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Comparison of Correlation Performance for Various Measurement
Schemes in Quantum Bipartite Radar and Communication Systems
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Abstract—Bipartite systems have become popular in emerging quantum radar and quantum
communication systems. This paper analyzes the various correlation coefficients for different types
of quantum radar measurement schemes, such as: (i) immediate detection of the idler photon events
to be used in post-processing correlation with the signal photon events, (ii) immediate detection of the
idler electric field to be used in post-processing correlation with the signal electric field, (iii) immediate
detection of the idler quadratures to be used in post-processing correlation with the signal quadratures,
and (iv) conventional analog correlation method of the optical parametric amplifier. The showcased
results compare the performance of these different methodologies for various environmental scenarios.
This work is important at developing the fundamentals behind quantum technologies that require
covariance measurements and will permit more accurate selection of the appropriate measurement styles
for individual systems.

1. INTRODUCTION

Classical technologies have been used for decades in the radar and communication applications. While
it is understood that classical radar and communication are functional, we are approaching the limits to
which they can be improved. As technology improvements bring us close to these limits, it is necessary
to utilize new approaches to stop counter technologies from deeming it irrelevant.

Quantum systems have been shown to enhance the performance of both radar and communication
by improving the ability to discern weak received signals from the noise or providing a secure propagation
channel [1–8]. While there are many useful properties intrinsic to quantum mechanics, the main ability
to assist with this performance improvement is through quantum entanglement [9].

A quantum radar system works through the creation of entangled signal and idler photons through
spontaneous parametric down conversion (SPDC) [10]. The creation of these photons at the same time
allows for a perfect temporal correlation allowing for easier discernment from noise photons. With this
easier discrimination caused by synchronous creation, bipartite entanglement has been shown to have
a 3-dB improvement in the error exponential [1, 11–15]. Bipartite quantum radar has been a topic
of discussion in research [16, 17], but a direct comparison between the photon counting measurements
and the electric field measurement has not been evaluated. This paper seeks to explain the theoretical
basis of current research. Namely, using quadrature measurements while also counting photons and
correlating them later. We seek to compare the correlation performance of these new techniques. A
general setup for one of these systems is seen in Figure 1.

More specifically, there has been recent work showcasing a quantum advantage using classical
measurements of electric field quadratures [16, 18] and by immediately detecting the idler photon counts
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Figure 1. The general experimental setup for the measurement schemes discussed. In all cases, the
idler photon is measured immediately and correlated with the returning signal photon at a later point
in time. The detectors can vary between single photon counters and electric field sensors.

and correlating later with the signal counts [19]. These methodologies are very similar to classical noise
radar techniques done in the past [15]. The goal of this paper is to analyze the correlation performance
of these type of systems and determine which method performs the best for a given situation.

It is important to note that the calculations performed in this paper represent overall correlations
from large data sets consisting of separate and time-separated measurements of the signal and idler
streams. Indeed, electric field measurements necessarily involve many photon measurements due to
the inability to simultaneously measure the photon number and electric field with arbitrary precision
because of the operators not being commutable.

Here, we mathematically evaluate a two-mode squeezed vacuum acted on by the number operator
(photon counting), the electric field operator (electric field measurement), and the electric field
quadrature [20]. In our evaluation, we solve for all parts of the covariance matrix and determine
the covariance between the signal and idler beams for each system [18, 21]. Additionally, we show a
comparison between the photon counting and electric field temporal covariance.

This paper is structured as follows. Section 2 develops the mathematics associated with the electric
field covariance. In Section 3, we develop the theory leading to the number operator covariance and
compare the results with the electric field covariance. Section 4 analytically formulates the electric field
quadrature covariance. In Section 5 a detailed analysis is presented of all three covariance results for
different operational scenarios. Conclusions are presented in Section 6.

2. ELECTRIC FIELD COVARIANCE

The electric field operator refers to the bulk measurement of the electric fields of the signal and idler
streams of photons. The correlation between the signal and immediately detected idler would be found
using a digitizer.

We begin with the electric field operator defined by [22]:

E(r, t) =
∑
k

ϵ̂kEkake−iχ + ϵ̂kEka†ke
iχ (1)

where âk is the creation operator for the frequency mode, k, and χ is the phase (which we can suppress
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by assuming that the signal and idler are aligned in time and space via post processing), ϵ̂k is a unit
polarization vector, and

Ek =

(
~νk
2ϵ0V

) 1
2

(2)

where ~ is the Planck’s constant divided by 2π; νk is the frequency associated with the momentum mode
k; ϵ0 is the permittivity of free space; and V is the quantization volume. Ek will be suppressed since it will
be canceled in the final correlation calculations due to the fact these correlations are normalized. This
will allow for greater calculation simplicity and easier to understand solutions. The integral formalism
is also not required for the solution as we assume the field is approximately monochromatic (a single
momentum mode) where future work will look at a full band signal. For an aligned signal and idler
measurement with a linear polarization, Equation (1) reduces to:

Ê = â+ â† (3)

We now begin with with a two-mode squeezed state:

|ψ⟩ = γ

∞∑
n=0

βn|n, n⟩i,s (4)

where i and s stand for idler and signal respectively, γ =
√

1
Ns+1 , β =

√
Ns

Ns+1 , and Ns is the mean

photon number per mode. This state is entangled and is the output of a continuous-wave pumped
spontaneous parametric down-conversion (SPDC) source.

To find the covariance between the signal and idler, we need to derive the electric field covariance
matrix. It should be noted that the physically realizable version of this state is a tensor product between
Equation (4) and the thermal noise state. Formally, this calculation is done with a density matrix
approach, as a density matrix fully describes a physical system’s quantum state, including its statistical
mixture with surrounding systems by including all possible projectors the system can collapse into, and
their associated probabilities [23, 24]. We first define the density matrix for the two-mode squeezed
vacuum state:

ρTMSV =
1

Ns + 1

∞∑
m=0

∞∑
n=0

(
Ns

Ns + 1

)n+m
2

|n, n⟩⟨m,m| (5)

and the density matrix for the noise state [23]:

ρT =
1

NT + 1

∞∑
i=0

(
NT

NT + 1

)i

|i⟩⟨i| (6)

where NT = 1
1−κNB and NB is the mean photon number per mode in the noise path [11]. The return

density matrix will be a tensor product between these two matrices:

ρreturn = ρTMSV ⊗ ρT (7)

=
1

NT + 1

1

Ns + 1

∞∑
n=0

∞∑
m=0

∞∑
i=0

(
Ns

Ns + 1

)n+m
2

×
(

NT

NT + 1

)i

|n, n, i⟩⟨m,m, i|

This can be used to find the expectation value of an arbitrary operator, Ô, by taking the trace of this
density matrix with the operator applied to it.

⟨Ô⟩ = tr(ρreturnÔ) (8)

= ⟨m,m, j| 1

NT + 1

1

Ns + 1

∞∑
n=0

∞∑
m=0

∞∑
i=0

(
Ns

Ns + 1

)n+m
2

×
(

NT

NT + 1

)i

|n, n, i⟩⟨m,m, i|Ô|m,m, j⟩ (9)
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This formalism is only required when dealing with modes that include appreciable thermal noise
contributions, âB, due to the complete separation of the ensembles between the noise and signal/idler
modes. Therefore, for situations which have insignificant thermal background noise contributions, such
as quantities involving the stored idler stream in the transceiver, we perform equivalent, but simpler in
operation, state calculations.

Having determined the approach for performing the calculations, simplifications will be introduced.
First, the quantum covariance is defined as [25]:

Cov
(
Â, B̂

)
=

1

2

(⟨{
Â, B̂

}⟩
− ⟨Â⟩⟨B̂⟩

)
(10)

For monochromatic fields, since the electric field operators between modes are commutative, i.e.:

[Ê1, Ê2] = Ê1Ê2 − Ê2Ê1 = 0 (11)

this allows us to set ⟨Ê1Ê2⟩ = ⟨Ê2Ê1⟩, thereby simplifying future calculations. It also allows the
quantum covariance shown in Equation (10) to be equivalent to the classical covariance ⟨AB⟩−⟨A⟩⟨B⟩.
The state shown in Equation (4) is a zero mean Gaussian state; therefore the covariance reduces to
⟨AB⟩. Consequently, we find the covariance matrix to be:

V =

(
⟨Ê2

s ⟩ ⟨ÊsÊi⟩
⟨ÊiÊs⟩ ⟨Ê2

i ⟩

)
(12)

We now begin the calculations of the expectation values beginning with the idler mode:

E2
i = â2i + â†2i + âiâ

†
i + â†i âi. (13)

Due to the orthogonality of the Fock state basis, we can determine that the matrix elements associated

with the â2i and â†2i in the following sum:⟨
ψ|Ê2

i |ψ
⟩

(14)

= γ2
∞∑
n=0

∞∑
m=0

βn+m
⟨
m,m|â2i + â†2i + âiâ

†
i + â†i âi|n, n

⟩
(15)

to be zero, leaving only the cross terms.
The first cross term can be found in the following manner:⟨

ψ|âiâ†i |ψ
⟩

= γ2
∞∑
n=0

∞∑
m=0

βn+m
⟨
m,m|âiâ†i |n, n

⟩
= γ2

∑
n

(
Ns

Ns + 1

)n

n+ γ2
∑
n

(
Ns

Ns + 1

)n

(16)

To evaluate this, we use the identity: ∑
n

xnn =
x

(1− x)2
(17)

To find:

γ2
∑
n

(
Ns

Ns + 1

)n

n =
1

Ns + 1

Ns

Ns + 1(
1− Ns

Ns + 1

)2

= Ns (18)

and:
1

Ns + 1

∑
n

(
Ns

Ns + 1

)n

= 1 (19)
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where we have used the standard geometric series summation formula in Equation (19). Thus for ⟨âiâ†i ⟩
we obtain Ns + 1.

Following similar steps, the second cross term is found to be: ⟨ψ|â†i âi|ψ⟩ = Ns. Combining all
terms, we obtain: ⟨

E2
i

⟩
= 2Ns + 1 (20)

For the correlation terms in the returned signal path, we have to additionally calculate the contribution
of the noise added by the free space channel. This is done by defining âR, where âR equals [26]:

âR =
√
κâs +

√
1− κâB (21)

where κ is the transmissivity in the signal path, and âB is the thermal noise mode. We then use this to
calculate the electric field in the returned mode, ⟨E2

R⟩. These modes contain a mean photon number of
NB
1−κ .

ÊR = âR + â†R =
√
κ
(
âs + â†s

)
+
√
1− κ

(
âB + â†B

)
Following a similar procedure to E2

i , we find that the non-zero terms of E2
R are:

Ê2
R = κ

[
âsâ

†
s + â†sâs

]
+ (1− κ)

[
âB â

†
B + â†B âB

]
. (22)

where the expectation value is evaluated, and it is found to be:⟨
Ê2

R

⟩
= 2κNs + 2NB + 1 (23)

We note that if there exists no noise in the channel, i.e., NB = 0, and perfect transmission, i.e., κ = 1,
then Equation (23) reduces to Equation (20). Next, we calculate the covariance terms, which are of more
importance for radar purposes as they quantify the correlation between the returned and idler photons.

More explicitly, we calculate ⟨EREi⟩ where: EREi = âRâi + â†Râ
†
i + âRâ

†
i + â†Râi. In a similar manner

to previous calculations, we begin by using the orthogonality Fock States to recognize that ⟨aRa†i ⟩ and
⟨a†Rai⟩ are equal to 0. Using similar steps as previous calculations it is determined the cross-correlation

term is ⟨ÊRÊi⟩ = 2
√
κNs(Ns + 1), which finally yields the full covariance matrix for the electric field:(

2κNs + 2NB + 1 2
√
κNs(Ns + 1)

2
√
κNs(Ns + 1) 2Ns + 1

)
(24)

Note how the covariance terms shown here are identical (up to a factor of 2) to those of the OPA
implementation [26]. Recall that in our case, these off-diagonal terms arise from taking two separate
electric field measurements, and correlating the stored data. This is significant because it provides
mathematical justification that using a delay line and performing a joint measurement of the signal
and idler modes is identical to immediately detecting the idler mode and correlating with later receiver
signal modes. This validates the procedures of recent experiments [12, 16].

This result is due entirely to the fact that entanglement is destroyed, and a joint measurement no
longer is useful in obtaining a quantum benefit. This does not however mean that the OPA method
should be abandoned. Using this analog method to correlate is useful since it is difficult to measure low
power photon events of a realistic noisy signal.

3. NUMBER OPERATOR COVARIANCE

The number operator refers to photon counting experiments. This can be used in a quantum radar
system by immediately counting the photons of the idler beam and using post processing to correlate
this binary waveform with the signal beam after it has returned [3, 27].

We begin this calculation by defining the number operator:

N̂ = â†â (25)

Similarly to the electric field derivation, we use the two-mode squeezed state that is defined in
Equation (4).
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Much like the electric field operator, the number operator is also commutative:

[N̂1, N̂2] = N̂1N̂2 − N̂2N̂1 = 0 (26)

which allows ⟨N̂1N̂2⟩ = ⟨N̂2N̂1⟩. Due to this and the number operator producing a non-zero mean, the
covariance matrix for the number operator is given by:

V =

(
⟨N̂2

s ⟩ − ⟨N̂s⟩⟨N̂s⟩ ⟨N̂RN̂i⟩ − ⟨N̂R⟩⟨N̂i⟩
⟨N̂iN̂R⟩ − ⟨N̂i⟩⟨N̂R⟩ ⟨N̂2

i ⟩ − ⟨N̂i⟩⟨N̂i⟩

)
(27)

Now we begin the calculations for the expectation value of the idler mode:

⟨N̂2
i ⟩ − ⟨N̂i⟩⟨N̂i⟩ (28)

where we first define:
N̂2

i = â†i âiâ
†
i âi (29)

This term can be seen to be non-zero due to the orthogonality of the Fock State basis, therefore it can
be applied to the two-mode squeezed vacuum state:⟨

ψ|N̂2
i |ψ
⟩

= γ2
∞∑
n=0

∞∑
m=0

βn+m
⟨
m,m|â†i âiâ

†
i âi|n, n

⟩
= γ2

∑
n

(
Ns

Ns + 1

)n

n2 (30)

Using the identity
∑∞

n=0 x
nn2 = −x(1+x)

(x−1)3
, we obtain:⟨

N̂2
i

⟩
= −γ2β(1 + β)

(β − 1)3
= Ns(1 + 2Ns) (31)

It can also be seen that N̂i = â†i âi, where the expectation value was already calculated in the previous
section to be Ns, therefore:

⟨N̂2
i ⟩ − ⟨N̂i⟩⟨N̂i⟩ = Ns(1 +Ns) (32)

Next, the signal variance is evaluated and determined to be:

⟨N̂2
R⟩ − ⟨N̂R⟩⟨N̂R⟩ = κ2Ns(1 +Ns) +NB(1− κ+NB) (33)

and the cross-correlation terms expectation values are found to be:

⟨N̂sN̂i⟩ − ⟨N̂s⟩⟨N̂i⟩ = κNs(1 +Ns) (34)

This gives the full covariance matrix for the number operator:

V =

(
κ2Ns(1 +Ns) +NB(1− κ+NB) κNs(1 +Ns)

κNs(1 +Ns) Ns(1 +Ns)

)
(35)

It is again seen that when the transmissivity is perfect (κ = 1) and the system is noiseless (NB = 0),
then the on-diagonal terms are equal.

Finally, it should be noted that the cross correlation term for the number operator matches the
covariance of the electric field operator, except that they are squared due to the quadratic nature in the
field mode of the number operator while the electric field operator is linear.

In regards to comparing to other systems, it can be problematic to directly compare covariances.
It is more appropriate to normalize the covariance to produce the correlation coefficients. This is done
by simply dividing each covariance term by the product of the variances. This will be done in Section 5.
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4. ELECTRIC FIELD QUADRATURE COVARIANCE

As a method to give a more direct comparison to some of the other research that has been conducted in
the field [16, 18], we also discuss the electric field quadrature measurements. To do this, we first define
the covariance matrix:

V =


{Îi, Îi} {Îi, Q̂i} {Îi, ÎR} {Îi, Q̂R}
{Q̂i, Îi} {Q̂i, Q̂i} {Q̂i, ÎR} {Q̂i, Q̂R}
{ÎR, Îi} {ÎR, Q̂i} {ÎR, ÎR} {ÎR, Q̂R}
{Q̂R, Îi} {Q̂R, Q̂i} {Q̂R, ÎR} {Q̂R, Q̂R}

 (36)

where {·, ·} represents the anti-commutator, I = 1
2(â

† + â), and Q = i
2(â

† − â) and the subscripts refer
to the idler or return path.

As done in previous sections, non-zero terms are determined due to the orthogonality of the Fock
state basis which is shown in Equation (37). It can be noted that all of these terms have been calculated
in previous sections. The evaluated covariance matrix is shown in Equation (38). Note how the off-
diagonal elements of the covariance matrix matches the off-diagonal elements of both of the previous
covariance matrices up to a multiplicative constant. For the quadrature covariance, a 1/2 factor account
for the fact the the correlations are split between I and Q.

V =
1

2



1

4
(â†i âi + âiâ

†
i )

i

4
(âiâ

†
i − â†i âi)

1

4
(â†i â

†
R + âiâR)

i

4
(â†i â

†
R − âiâR)

+
1

4
(âiâ

†
i + â†i âi) +

i

4
(â†i âi − âiâ

†
i ) +

1

4
(â†i â

†
R + âiâR) +

i

4
(â†i â

†
R − âiâR)

i

4
(â†i âi − âiâ

†
i )

1

4
(â†i âi + âiâ

†
i )

i

4
(â†i â

†
R − âiâR) −1

4
(â†i â

†
R + âiâR)

+
i

4
(âiâ

†
i − â†i âi) +

1

4
(â†i âi + âiâ

†
i ) +

i

4
(â†i â

†
R − âiâR) +− 1

4
(â†i â

†
R + âiâR)

1

4
(â†i â

†
R + âiâR)

i

4
(â†i â

†
R + âiâR)

1

4
(â†RâR + âRâ

†
R)

i

4
(âRâ

†
R − â†RâR)

+
1

4
(â†i â

†
i + âiâR) +

i

4
(â†i â

†
R − âiâR) +

1

4
(â†RâR + âRâ

†
R) +

i

4
(â†RâR − âRâ

†
R)

i

4
(â†i â

†
R − âiâR) −1

4
(â†i â

†
R + âiâR)

i

4
(â†RâR − âRâ

†
R)

1

4
(â†RâR + âRâ

†
R)

+
i

4
(â†i â

†
R − âiâR) −1

4
(â†i â

†
R + âiâR) +

i

4
(âRâ

†
R − â†RâR)

1

4
(â†RâR + âRâ

†
R)



(37)

V =



1

4
(2Ns + 1) 0

1

2

√
κNs(Ns + 1) 0

0
1

4
(2Ns + 1) 0 −1

2

√
κNs(Ns + 1)

1

2

√
κNs(Ns + 1) 0

1

4
(2κNs + 2NB + 1) 0

0 −1

2

√
κNs(Ns + 1) 0

1

4
(2κNs + 2NB + 1)


(38)

5. ANALYSIS

As mentioned earlier, there is no commutation between the electric field operator and the number
operator, which means that if it is possible to determine the electric field with certainty, there is no
information known about the photon count and vice versa. The claim of this paper is not a dual-
measurement of the photon count and the electric field measurement, but to show the relationship
between the covariance of these independent measurements in separate systems. To make the electric
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field able to be compared directly with the number operator and quadrature, the correlation coefficient
must be found for each. This correlation coefficient can be found using:

rxy =
cov(x, y)
√
σxσy

(39)

where σ represents the standard deviation. The necessary terms have already been calculated for all
three measurement schemes. Therefore, for the electric field:

rEsi =

⟨
ÊsÊi

⟩
√⟨

Ê2
s

⟩⟨
Ê2

i

⟩ =
2
√
κNs√

2κNs + 2NB + 1
(40)

It is easily found that the correlation coefficient for the quadrature method is identical to that of
the electric field. Although this implies identical performance, in practice, multiple quadratures are
being measured, and they can be combined in various ways to construct detector functions which yield
differing performance [16, 18]. Therefore, one would expect better performance overall simply by the
nature of collecting more information (multiple measurements). Here, we ignore these complexities and
simply show them to be equal as any single correlation between two quadratures will result in identical
performance.

For photon counting, the correlation coefficient is found to be:

rNsi =

⟨
N̂sN̂i

⟩
√⟨

N̂2
s

⟩⟨
N̂2

i

⟩ =
κ
√
Ns(Ns + 1)√

κ2Ns(1 +Ns) +NB(1− κ+NB)
(41)

To compare these correlation coefficients, curves are generated for each one over a given range of
Ns, κ, and the background noise photons per mode NB. In addition, each of the three curves will have
a small Ns and large Ns behavior that dictates its overall performance. Due to all of these variables,
there exist many possible scenarios where one particular sensor out-performs the others in particular Ns

regimes. We cannot possibly showcase all of these scenarios, so we restrict the presentation of results
to the most important outcomes learned by our parametric sweeps and a small subset of plots which
we believe best represents these lessons. An expanded analysis of these many scenarios will be done in
future work. A summary of the most important results are given below.

1) For very low Ns, the electric field and quadrature measurements appear to always outperform
photon counting.

2) Photon-counting appears to be dominant as long as there are enough photons returning to the
radar. For low transmissivity (high noise), it performs the worst out of all of the methods.

3) If NB is not too small, changing its value does not appear to affect the general behaviors of the
curves, but rather, will simply change the Ns regimes with which these behaviors occur.

Quantum radar applications focus in the regime where NB ≫ Ns. For the following plots, we choose
an NB of 10 with the understanding that entangled photon powers are such that Ns is on the order of
1× 10−3 [28]. Figure 2 shows the various correlation coefficients for a scenario in which κ = 0.7. Note
how for very low Ns, the electric field amplitude and quadrature measurements outperforms the photon
counting method. For larger values of Ns, the photon counting method becomes dominant. Again note
that the E-field and E-field quadrature curves are identical. However, as mentioned earlier, in practice,
using quadratures will improve the performance because there are simply more measurements taking
place and one can combine I and Q in various ways to obtain differing performance [16, 18].

Next, observe Figure 3 for a second scenario, one with the transmissivity much lower. In this case,
there are not enough photons making it back to the radar for low Ns and consequently photon counting
is the worst performer at this signal power. This is because at low signal powers and high background
noise, it is easier for the background noise to dominate the correlation with accidentals. As Ns increases,
more photons make it back to the receiver and photon counting becomes dominant again.

Figure 4 shows a correlation over a range of Ns that is more typical of current SPDC power outputs
to better illustrate the very low Ns regime performance. Clearly the electric field measurements perform
better in this regime.
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Figure 2. Correlation coefficient of the various
methods for Scenario 1. (κ = 0.7, NB = 10).

Figure 3. Correlation coefficient of the various
methods for Scenario 2. (κ = 0.1, NB = 10).

Figure 4. Correlation coefficient for low Ns for scenario 1.

6. CONCLUSION

In this paper, the correlation of the two-mode squeezed vacuum state has been evaluated, compared, and
contrasted for three different quantum radar measurement strategies, all of which are post-correlation
techniques (photon counting, E-field measurement, and quadrature measurement). It was found that
the most optimal measurement strategy is a function of the transmit power Ns, background noise
NB, and transmissivity κ, depending on the regime of interest. Two particularly interesting scenarios
were presented to showcase the behavior of the curves. One can experiment with the above equations
for different scenarios of interest for trade-off analysis of the approaches presented herein. The work
presented here can help to guide future experiments and applications in obtaining the most optimal
design and implementation strategy.
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