Vol. 15
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-06-15
Application of Neural Network with Error Correlation and Time Evolution for Retrieval of Soil Moisture and Other Vegetation Variables
By
Progress In Electromagnetics Research B, Vol. 15, 245-465, 2009
Abstract
Present paper utilizes the time evolution for estimating the soil moisture and vegetation parameter with Radar remote sensing data. For this purpose, vegetation ladyfinger has been taken as a test field and experimental observations have been taken by bistatic scatterometer at X-band in the regular interval of 10 days for both like polarization (i.e., Horizontal-Horizontal, HH-; Vertical-Vertical, VV-) and at different incidence angles. At this interval, all the vegetation parameters and scattering coefficient have been recorded and computed. Three similar types of field of size 5 x 5 m have been especially prepared for this purpose. The observed data is critically analyzed to understand the effect of incidence angle and polarization effect on scattering coefficient of the ladyfinger. It is observed that VV-polarization gives better result than HH-polarization and incidence angle 55ο is the best suited to observe composite effect of vegetation ladyfinger biomass (Bm) and vegetation covered soil moisture at X-band. This analysis is further used for retrieval of soil moisture and biomass of ladyfinger using Neural Network. The important aspect of the retrieval algorithm is that it includes the time evolution. The retrieval results for soil moisture and Bm are in good agreement with the actual values of the soil moisture and biomass.
Citation
Dharmendra Singh, Vandita Srivastava, Basant Pandey, and Devesh Bhimsaria, "Application of Neural Network with Error Correlation and Time Evolution for Retrieval of Soil Moisture and Other Vegetation Variables," Progress In Electromagnetics Research B, Vol. 15, 245-465, 2009.
doi:10.2528/PIERB09043003
References

1. Bracaglia, M., P. Ferrazzoli, and L. Guerriero, "A fully polarimetric multiple scattering model for crops," Remote Sensing Environ., Vol. 54, 170-179, 1995.
doi:10.1016/0034-4257(95)00151-4

2. Del Frate, F., P. Ferrazzoli, L. Guerriero, T. Strozzi, U. Wegmuller, G. Cookmartin, and S. Quegan, "Wheat cycle monitoring using radar data and a neural network trained by a model," IEEE Transaction on Geoscience and Remote Sensing, Vol. 42, 35-44, 2004.
doi:10.1109/TGRS.2003.817200

3. Del Frate, F., P. Ferrazzoli, and G. Schiavon, "Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks," Remote Sensing Environ., Vol. 84, 174-183, 2003.
doi:10.1016/S0034-4257(02)00105-0

4. Ferrazzoli, P., S. Palsocia, P. Pampaloni, G. Schiavon, S. Sigismondi, and D. Solimini, "The potential of multifrequency polarimetric SAR in assessing agricultral and arboreous biomass," IEEE Transaction on Geoscience and Remote Sensing, Vol. 35, No. 1, 5-17, 1997.
doi:10.1109/36.551929

5. Franceschetti, G., A. Iodice, S. Maddaluno, and D. Riccio, "A fractal based theoretical framework for retrieval of surface parameters from electromagnetic bakscattering data," IEEE Transaction on Geoscience and Remote Sensing, Vol. 38, No. 2, 641-650, 2000.
doi:10.1109/36.841994

6. Henderson, F. M. and A. J. Lewis, Manual of Remote Sensing, Vol. 2, John Wiley & Sons, Inc, 1998.

7. Huang, E. X. and A. K. Fung, "Electromagnetic wave scattering from vegetation with ODD pinnate compound leaves," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 2, 231-244, 2005.
doi:10.1163/1569393054497339

8. Karam, M. A., A. K. Fung, R. H. Lang, and N. S. Chauhan, "A Microwave scattering model for layered vegetation," IEEE Transaction on Geoscience and Remote Sensing, Vol. 30, No. 4, 767-784, July 1992.
doi:10.1109/36.158872

9. Kim, S. B., B. W. Kim, Y. K. Kong, and Y. S. Kim, "Radar backscattering measurements of rice crop using X-band scalterometer," IEEE Transaction on Geoscience and Remote Sensing, Vol. 38, No. 3, 2000.

10. Kurosu, T., S. Uratsuka, H. Maeno, and T. Kozu, "Texture statistics for classification of land use with multitemporal. JERS-1, SAR single-look imagery," IEEE Transaction on Geoscience and Remote Sensing, Vol. 37, No. 1, 1999.
doi:10.1109/36.739157

11. Le Toan, T., F. Ribbes, L. F. Wang, N. F. Floury, K. H. Ding, J. A. Kong, M. Fujita, and T. Kurosu, "Rice croping mapping and monitoring using ERS-1 data based on experiment and modeling results," IEEE Transaction on Geoscience and Remote Sensing, 41-56, 1997.
doi:10.1109/36.551933

12. Pulliainen, J. T., P. J. Mikhela, M. T. Hallikainen, and J.-P. Ikonen, "Seasonal dynamics of C-band Backscatter of boreal forests with applications to biomass and soil moisture estimation," IEEE Transaction on Geoscience and Remote Sensing, Vol. 34, 758-770, 1996.
doi:10.1109/36.499781

13. Saatchi, S. S. and M. Moghaddam, "Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery," IEEE Transaction on Geoscience and Remote Sensing, Vol. 38, No. 2, 2000.
doi:10.1109/36.841999

14. Singh, D. and V. Dubey, "Microwave bistatic polarization measurements for retrieval of soil moisture with incidence angle approach," Journal of Geophysics and Engineering, Vol. 4, 75-82, Published by Institute of Physics, IoP, U. K., 2007.

15. Singh, D., "Scatterometer performance with polarization discrimination ratio approach to retrieve crop soybean parameter at X-band," International Journal of Remote Sensing, Vol. 27, No. 19, 4101-4115, 2006.
doi:10.1080/01431160600735988

16. Singh, D. and S. K. Sharan, "Microwave response to broad leaf vegetation (spinach) and vegetation covered soil for remote sensing," Journal of Indian Society of Remote Sensing, Vol. 28, 2001.

17. Toure, A., K. P. B. Thomson, G. Edwards, R. J. Brown, and B. G. Brisco, "Adaptation of the MIMICS backscattering model to the agriculturalcontext-wheat and canola at L and C bands," IEEE Transaction on Geoscience and Remote Sensing, 1994.

18. Ulaby, F. T., R. K. Moore, and A. K. Fung, "Microwave remote sensing (active and passive),", Vol. 1-3, Addision-Wesely Publishing Company, Reading, MA, 1982.