1. Georgieva, N. K., S. Glavic, M. H. Bakr, and J. W. Bandler, "Feasible adjoint sensitivity technique for EM design optimization," IEEE MTT-S Int. Microwave Symp. Dig., Vol. 1, 299-302, Jun. 2003.
2. Bakr, M. H. and N. K. Georgieva, "An adjoint variable method for frequency domain TLM problems with conductingb oundaries," IEEE Microwave & Wireless Comp. Letters, Vol. 13, 408-410, Nov. 2003.
doi:10.1109/LMWC.2003.811665
3. Chung, Y. S., C. Cheon, I. H. Park, and S. Y. Hahn, "Optimal design methods for microwave devices using time domain method and design sensitivity analysis-part II: FDTD case," IEEE Trans. Microwave Theory and Tech., Vol. 37, 3255-3295, Sep. 2001.
4. Swillam, M. A., M. H. Bakr, and X. Li, "Efficient adjoint sensitivity analysis exploiting the FD-BPM," J. Lightwave Technology, Vol. 25, 1861-1869, Jul. 2007.
doi:10.1109/JLT.2007.899171
5. Shen, G., H. W. W. Tam, N. K. Nikolova, and M. H. Bakr, "Adjoint sensitivity technique for FDTD methods on structured grids," IEEE Int. Symp. Antennas & Propagation, 746-749, 2003.
6. Swillam, M. A., M. H. Bakr, and X. Li, "Full wave sebsitivity analysis of guided wave structures using FDTD," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 16, 2135-2145, 2008.
7. Bakr, M. H. and N. K. Nikolova, "An adjoint variable method for time-domain transmission-line modeling with fixed structured grids," IEEE Trans. Microwave Theory and Tech., Vol. 52, 554-559, Feb. 2004.
doi:10.1109/TMTT.2003.821908
8. Bakr, M. H. and N. K. Nikolova, "An adjoint variable method for time domain TLM with wideband Johns matrix boundaries," IEEE Trans. Microwave Theory and Tech., Vol. 52, 678-685, Feb. 2004.
doi:10.1109/TMTT.2003.822034
9. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "Time-domain sensitivity analysis of planar structures using first-order one-way wave equation boundaries," Int. Journal. of Numerical Modelling: Electronic Networks, Devices and Fields, to be published.
10. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "Efficient estimation of sensitivities in TLM with dielectric discontinuities," IEEE Microwave & Wireless Comp. Letters, Vol. 15, 89-91, Feb. 2005.
doi:10.1109/LMWC.2004.842829
11. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "Efficient sensitivity analysis of lossy discontinuities using time-domain TLM," Antem/URSI 2006 Conference Proc., 613-616, Jul. 2006.
12. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "An AVM technique for 3-D TLM with symmetric condensed nodes," IEEE Microwave & Wireless Comp. Letters, Vol. 15, 618-620, Oct. 2005.
doi:10.1109/LMWC.2005.856696
13. Johns, P. B., "Symmetrical condensed node for the TLM method," IEEE Trans. Microwave Theory and Tech., Vol. 35, 370-377, Feb. 1987.
doi:10.1109/TMTT.1987.1133658
14. Bakr, M. H. and N. K. Nikolova, "Efficient estimation of adjointvariable S-parameter sensitivities with time domain TLM," Int. Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 18, No. 2, 171-187, Mar. 2005.
doi:10.1002/jnm.571
15. Bakr, M. H., N. K. Nikolova, and P. A. W. Basl, "Self-adjoint S-parameter sensitivities for lossless homogeneous TLM problems," Int. Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 18, 441-455, Nov. 2005.
doi:10.1002/jnm.590
16. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "Theory of selfadjoint S-parameter sensitivities for lossless nonhomogeneous transmission-line modelingproblems," IET Proc. Microwaves, Antennas & Propagation, to be published.
17. Scaramuzza, R. A. and A. J. Lowery, "Hybrid symmetrical condensed node for the TLM method," Electronics Letters, Vol. 26, 1947-1949, Nov. 1990.
doi:10.1049/el:19901260
18. Herring, J. L. and C. Christopoulos, "Multigrid transmission-line modeling method for solving electromagnetic field problems," Electronics Letters, Vol. 27, 1794-1795, Sep. 1991.
doi:10.1049/el:19911115
19. German, F. G., "Infinitesimally adjustable boundaries in symmetrical condensed node TLM simulation," Applied Electromagnetics Symp. Dig., 482-490, 1993.
20. Muller, U., A. Beyer, and W. J. R. Hoefer, "Moving boundaries in 2-D and 3-D TLM simulations realized by recursive formulas," IEEE Trans. Microwave Thoery and Tech., Vol. 40, 2267-2271, Dec. 1992.
doi:10.1109/22.179889
21. Gwarek, W. K., "Analysis of an arbitrarily-shaped planar circuit a time-domain approach," IEEE Trans. Microwave Thoery and Tech., Vol. 33, 1067-1072, Oct. 1985.
doi:10.1109/TMTT.1985.1133170
22. Huilian, D., S. Poman, and W. J. R. Hoefer, "Cells with tensor properties for conformal TLM boundary modeling," 2006 IEEE MTT-S Int. Microwave Symp., Vol. 11, 157-160, 2006.
23. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "Efficient transmission line modeling sensitivity analysis exploiting rubber cells," IEEE MTT-S Conference Proc., 53-56, June 2008.
24. Mathworks, Matlab, “R2007,” ed., www.mathworks.com, 2007.
24. Ansoft Corporation, “HFSS,” 9.2.1 ed., www.ansoft.com, 2004.
26. Beneat, J., "Design of high frequency filters for data transmission & evanescent mode waveguide structures," PhD thesis, 1993.
27. μWave Wizard ver. 5.6,2006, Mician, Bremen, Germany, www.mician.com.