Vol. 11
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-02-26
Interpolation Scheme Based on Adaptive Integral Method for Solving Electrically Large Radiation Problem by Surface/Surface Configuration
By
Progress In Electromagnetics Research M, Vol. 11, 203-211, 2010
Abstract
A novel interpolation scheme based on Adaptive Integral Method (AIM) is presented to solve electrically large radiation problem of conducting surface/surface configurations. For a complex structure that involves wires and surfaces, three basis functions must be assigned to surfaces, wires and wire/surface junctions. To simplify this, the thin strips with no thickness instead of wires are proposed, and the wire/surface junctions can be replaced by surface/surface junctions, thus it is only necessary to define a uniform basis function. The Electric Field Integral Equation (EFIE) is solved using the Method of Moments (MoM) to obtain the equivalent surface current on PEC surfaces. To facilitate the analysis of electrically large radiation problem, the interpolation scheme based on AIM is employed to accelerate the matrix-vector multiplications and reduce matrix storage. Numerical results are presented to demonstrate the accuracy and efficiency of the technique.
Citation
Xing Wang, Shu-Xi Gong, Jin Ling, and Xiao-Ming Wang, "Interpolation Scheme Based on Adaptive Integral Method for Solving Electrically Large Radiation Problem by Surface/Surface Configuration," Progress In Electromagnetics Research M, Vol. 11, 203-211, 2010.
doi:10.2528/PIERM10011802
References

1. Newman, E. H. and D. M. Pozar, "Electromagnetic modeling of composite wire and surface geometries," IEEE Trans. Antenna Propagat., Vol. 26, No. 6, 784-789, Nov. 1978.
doi:10.1109/TAP.1978.1141937

2. Pozar, D. M. and E. H. Newman, "Analysis of a monopole mounted near or at the edge of a half-plane," IEEE Trans. Antennas Propagat., Vol. 29, No. 3, 488-495, May 1981.
doi:10.1109/TAP.1981.1142609

3. Pozar, D. M. and E. H. Newman, "Analysis of a monopole mounted near an edge or a vertex," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 401-408, May 1982.
doi:10.1109/TAP.1982.1142796

4. Hwu, S. U., D. R. Wilton, and S. M. Rao, "Electromagnetic scattering and radiation by arbitrary conducting wire/surface configurations," IEEE APS Int. Symp. Dig., Vol. 2, 890-893, 1Syracuse, New York, Jun. 1988.

5. Ewe, W. B., L. W. Li, C. S. Chang, and J. P. Xu, "AIM analysis scattering and radiation by arbitrary surface-wire configurations," IEEE Trans. Antennas Propagat., Vol. 55, No. 1, 162-166, Jan. 2007.
doi:10.1109/TAP.2006.888450

6. Makarov, S. N., Antenna and EM Modeling with MATLAB, John Wiley & Sons, INC, 2002.

7. Nie, X. C., L. W. Li, and N. Yuan, "Precorrected-FFT algorithm for solving combined field integral equations in electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 8, 1171-1187, Aug. 2002.
doi:10.1163/156939302X00697

8. Nie, X. C., N. Yuan, L. W. Li, T. S. Yeo, and Y. B. Gan, "Fast analysis of electromagnetic transmission through arbitrarily shaped airborne radomes using precorrected-FFT method," Progress In Electromagnetics Research, Vol. 54, 37-59, 2005.
doi:10.2528/PIER04100601

9. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive Integral Method for solving large-scale electromagnetic scattering and radiation problems," Raido Sci., Vol. 31, No. 5, 1225-1251, Sep.-Oct. 1996.
doi:10.1029/96RS02504

10. Ling, F., C. F. Wang, and J. M. Jin, "Application of adaptive integral method to scattering and radiation analysis of arbitrarily shaped planar structures," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 8, 1021-1037, Aug. 1998.
doi:10.1163/156939398X01268

11. Ewe, W. B., L. W. Li, and M. S. Leong, "Solving mixed dielectric/conducting scattering problem using adaptive integral method," Progress In Electromagnetics Research, Vol. 46, 143-163, 2004.
doi:10.2528/PIER03091001

12. Hu, L., L. W. Li, and T. S. Yeo, "Analysis of scattering by large inhomogeneous bi-anisotropic objects using AIM," Progress In Electromagnetics Research, Vol. 99, 21-36, 2009.
doi:10.2528/PIER09101204

13. Wang, C.-F., L.-W. Li, P.-S. Kooi, and M.-S. Leong, "Efficient capacitance computation for three-dimensional structures based on adaptive integral method," Progress In Electromagnetics Research, Vol. 30, 33-46, 2001.
doi:10.2528/PIER00031302

14. Hu, L., L. W. Li, and T. S. Yeo, "ASED-AIM analysis of scattering by large-scale finite periodic arrays," Progress In Electromagnetics Research B, Vol. 18, 381-399, 2009.
doi:10.2528/PIERB09101301

15. Gurel, L., O. Ergul, A. Unal, and T. Malas, "Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.
doi:10.2528/PIER09060106

16. Zhao, X. W., C.-H. Liang, and L. Liang, "Multilevel fast multipole algorithm for radiation characteristics of shipborne antennas above seawater," Progress In Electromagnetics Research, Vol. 81, 291-302, 2008.
doi:10.2528/PIER08012003