Vol. 6
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-02-11
Compact 2-d Full-Wave Order-Marching Time-Domain Method with a Memory-Redued Technique
By
Progress In Electromagnetics Research Letters, Vol. 6, 157-164, 2009
Abstract
This paper describes a memory-reduced (MR) compact two-dimensional (2-D) order-marching time-domain (OMTD) method for full-wave analyses. To reduce memory requirements in the OMTD method, the divergence theorem is introduced to obtain a memory-efficient matrix equation. A lossy microstrip line is presented to validate the accuracy and efficiency of our algorithm.
Citation
Wei Shao, Sheng-Jian Lai, and Ting-Zhu Huang, "Compact 2-d Full-Wave Order-Marching Time-Domain Method with a Memory-Redued Technique," Progress In Electromagnetics Research Letters, Vol. 6, 157-164, 2009.
doi:10.2528/PIERL08111811
References

1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The finite-difference Time-Domain Method, 2nd Ed., Artech House, 2000.

2. Ali, M. and S. Sanyal, "FDTD analysis of dipole antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 69, 341-359, 2007.
doi:10.2528/PIER06122801

3. Chen, Z.-H. and Q.-X. Chu, "FDTD modeling of arbitrary linear lumped networks using piecewise linear recursive convolution technique," Progress In Electromagnetics Research, Vol. 73, 327-341, 2007.
doi:10.2528/PIER07042002

4. Lei, J.-Z., C.-H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 85-112, 2007.
doi:10.2528/PIER07041905

5. Xiao, S.-Q., B.-Z.Wang, P. Du, and Z. Shao, "An enhanced FDTD model for complex lumped circuits," Progress In Electromagnetics Research, Vol. 76, 485-495, 2007.
doi:10.2528/PIER07073003

6. Shreim, A. M. and M. F. Hadi, "Integral PML absorbing boundary conditions for the high-order M24 FDTD algorithm," Progress In Electromagnetics Research, Vol. 76, 141-152, 2007.
doi:10.2528/PIER07070303

7. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to microwave/MM-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
doi:10.2528/PIER07081401

8. Hu, X.-J. and D.-B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902

9. Su, D. Y., D.-M. Fu, and Z.-H. Chen, "Numerical modeling of active devices characterized by measured S-parameters in FDTD," Progress In Electromagnetics Research, Vol. 80, 381-392, 2008.
doi:10.2528/PIER07120902

10. Mohammad Amjadi, S. and M. Soleimani, "Design of band-pass waveguide filter using frequency selective surfaces loaded with surface mount capacitors based on split-field update FDTD method," Progress In Electromagnetics Research B, Vol. 3, 271-281, 2008.
doi:10.2528/PIERB07122402

11. Khajehpour, A. and S. A. Mirtaheri, "Analysis of pyramid EM wave absorber by FDTD method and comparing with capacitance and homogenization methods," Progress In Electromagnetics Research Letters, Vol. 3, 123-131, 2008.
doi:10.2528/PIERL08021802

12. Xiao, S., R. Vahldieck, and H. Jin, "Full-wave analysis of guided wave structures using a novel 2-D FDTD," IEEE Microwave Guided Wave Lett., Vol. 2, No. 5, 165-167, 1992.
doi:10.1109/75.134342

13. Xiao, S. and R. Vahldieck, "An effcient 2-D FDTD algorithm using real variables," IEEE Microwave Guided Wave Lett., Vol. 3, No. 5, 127-129, 1993.
doi:10.1109/75.217204

14. Chung, Y.-S., T. K. Sarkar, B. H. Jung, and M. Salazar-Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 3, 697-704, 2003.
doi:10.1109/TMTT.2003.808732

15. Shao, W., B.-Z. Wang, X.-H. Wang, and X.-F. Liu, "Effcient compact 2-D time-domain method with weighted Laguerre polynomials ," IEEE Trans. Electromagn. Compat., Vol. 48, No. 3, 442-448, 2006.
doi:10.1109/TEMC.2006.879332

16. Shao, W., B.-Z. Wang, and X.-F. Liu, "Complex variable technique in compact 2-D order-marching time-domain method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1453-1460, 2007.
doi:10.1163/156939307782000280

17. Kondylis, G. D., F. D. Flaviis, G. J. Pottie, and T. Itoh, "A memory-effcient formulation of the finite-difference time-domain method for the solution of Maxwell equations," IEEE Trans. Microwave Theory and Tech., Vol. 49, No. 7, 1310-1320, 2001.
doi:10.1109/22.932252

18. Yi, Y., B. Chen, W.-X. Sheng, and Y.-L. Pei, "A memory-effcient formulation of the unconditionally stable FDTD method for solving maxwell's equations," IEEE Trans. Antennas Propagat. , Vol. 55, No. 12, 3729-3733, 2007.
doi:10.1109/TAP.2007.910499

19. Zhao, A. P., J. Juntunen, and A. V. Ralsanen, "A generalized compact 2D FDTD model for the analysis of guided modes of anisotropic waveguides with arbitrary tensor permittivity," Microwave Opt. Technol. Lett., Vol. 18, No. 5, 17-23, 1998.
doi:10.1002/(SICI)1098-2760(199805)18:1<17::AID-MOP5>3.0.CO;2-L

20. Fujii, M. and S. Kobayashi, "Compact two-dimensional FD-TD analysis of attenuation properties of lossy microstrip lines," IEEE MTT-S Int. Microwave Symp., 797-800, 1995.