B. M., L. Washburn, and J. A. Harlan, "Evaluating radial current measurements from CODAR high-frequency radars with moored current meters," J. Atmos. Ocean. Technol., Vol. 21, 1259-1271, 2004.
doi:10.1175/1520-0426(2004)021<1259:ERCMFC>2.0.CO;2

16. Shay, L. K., J. Martinez-Pedraja, T. M. Cook, and B. K. Haus, "High-frequency radar mapping of surface currents using WERA," J. Atmos. Ocean. Technol., Vol. 24, 484-503, 2007.
doi:10.1175/JTECH1985.1

17. Poulain, P. M., R. Gerin, E. Mauri, and R. Pennel, "Wind effects on drogued and undrogued drifters in the eastern mediterranean," J. Atmos. Oceanic Technol., Vol. 26, 1144-1156, 2009.
doi:10.1175/2008JTECHO618.1