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1. INTRODUCTION

Novel electromagnetic features of complex media – namely in the mi-
crowave and millimeter-wave regimes – have attracted, in recent years,
basic and applied research activities in Electromagnetics. In partic-
ular, the pseudochiral Ω -medium [1, 2] has generated considerable
attention in the literature [3–8].

As is well-known, chiral artificial materials – which exhibit optical
activity at microwave frequencies – can be obtained by inserting small
wire helices into the isotropic host medium. On the other hand, syn-
thetic pseudochiral Ω -media - which are nonchiral - can be obtained by
doping a host isotropic medium with Ω -shaped conducting microstruc-
tures where both the loop and stamps lie in the same plane. Although
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the electric field, in both the wire helices and Ω inclusions, induces
not only electric but also magnetic polarizations, a different mutual
placement in these polarization vectors is observed: in the wire helices
of the chiral medium these interacting vectors are parallel; in the Ω
microstructures of the pseudochiral medium they are perpendicular to
each other. This distinctive characteristic of Ω -media implies that the
orientation of the doping elements in the host isotropic medium can-
not be random - as in the chiral medium - but must be parallel to a
unique preferred direction. Otherwise, with a random distribution of
the Ω -shaped microstructures, the overall electro- magnetic coupling
would result in a null average.

The problem of guided electromagnetic wave propagation in pseu-
dochiral Ω -structures was, for some special devices, already analyzed
(e.g., [5, 8]). However, a rigorous analysis of guided modes, especially
for open Ω -structures, aiming to derive a complete field representation
including the surface as well as the radiation modes, is – as far as the
authors are aware – still lacking.

In this paper, based on a linear-operator formalism, we present a
complete spectral representation for the electromagnetic field of planar
multilayered waveguides containing pseudochiral Ω -media. In fact, us-
ing the theory of linear operators and adopting a suitable definition of
a two-vector transverse mode function, we reduce the problem of elec-
tromagnetic wave propagation in planar waveguides, inhomogeneously
filled with Ω -media, to an eigenvalue equation related to a 2× 2 ma-
trix differential operator. This theoretical framework is similar to the
one developed by the authors for planar chirowaveguides [9, 10].

Using the concept of adjoint waveguide, bi-orthogonality relations
are derived for the hybrid modes. In order to have a complete field
representation in open pseudochiral waveguides, these relations are
of utmost importance when choosing an appropriate set of mutually
orthogonal radiation modes. As an example of application, a general
analysis of the surface and radiation modes of a grounded pseudochiral
Ω -slab waveguide is also presented.

One should finally note that, for the case of homogeneous layers,
the general formalism reduces to an algebraic 2 × 2 coupling matrix
eigenvalue problem.
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Figure 1. Multilayered pseudochiral waveguide closed by electric
and/or magnetic walls placed at x = 0 and x = d .

2. LINEAR-OPERATOR FORMALISM

The aim of this section is to reduce the problem of guided electromag-
netic wave propagation in (open or closed) inhomogeneous pseudochi-
ral waveguides to a linear-operator formalism. Based on the transverse
electromagnetic field equations an eigenvalue problem is obtained. For
each eigenvalue the corresponding eigenfunction represents a transverse
mode function of the waveguide. Hence, the orthogonality properties
of these eigenfunctions can be used to represent the electromagnetic
field as a superposition of mode functions, as long as completeness is
guaranteed.

In this section, the general layered grounded open waveguide de-
picted in Figure 1 will be considered. It is uniform in the y direction
and inhomogeneously filled with spatially nondispersive lossless Ω -
medium.

For bianisotropic Ω -media the constitutive relations may be written
as

DDD = ε0(ε · EEE + Z0ξ · HHH ) (1a)

BBB = µ0(Y0ζ · EEE + µ · HHH ) (1b)
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with Z0 = Y −1
0 = k0/(ωε0) = (ωµ0)/k0 , where ε and µ are the

relative dielectric permittivity and relative magnetic permeability di-
mensionless tensors, and ξ and ζ are the magnetoelectric coupling
dimensionless tensors. As the medium is considered spatially nondis-
persive these relations are local. The structure depicted in Figure 1 is
uniform and infinite in the y direction (hence ∂/∂y = 0 ) and can be
inhomogeneously filled with Ω -media, i.e., ε(ω, x), µ(ω, x), ξ(ω, x)
and ζ(ω, x) may be piece-wise continuous functions of x , although,
in order to obtain the adjoint operator, one has to assume that ξ and
ζ are piecewise constant functions along x′ .

Introducing normalized distances marked with primes (e.g., x′ =
k0x, y

′ = k0y, z
′ = k0z ) and the normalized magnetic field H such

that
H = Z0HHH (2)

then, from Maxwell’s curl equations for source free regions together
with (1a) and (1b), one may write

−j∇′∇′∇′ ×H = ε ·EEE + ξ · H (3a)
j∇′∇′∇′ ×EEE = ζ ·EEE + µ · H (3b)

where time-harmonic field variation of the form exp( jωt ) was assumed
and ∇′∇′∇′ = ∇∇∇ /k0 . Considering forward plane wave propagation of the
form exp(−jβz′ ), where β is the normalized longitudinal wavenumber
given by

β =
k

k0
(4)

one has
∇′∇′∇′ = ∂x′ x̂xx − jβ ẑzz (5)

where ∂x′ stands for ∂/∂x′ .
In this paper, only the case of Ω -shaped perfectly conducting mi-

crostructures oriented as in Figure 2 in a isotropic host material, will
be considered. The normal to the planes of the loops points in the
x direction while the stamps are aligned along the z direction, and
the loops are oriented in the positive y direction. Therefore tensors
ε, µ, ξ , and ζ have the dyadic representation

ε =εxxx̂xxx̂xx+ εyyŷyyŷyy + εzzẑzzẑzz (6a)
µ =µxxx̂xxx̂xx+ µyyŷyyŷyy + µzzẑzzẑzz (6b)
ξ =jΩẑzzx̂xx (6c)
ζ =− jΩx̂xxẑzz (6d)
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Figure 2. Spatial orientation of planar, Ω -shaped, conducting mi-
crostructures in the hosting isotropic material.

where Ω is the dimensionless pseudochiral parameter (which is posi-
tive). If the loops were oriented in the negative y direction, one should
have Ω < 0 .

From (6) one has ξ = −ζT , which shows that the Ω -medium is
reciprocal. Moreover, when the medium is lossless the constitutive
parameters are all real.

After substituting (6) into Maxwell’s equations (3) and eliminating
the components directed along x , one obtains the following set of
coupled partial differential equations

∂x′ft = −jC · ft (7)

where ft is a column vector with the electric and magnetic field com-
ponents tangential to the yz plane

ft = [Ey Hz Hy Ez]
T , (8)

( T stands for transpose), whereas C is a 4×4 coupling matrix given
by

C =




0 µzz 0 0
εyy − β2

µxx
0 0 jβ Ω

µxx

jβ Ω
µxx

0 0 −εzz + Ω2

µxx

0 0 −µyy + β2

εxx
0


 . (9)
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The transverse field components may be algebraically expressed in
terms of ft as follows

fn = G · ft (10)

where
fn = [Ex Hx]T . (11)

In (10) G is a 2× 4 matrix given by

G =

[
0 0 β

εxx
0

− β
µxx

0 0 j Ω
µxx

]
. (12)

One should not that, according to (8)-(12), only hybrid modes can
propagate in the planar structure.

Moreover, one has

tr C =0 (13a)
tr (adj C) =0, (13b)

and hence the eigenvalues of C are anti-symmetric, therefore allowing
(7) to be recast as a 2× 2 matrix eigenvalue problem.

A. Eigenvalue Equation for Inhomogeneous Waveguides

In order to recast the electromagnetic field equations in terms of
a single eigenvalue equation, the following definition of a state vector
mode function (or eigenfunction) is introduced:

ΦΦΦ = [Ez µxxHx]T . (14)

One should note that ΦΦΦ is a continuous function of x′ across any in-
terface of the multilayered structure. Hence, from (7)-(12) one obtains
the eigenvalue equation

L · ΦΦΦ = β2W · ΦΦΦ (15)

Where L is a 2× 2 matrix differential operator given by

L =

[−j∂x′ 1
µzz
∂x′Ω− jεyyΩ ∂x′

1
µzz
∂x′ + εyy

∂2
x′ + µyyεzz

jµyyΩ
µxx

]
(16)
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and W is the weight operator

W =

[
0 1

µxx

εzz
εxx

j Ω
εxxµxx

]
. (17)

Once the field components Ez and Hx have been determined through
(15), the remaining components can also be determined according to
Appendix A.

In everything that follows within this Section, three classes of waveg-
uides will be considered: (1) closed waveguides with electric and/or
magnetic walls placed at x′ = 0 and x′ = d′ ; (ii) open waveguides
extending from x′ = −∞ to x′ = +∞ ; (iii) open grounded waveg-
uides extending from an electric or magnetic wall placed at x′ = 0 to
x′ = +∞ . Hence, a finite, infinite or semi-infinite interval I on x′

will be introduced as follows: (i) I = [0, d′] for closed waveguides;
(ii) I =]−∞, +∞[ for open waveguides; (iii) I = [0, +∞[ for open
grounded waveguides. In order to define the domain D of L , only
surface modes will be considered for the two classes (ii) and (iii) of open
waveguides. Consequently, Ez and Hx always have finite energy and
hence they belong to the vector space of square integrable functions
over I . However, only for closed waveguides (i.e., for regular problems
corresponding to finite interval I ), a complete spectral representation
is possible within D .

B. Bi-Orthogonality Relation

Introducing the following real type inner product

〈uuu , uuu a〉 =
∫
I
(u1u

a
1 + u2u

a
2)dx

′ (18)

it is possible to determine the adjoint operators La and Wa of L and
W , respectively, with ΦΦΦ a satisfying the same boundary conditions.
In fact, making use of (18) with uuu 1 = [u1, u2]T ∈ D and uuu a1 =
[ua1, u

a
2]
T ∈ Da , where Da denotes the domain of La , one can easily

see that
La = LT , Wa =WT (19)

according to (16) and (17), inasmuch as Ω is a piecewise constant
function of x′ (see Appendix B).
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At this point it is useful to introduce the concept of adjoint wave-
guide [11], as the one which has the same geometry and dimensions
of the original waveguide, with identical boundaries, and satisfying to
the eigenvalue problem

La · ΦΦΦ a = β2
aW

a · ΦΦΦ a (20)

where plane wave propagation of the form exp(−jβaz) was considered.
According to the fact that every eigenvalue β2 of L is an eigenvalue
of La [12], one can readily prove that

(β2
m − β2

n)
〈
W · ΦΦΦm, ΦΦΦ a

n

〉
= 0 (21)

if ΦΦΦm � D and ΦΦΦ a
n � Da . Hence, after a suitable normalization, the

following bi-orthogonality relation holds:〈
W · ΦΦΦm, ΦΦΦ a

n

〉
= δmn (22)

where δmn is the Kronecker delta.

3. HOMOGENEOUS LAYERS

For the special case of homogeneous layers, the linear operator formal-
ism herein derived is reduced to a 2 × 2 coupling matrix eigenvalue
problem. In fact, for this case, one obtains from (15)–(17)

∂2
x′ ΦΦΦ = −RRR · ΦΦΦ (23)

where

RRR =
[
R11 R12

R21 R22

]
(24)

with

R11 =εzz

(
µyy −

β2

εxx

)
(25a)

R12 =jΩµxx

(
µyy −

β2

εxx

)
(25b)

R21 =jΩεzz

(
µyy −

β2

εxx

)
− jΩεyyµzz (25c)

R22 =µzz

(
εyy −

β2

µxx

)
− Ω2

µxx

(
µyy −

β2

εxx

)
. (25d)
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Hence, in a similar way as shown in [9], one may write for each homo-
geneous pseudochiral layer:

ΦΦΦ (x′) = MMM · ΨΨΨ (x′) (26)

where

MMM =
[

1 1
τa τb

]
(27)

is the modal matrix of RRR , such that

∂2
x′ ΨΨΨ = −ΛΛΛ · ΨΨΨ (28)

with ΨΨΨ = [Ψa Ψb]T and ΛΛΛ = diag(h2
a, h

2
b) . Therefore, one has

h2
s =

R11 +R22 ±
√

(R11 −R22)2 + 4R12R21

2
(29)

and

τs =
h2
s −R11

R12
=

R21

h2
s −R22

(30)

with s = a, b .

4. GROUNDED PSEUDOCHIRAL SLAB WAVEGUIDE

As an example of application of the previous formalism, the grounded
pseudochiral slab waveguide depicted in Figure 3 will be analyzed.
Since this waveguide is an open structure extending from the perfectly
conducting plane at x′ = 0 to x′ = +∞ , the operator L is defined
over a semi-infinite interval, and has a discrete spectrum as well as a
continuous spectrum. One should stress that, for the sake of complete-
ness, the radiation modes must be included in the analysis. Neverthe-
less, the radiation modes do not actually belong to the domain of the
operator: indeed they are improper eigenfunctions.

Assuming that the Ω -shaped conducting microstructures have a
spatial orientation in the slab as in Figure 2, all the modes in the
waveguide are hybrid. This problem – as far as the authors are aware
– has never been addressed in the literature.

According to (26), (27), (29) and (30), for 0 < x′ < t′ , where t′ is
the normalized thickness of the slab, one has,

Ez =Ψa + Ψb (31a)
µxxHx =τaΨa + τbΨb (31b)
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Figure 3. Grounded pseudochiral slab waveguide. The slab of thick-
ness t is an isotropic host medium with Ω -shaped conducting mi-
crostructures with spatial orientation as in Figure 2. The upper
medium is the air.

where

Ψa =A[sin(hax′)−Q cos(hax′)] (32a)
Ψb =A[R sin(hbx′) +Q cos(hbx′)] (32b)

which automatically guarantees that Ez = 0 for x′ = 0 . Imposing
the other boundary condition at x′ = 0, i.e., Ey = 0 , one obtains
from (A1)

Q = 0 (33)

In the air region, i.e., for x′ > 0 , one gets

Ez =αaAcos[ρ(x′ − t′)] +B1 sin[ρ(x′ − t′] (34a)
Hx =α2Acos[ρ(x′ − t′)] +B2 sin[ρ(x′ − t′)] (34b)

with
ρ2 = 1− β2 (35)

and where B1 and B2 are arbitrary constants determined according
to the type of modes to be considered. For example, when considering
the hybrid surface modes one should take B1 = −j and B2 = −j ,
while ρ = −jα with α =

√
β2 − 1 real for lossless media. In order to

satisfy the radiation condition one must have α > 0 , i.e., β > 1 .



Pseudochiral Multilayered Planar Waveguides 95

Imposing the continuity of Ey and Ez at x′ = t′ , coefficients α1

and α2 can be determined according to (31a) and (A1) :

α1 = sin(hat′) +R sin(hby′) (36)

α2 = (µxxτa − jΩ) sin(hat′) + (µxxτb − jΩ)R sin(hbt′). (37)

After enforcing the remaining boundary conditions, i.e., the continuity
of Hy and Hz at x′ = t′ , the following linear system is obtained:

[
ηa ηb
νa νb

]
·
[

1
R

]
=

[
0
0

]
(38)

where

ηs =(µxxτs − jΩ)
[
hs
µzz

cos(hst′)−B2ρ sin(hst′)
]

(39a)

νs =
(
µyy −

β2

εxx

)
B1 sin(hst′)− ρhs cos(hst′) (39b)

with s = a, b . In order to have a determined system and hence obtain
nontrivial solutions, one has to ensure that

ηaνb − νaηb = 0. (40)

Furthermore, one also obtains from (38)

R = −ηa
ηb

= −νa
νb
. (41)

For the surface modes and since B1 and B2 are both defined, (38)
becomes the modal equation of the pseudochiral waveguide of Figure 3.

A. Surface Modes

The surface modes, which constitute the discrete spectrum of the
linear operator L and define its domain as the set of eigenfunctions
ΦΦΦ = [Ez Hx]T , must satisfy to the radiation condition. Therefore,
one should have B1 = −j and B2 = −j in (34), while ρ = −jα , α
real and positive for lossless media. According to (35), all the surface
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Figure 4. Variation of t/λc with the pseudochiral parameter Ω for
the first hybrid modes of the grounded pseudochiral slab waveguide of
Figure 3: εxx = 2, εyy = 3, εzz = 4, µxx = 1, µyy = 2, and µzz = 3 .

modes are slow modes, i.e., β > 1 , and each cutoff when α = 0 , i.e.,
for β = 1 .

In Figure 4, the variation of t/λc with Ω -space where λc denotes
the cutoff wavelength - is presented. These curves are easily calculated
by making α = 0 in the modal equation (40). For numerical results
the following values for the dimensionless constitutive parameters were
considered: εxx = 2, εyy = 3, εzz = 4, µxx = 1, µyy = 2, and
µzz = 3 . Hereafter, the descriptor Hp will be used for each hybrid
mode, where the subscript p , with p ≥ 0 , indicates the mode order,
where all the modes are ordered after increasing cutoff frequencies.
The fundamental mode H0 (i.e., the first propagating mode) has no
cutoff ( t/λc = 0 ). For any value of t′ where t′ = 2πt/λ , one easily
obtains from Figure 4 the number of propagating modes.

In Figure 5, the variation of β with t/λ - defined in (4) - is pre-
sented for Ω = 0.1 . In the high frequency regime, when t/λ → ∞ ,
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Figure 5. Variation of the normalized longitudinal wavenumber β
with t/λ for the hybrid modes of a grounded pseudochiral slab wave-
guide when Ω = 0.1 .

there are two asymptotic values for β (βa and βb) corresponding
to hs → 0 , with s = a, b . In both cases, when hs = 0 , one
has det(RRR ) = 0 in (23). Nevertheless, for every mode, the disper-
sion curve always converges to the highest of these two values. In the
present example, one has

βb =
√
εxxµyy (42)

when hb = 0 , while

βb =
√
εyy(µxx − Ω2/εzz) (43)

when ha = 0 . Since εxx/εyy > µxx/µyy , one always has βb > βa .
Therefore, for all modes, 1 < β < βb . In as much as t/λ→∞ , all the
dispersion curves converge to √εxxµyy . When Ω → 0 all the hybrid
modes degenerate into the TE and TM surface modes of the biaxial
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Figure 6. Variation of the normalized longitudinal wavenumber β
with the pseudochiral parameter Ω for the hybrid surface modes of a
grounded pseudochiral slab waveguide with t/λ = 0.6 . The dashed
line corresponds to the asymptotic value β = βa given by (43).

anisotropic case, with the dispersion curves crossing each other instead
of displaying coupling points.

Finally, Figure 6 shows the variation of β with the dimensionless
pseudochiral parameter Ω for all propagating modes when t/λ = 0.6 ,
where the dashed curved corresponds to β = βa . One should stress
that modes H4 and H5 each cutoff with the increase of the pseudochi-
ral parameter Ω .

B. Radiation Modes

The set of modes described in Section A is sufficient to describe any
guided field distribution in the slab waveguide provided that there is
not any variation along the z direction. However, this set is not suf-
ficient to describe the radiation phenomena. For a complete spectral
representation, the analysis must include an infinite number of radia-
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tion modes. The fields of the radiation modes do not decay in the out-
side of the structure, i.e., they are not bound to the slab, which means
that they do not satisfy the radiation condition. Unlike the guided
modes, each individual radiation mode carries an infinite amount of
energy. Therefore, for these type of modes – also called pseudosurface
modes – the biorthogonality relation (22) must involve the Dirac delta
function instead of the Kronecker delta [13]:〈

W · ΦΦΦ (x′, ρ), ΦΦΦ a(x′, ρ′)
〉

= δ(ρ− ρ′). (44)

This bi-orthogonality relation is necessary for the normalization of the
radiation modes.

According to (34) there are two arbitrary constants B1 and B2

to be chosen, in order to have a complete set of orthogonal radiation
modes. This unique degree of freedom shows that only two types of
radiation modes need to be considered for a complete spectral represen-
tation. One possible choice is the ITE (Incident Transverse Electric)
and ITM (Incident Transverse Magnetic) hybrid radiation modes [14]
which obey to the bi-orthogonality relation (44). In fact, this type
of hybrid radiation modes can be seen as a perturbation of the com-
mon TE and TM radiation modes of the isotropic waveguide which are
known to be mutually orthogonal [15]. Moreover, these hybrid radi-
ation modes have a clear physical interpretation. When a TE (TM)
plane wave impinges on the surface of the pseudochiral slab, a hybrid
standing-wave generates inside the slab, and a TE along with a TM
plane wave is reflected from the slab surface. The TE (TM) plane wave
outside the slab is also a standing-wave while the TM (TE) plane wave
is a traveling-wave. This discussion is schematically depicted in Figure
7. Therefore, for ITE radiation modes, one must have

B1 = −j (45)

in (34a), which leads to

Ez = α1Aexp[−jρ(x′ − t′)] (46)

in the air region. For ITM radiation modes, one must have

B2 = −j (47)

in (34b), which leads to

Hx = α2Aexp[−jρ(x′ − t′)] (48)
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Figure 7. Plane wave decomposition for the (a) Incident Transverse
Electric (ITE) radiation modes and for the (b) Incident Transverse
Magnetic (ITM) radiation modes.

in the air region. In (46) and (48) ρ may take any value in the interval
0 < ρ < ∞ . Hence, as for the isotropic case, one has propagating
radiation modes for 0 < ρ < 1 and evanescent radiation modes for
1 < ρ <∞ .

5. CONCLUSION

A linear-operator formalism for the analysis of inhomogeneous pseu-
dochiral multilayered planar waveguides was developed. The original
and adjoint waveguides were described by eigenvalue equations related,
respectively, to a 2× 2 matrix differential operator and its transpose.
Accordingly, a bi-orthogonality relation for the hybrid modes, which
involves the two-vector eigenfunctions of both the original and adjoint
waveguides, was derived. For homogeneous layers the linear-operator
formalism is reduced to a 2× 2 coupling matrix eigenvalue problem.

As an example of application, a complete spectral representation
for the field in a grounded pseudochiral slab waveguide was derived.
Namely, two types of mutually orthogonal radiation modes were pro-
posed, for the first time, along with a physical interpretation: the
incident transverse electric ITE and the incident transverse magnetic
ITM hybrid radiation modes. This framework is a valuable tool in
the study of more complex structures involving pseudochiral Ω -media
(e.g., step discontinuities in pseudochiral planar waveguides), whenever
a mode-matching procedure requires a complete field representation.
This subject will be addressed in a forthcoming paper.
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APPENDIX A

In this appendix we derive the field components of the hybrid modes
in terms of Ez and Hx . According to (7)–(12) and taking Ez and
Hx as the supporting field components, one obtains

Ey = − 1
β

(µxxHx − jΩEz) (A1)

Hy = −j 1

µyy − β2

εxx

∂x′Ez (A2)

and
Hz = −j 1

βµzz
(∂x′µxxHx − j∂x′ΩEz) (A3)

Ex = −j
β
εxx

µyy − β2

εxx

∂x′Ez. (A4)

APPENDIX B

Using definition (18), one can prove that La = LT and Wa = WT

are the adjoint operators [12] of L and W , respectively, i.e.,

〈L · u,ua〉 = 〈u,LT · ua〉 (B1a)

〈W · u,ua〉 = 〈u,WT · ua〉 (B1b)

Since the proof of (B1b) is trivial, only the proof of (B1a) will be
presented here. Therefore, if u = [u1, u2]

T ∈ D and ua = [ua1, u
a
2]
T ∈

Da , one has to prove that

J = 〈L · u,ua〉 − 〈u,La · ua〉 = 0 (B2)

Due to definition (18) and according to (16) and (19), one obtains for
J – after canceling the identical terms – the following expression:

J =
3∑
i=1

Ji (B3)
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where

J1 = −j
∫

I

{
ua1∂x′

[
1
µzz

∂x′(Ωu1)
]
− u1∂x′

[
1
µzz

∂x′(Ωua1)
]}
dx′ (B4)

J2 =
∫

I

[
ua1∂x′

(
1
µzz

∂x′u2

)
− u2∂x′

(
1
µzz

∂x′u
a
1

)]
dx′ (B5)

J3 =
∫

I

[
ua2∂

2
x′u1 − u1∂

2
x′u

a
2

]
dx′. (B6)

Using integration by parts, inasmuch as Ω is a piecewise constant
function along x′ , one gets

J1 =
[
−j 1
µzz

ua1∂x′(Ωu1)
]
I

−
[
−j 1
µzz

u1∂x′(Ωua1)
]
I

(B7)

J2 =
[

1
µzz

ua1∂x′u2

]
I

−
[

1
µzz

u2∂x′u
a
1

]
I

(B8)

J3 = [ua2∂x′u1]I − [u1∂x′u
a
2]I (B9)

with [f ]I = f(x′2)−f(x′1) and where x′1 and x′2 are, respectively, the
lower and upper limits of the interval I . One can easily see that, for
any class of I , Ji = 0 for 1 ≤ i ≤ 3 , and hence, according to (B3) ,
J = 0 (q.e.d.). In fact, if an electric wall is placed at x′k (k = 1, 2) ,
one should have

u1(x′k) = u2(x′k) = 0 (B10a)

ua1(x
′
k) = ua2(x

′
k) = 0 (B10b)

On the other hand, if a magnetic wall is placed at x′k , one should have
instead

∂x′u1(x′k) = ∂x′u2(x′k) = 0 (B11a)

∂x′u
a
1(x
′
k) = ∂x′u

a
2(x
′
k) = 0 (B11a)

Finally, if the hybrid mode is a surface wave, one should have (s = 1, 2)

us(±∞) = uas(±∞) = 0 (B10a)

∂x′us(±∞) = ∂x′u
a
s(±∞) = 0 (B10a)
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