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Diffraction Radiation Generated by a Density-Modulated Electron
Beam Flying over the Periodic Boundary of the Medium

Section. III. Anomalous and Resonant Phenomena

Yuriy Sirenko1, 2, Seil Sautbekov3, *, Nataliya Yashina1, and Kostyantyn Sirenko1

Abstract—The paper is focused on the reliable analysis of the phenomena associated with the resonant
and anomalous transformation of the field of a plane, density modulated electron beam, flying over the
periodically rough boundary of a natural or artificial medium, in the field of bulk outgoing waves.
The physical results presented here have been obtained as the result of numerical implementation of
the rigorous mathematical models described in the two first papers of this series. The corresponding
analytical constructions have been associated with the correct formulation of model problems and their
algorithmization, with the provision of the possibility of a correct physical interpretation of the results
of their numerical solution.

1. INTRODUCTION

In [1, 2], we have considered several fundamental positions related to the construction and physical
analysis of the solutions to the boundary value problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩

[
∂2

y + ∂2
z + ε (g, k)μ (g, k) k2

]
U (g, k) = 0; g = {y, z} ∈ Ωint

Etg (q, k) , Htg (q, k) are continuous when crossing Σε,μ = Σε,μ
x ×(−∞ < x < ∞)

and virtual boundaries y = 0, y = −h; q = {x, y, z}
U {∂z U} (y, l, k) = exp (2πiζ)U {∂z U} (y, 0, k) for − h ≤ y ≤ 0

, (1a)
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)
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This allowed us to begin to study the key energy characteristics

W+
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of diffraction radiation (Vavilov-Cherenkov radiation [3] or Smith-Purcell radiation [4]), generated by a
plane density-modulated electron beam flying over a periodically uneven boundary Σε,μ

x (see Fig. 1 in [1])
separating vacuum (ε = μ = 1.0) and a dispersive (in common case) medium with material parameters
ε(k), μ(k); and to use, further on in the process of this study, the information about normal (or eigen)
modes (which is of fundamental importance for the correct interpretation of the observed phenomena)
of the periodic interface [1, 2, 5–7]. Such eigen modes are connected with nontrivial solutions to the
problem in Eq. (1) for V0(g, k) ≡ 0.

In Eqs. (1) and (2), U(g, k) is an Hx-component of the total H-polarized (Ex = Hy = Hz = 0,
∂x = 0) electromagnetic field {E(g, k),H(g, k)}, g = {y, z} in the system ‘beam — medium interface’;
V0(g, k) is an Hx-component of a beam’s field; W+

n (k) and W−
n (k) are the functions determining an

efficiency of diffraction radiation at spatial harmonics U+
n (g, k) and U−

n (g, k), outgoing upward (in half-
space occupied by vacuum) and downward (in half-space occupied by a dispersive medium) from the
boundary; Γ+

n =
√

k2 − Φ2
n, ReΓ+

n ≥ 0, ImΓ+
n ≥ 0 and Γ−

n =
√

k2ε(k)μ(k) − Φ2
n, ε−1(k)ReΓ−

n ≥ 0,
ImΓ−

n ≥ 0 are the vertical propagation constants of these harmonics; φn(z) = l−1/2 exp(iΦnz),
n = 0,±1,±2, . . ., Φn = (n + ζ)2π/l, ζ2π/l = Φ0 = k/β (with this value of Φ0, ReΓ+

0 = 0 and ImΓ+
0 > 0,

V0(g, k) is an inhomogeneous plane wave component); k and 0 < β < 1 are frequency modulation and
relative beam velocity; k = 2π/λ is the frequency parameter; λ is a wavelength of a radiation field in
a free space; l and h are period and height of the boundary Σε,μ

x = {g : y = f(z), −h ≤ f(z) ≤ 0}.
The more detailed description of the problem in Eq. (1) is given in [1]. The choice of branches of the
two-valued functions Γ±

n (k, ζ) has been made and justified ibid.
In present work, we focus on anomalous and resonant phenomena in coherent diffraction radiation,

which is generated by a density-modulated electron beam moving over a periodic boundary y = f(z)
separating an ordinary (y > f(z)) and (y < f(z)) plasma-like artificial media with the following specific
frequency dispersion of permittivity and permeability:

ε (k) = 1 − k2
ε/k

2 and μ (k) = 1 − k2
μ/k2. (3)

As in the previous papers, the time dependence t for harmonic processes considered in this work is
determined by the factor exp(−iωt) omitted everywhere, ω is a circular frequency. The dimensions of
the SI system of all mentioned physical quantities are also omitted.

2. PRINCIPAL PECULIARITIES IN VAVILOV-CHERENKOV RADIATION

Vavilov-Cherenkov radiation (VChR) — a radiation into the lower half-space at the homogeneous plane
wave U−

0 (g, k) arising here — is possible only if relation (see [2])

ImΓ−
0 (k) = Im

√
k2ε (k) μ (k) − Φ2

0 = Im
√

k2ε (k) μ (k) − k2/β2 = 0 (4)

holds. The condition (4) may be held only in the case of binegative (ε(k) < 0 and μ(k) < 0) or bipositive
(conventional) medium. In the first case, we are dealing with a reverse VChR (the angle ϑ between the
direction of the electron flow and the direction of energy transferring by the wave U−

0 (g, k) is greater
than π/2 [1]), in the second case — with a direct VChR (ϑ < π/2).

Let, for the beginning, the lower half-space be filled by non-dispersive material with ε = −0.84,
μ = −4.84, and relative beam velocity β = 0.89. The resonance dip to zero of intensity of reverse
VChR is clearly visible in upper fragment of Fig. 1. Here as everywhere below, l = 2π and
f(z) = 0.5h(cos z − 1). Lower fragment of Fig. 1 allows to consider the important details in the behavior
of the dependencies W−

0 (k) for some fixed values h that may be lost in the analysis of the overall picture
of the contour plots W−

0 (k, h) = const. Here, function W−
0 (k) vanishes at the point k = 0.22225 (the

accuracy of calculations is determined by the sampling step of the parameter k that is equal to 0.00025),
the point k = 0.3185 is one of the threshold points of the periodic structure [5, 6, 8, 9], each of which
is uniquely associated with the manifestation of the so-called Wood’s anomalies. The spatial harmonic
U−
−1(g, k) which used to be exponentially decaying with |y| increasing, when passing through this point

k = k−
−1 : Γ−

−1(k
−
−1) = 0 [1], turns into a homogeneous plane wave propagating infinitely far from the

boundary Σε,μ
x .
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Figure 1. (a) Lines W−
0 (k, h) = const, characterizing the intensity of diffraction radiation into the

half-space y < f(z), and (b) curve W−
0 (k) for various values of h : μ(k) = −4.84, ε(k) = −0.84, and

β = 0.89.

The abrupt changes in VChR intensity W−
0 (k, h) in this frequency range for fixed values h ≤ 0.75

(Fig. 2) are due to ‘double resonance’, whose branches split up with the growth of h. The values of W−
0

presented in the upper fragment of Fig. 2 are cut off at the level W−
0 (k, h) = 5.0. At sampling steps of

the parameters k and h, equal to 0.00025 and 0.01, respectively, the following computed maximum values
of W−

0 are: W−
0 (k, h) ≈ 321.4 (k = 0.44575, h = 0.3) and W−

0 (k, h) ≈ 176.8 (k = 0.4465, h = 0.34) —
on the ridge I, extending to the right of the dip W−

0 (k, h) � 1; W−
0 (k, h) ≈ 145 (k = 0.44375, h = 0.17)

on the ridge II moving to the left. By decreasing the sampling step of the parameter k to 0.00001,
we obtain the maximum value W−

0 (k, h) = 519.8 at k = 0.44629 and h = 0.32 (see Fig. 2(b)). As h
increases the ‘height’ of the ridges I and II decreases, they become flatter. This means that the Q-factor
of the corresponding resonances decreases.

In comparison with the VChR levels recorded above, the results presented in Fig. 3 look very
modest. The smooth change of the curves W−

0 (k, h) = const is violated here only at the threshold
points k = k−

−1 and k = k+
−1 ≈ 0.4709 [1] of the periodic structure. Moreover, this happened despite the

fact that the conditions within which the effects of diffraction radiation were studied remained practically
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Figure 2. (a) Lines W−
0 (k, h) = const, characterizing the intensity of diffraction radiation into the

half-space y < f(z), and (b) curves W−
0 (k) for values h = 0.32: μ(k) = −4.84, ε(k) = −0.84, and

β = 0.89.

unchanged: the same frequency range, the same electron flow velocity, the same profile of the periodic
boundary, and the same absolute values of the material parameters of the medium occupying the lower
half-space. But in the case considered above, this environment was binegative, while in the case of
Fig. 3 — bipositive.

How does this difference result in such a significant difference in characteristics W−
0 ?

Representations in Eqs. (4), (6) from [2] will help us to understand this. According to these concepts,

the parameters Φn(ζ̄±n ) = (n + ζ̄±n )2π/l, Γ+
n (ζ̄±n ) =

√
k2 − Φ2

n(ζ̄±n ), Γ−
n (ζ̄±n ) =

√
k2εμ − Φ2

n(ζ̄±n ) of eigen
wave U(g, ζ̄±n ), guided by plane boundary y = 0, separating vacuum and non-dispersive medium with
parameters ε and μ, meet relations

Φn

(
ζ̄±n

)
= ±k

√
ε (ε − μ)
ε2 − 1

and Γ+
n

(
ζ̄±n

)
= −Γ−

n

(
ζ̄±n

)
ε−1. (5)

From Eq. (5) it follows that if ImΓ±
n (ζ̄±n ) = 0, the values ReΓ+

n (ζ̄±n ) and ε−1(k)ReΓ−
n (ζ̄±n ) differ in
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Figure 3. Intensity W−
0 (k, h) of radiation into a half-space occupied by a bipositive nondispersive

medium: μ(k) = 4.84, ε(k) = 0.84, and β = 0.89.

signs, and therefore: (a) the real propagation constant ζ̄±n cannot belong to a first (physical) sheet
of the surface Fn same as for ε > 0, and for ε < 0; (b) the real eigen wave U(g, ζ̄±n ) in this case is
‘something like leaky wave’ (see for details work [2]). In the case ReΓ±

n (ζ̄±n ) = 0, magnitudes ImΓ+
n (ζ̄±n )

and ImΓ−
n (ζ̄±n ) have the same sign for ε < 0 and different sign for ε > 0. This means that only in the

case of a binegative medium filling the half-space y < 0, the real propagation constant ζ̄±n can belong
to a first (physical) sheet of the surface Fn and for such ζ̄±n the relevant eigen wave U(g, ζ̄±n ) is the real
surface wave or ‘true eigen wave’ [2]. To implement such a possibility, it is sufficient (see the first of
formulas (5)) that the inequality

ε (ε − μ)
ε2 − 1

> 1 or
{

εμ < 1, if |ε| > 1
εμ > 1, if |ε| < 1 (6)

holds.
At small profiling depths of boundaries Σε,μ

x , the propagation constants corresponding to ‘true eigen
waves’ U(g, ζ̄±n ) branch off not far from the actual axis of the parameter variation ζ = kl/2πβ [1, 5, 7].
In this case, we keep the same terms and identifiers for the corresponding spectral characteristics as in
the case when h = 0. The approaching of ζ to one of the values ζ̄±n causes anomalous (resonant) bursts
in all characteristics describing diffraction radiation [1, 2, 5–7, 10]. It is now clear why we do not see
such bursts in the case presented by Fig. 3.

Let’s go back now to Figs. 1, 2, and discuss how the rapprochement of quantities ζ = kl/2πβ and
ζ̄±n in the complex plane corresponding to the first (physical) sheet of the surface F (see [1, 2]) affects
the specific characteristics W−

0 (k, h) considered here. The resonance dip to zero of intensity of reverse
VChR, which is clearly visible in Fig. 1(a), is associated with the excitation of the boundary’s eigen
wave, continuing at h 	= 0 the ‘true eigen wave’ U(g, ζ̄−−1) of plane boundary y = 0. Each such statement
can be easily verified by calculating the corresponding values ζ = kl/2πβ and ζ̄±n , and making sure they
actually coincide. The Q-factors of the discussed resonances significantly decrease with the increase
of h (Fig. 1(b)). This is obviously because the propagation constants of eigen waves corresponding to
boundaries with a greater profiling depth move further in the complex plane from the real axis of the
parameter ζ variation.

Peaks of the ridge I in Fig. 2 correspond to the excitation of ‘true eigen waves’ U(g, ζ̄−−2) and
U(g, ζ̄+

1 ), which complex propagation constants ζ̄−−2 and ζ̄+
1 ‘collide’ on the real axis when value of ζ(k)

approaches them (Fig. 4). That is why they are so sharp and high. It is possible that the maximum
of the function W−

0 (k, h) = 519.8 that characterizes the VChR efficiency (see above) found here can be
précised by decreasing the sampling step of the parameter k. The branches’ ‘collision’ of the propagation
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Figure 4. VChR intensity variation with reproaching of magnitude of ζ = kl/2πβ and propagation
constants ζ̄+

1 and ζ̄−−2 of ‘true eigen waves’ of periodic interface: h = 0.32, μ(k) = −4.84, ε(k) = −0.84,
and β = 0.89.

constants of eigen waves of a periodic structure is a necessary condition for their transformation from
‘complex’ waves to ‘real’ waves and vice versa. In detail this phenomenon, whose one of the variants
can be seen in Fig. 4, was discussed in [5, 7].

Peaks of the ridge II correspond to the excitation of ‘true eigen wave’ U(g, ζ̄+
1 ). The imaginary

part of the propagation constant ζ̄+
1 in modulus is much higher here (Fig. 4), and therefore the observed

resonances do not have high Q-factor. This figure of merit decreases noticeably with an increase of h,
and for the values h ≥ 0.75 the considered resonance affects the behavior of the characteristic W−

0 (k, h)
not so noticeably.

In general, the data presented in Fig. 4 agree well with the conclusions from [5, 7, 11], where the
foundations of the spectral theory of gratings as open periodic waveguides are outlined in details, and
important conclusions are drawn about how the excitation of eigen waves in such structures affects
their ability to implement various anomalous and resonant scattering modes of plane homogeneous and
inhomogeneous waves.

The data presented in Fig. 5 allow to estimate the influence of parameters of the plasma-like medium
kε and kμ on the intensity of reverse VChR — here ε(k) < 0 and so the angle ϑ between the direction of
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the electron flow and the direction of energy transferring by the wave U−
0 (g, k) is greater than π/2 [1].

The lines W−
0 (kε, kμ) = const are calculated for parameters kε, kμ from the domain

[0.09 ≤ kε ≤ 0.12] × [0.35 ≤ kμ ≤ 0.7] and for k = 0.08, β = 0.2, and h = 0.4. Under such choice of
parameters, the region bounded by the curve G−

0 is the domain of VChR. Here and further on, the curves
G±

n = {. . . , . . .} : Γ±
n (. . . , . . .) = 0 are the boundaries separating the regions of parameters’ variation
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corresponding the propagating spatial harmonics U±
n (g, k) and evanescent ones (see, for example, Fig. 4

in [2]).
Presented in Fig. 5 values W−

0 are cut off at the level W−
0 (kε, kμ) = 3.0, and max

kε,kμ

W−
0 (kε, kμ) ≈ 690.6

is achieved at values kε = 0.1117 (parameter kε sampling step is 0.00005) and kμ = 0.46 (parameter kμ

sampling step is 0.001). The first spike in the curve W−
0 (kε) for kμ = 0.46 corresponds to a freestanding

smoothed peak of the surface W−
0 (kε, kμ) with a maximum height of 25.34 at the point kε = 0.10675.

This peak, as well as the dip to zero values W−
0 (kε, kμ) along the line to the left and above it, owes its

existence to the excitation of the ‘true eigen wave’, with corresponding propagation constant ζ̄−−1 – here
Reζ̄−−1 ≈ ζ = 0.4. A continuous ridge with high (from several tens to several hundred units) values of
W−

0 (kε, kμ) and a chain of free-standing peaks of surface W−
0 (kε, kμ), occupying the place to the right

of it, are located within a strip 0.1098 ≤ kε ≤ 0.1122 adjacent to the value kε = 0.1131, for which
the considered frequency k coincides with the singular point k =

√
0.5kε = ksing [2] that is a kind of

‘accumulation’ point of singularities: in the case of kε > kμ and k approaching to ksing from the left, and
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in the case of kε < kμ and k approaching to ksing from the right, we are faced with increasing number
of the propagation constants ζ̄±n (k) of ‘unusual true eigen waves’ U(g, ζ̄±n ) [2]. That is why the number
of high-Q resonances, causing a sharp drop and a sharp rise of W−

0 (kε), increases here significantly.
The influence of profiling depth h on the intensity of VChR shows itself differently depending on

the values of other parameters, and in fact, depending on whether a periodic boundary between two
media at such values of parameters is able to support the propagation of ‘unusual true eigen waves’
U(g, ζ̄±n ) [2] and whether the ‘synchronization’ Re ζ̄±n ≈ ζ = kl/2πβ of electron beam with these waves
is possible.

3. SMITH-PURCELL RADIATION AND EIGEN MODES OF A PERIODIC
INTERFACE

The radiation of U±
n (g, k), n 	= 0, harmonics propagating without attenuation in the domains y > 0

and y < −h, is Smith-Purcell radiation (SPR) [4, 5, 12, 13]. We have already touched upon the problem
of the influence of eigen modes on the intensity of such radiation in [2]. Now we shall dwell on it in
more detail, and the conclusions only outlined in [2] will be supported by the results of the relevant
computing experiments. For their correct physical reading, information similar to that presented in
Fig. 6, and information about the eigen waves U(g, ζ̄±n ) of the periodic interface and their propagation
constants ζ̄±n given in [2] are of great importance.
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So, Fig. 6 allows to reconstruct a general and fairly accurate qualitative picture of SPR for specific
values kε, kμ, and not very large h: by choosing a specific value β = . . ., we obtain, for values k from
the frequency range of interest, the information about the spatial harmonics U±

n (g, k) propagating here
(about the harmonics at which diffraction radiation is carried out) and determine the frequencies k,
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providing the fulfilment of the condition ζ̄±n (k) ≈ ζ(k); actually that are those values of k at which the
straight line β = . . . intersects the curves β±

n (k). And at such values k the resonant modes of wave
conversion are implemented, only if ζ̄±n (k) lie on the first (physical) sheet of the surface F, which is a
natural region of variation of the complex spectral parameter ζ [1, 2, 5–7].

Let β = 0.5. According to Fig. 6, the harmonic U+
−1(g, k) is a propagating one for frequency

parameters k > k+
−1 ≈ 0.334. Condition ζ̄±n (k) ≈ ζ(k) holds in this domain in the vicinity of points

k ≈ 0.355 (ζ̄−−1(k) ≈ ζ(k), U(g, ζ̄−−1) is the ‘something like leaky wave’); k ≈ 0.416 (in the vicinity of
point ksing, ζ̄+

0 (k) ≈ ζ(k), U(g, ζ̄+
0 ) is the ‘unusual true eigen wave’) and k ≈ 0.875 (ζ̄−−2(k) ≈ ζ(k),

U(g, ζ̄−−2) is the ‘something like leaky wave’). In the second case, the function W+
−1(k) reaches the value

W+
−1 ≈ 147 (the necessary and sufficient condition for the implementation of the resonance mode is

fulfilled), and in the first and third cases (‘synchronism’ with ‘something like leaky waves’) the function
W+

−1(k) remains at the same low level W+
−1 < 10−1 as at all other points of the range k > 0.334 (see

Fig. 7; the parameter step here is 0.001 and the values W±
−1(k) are ‘cut’ at level W±

−1(k) = 3.0).
The function W−

−1(k) in the vicinity of the point k ≈ 0.416 (here W−
−1 ≈ 135) and in other points

of the range k < 0.5, where the harmonic U−
−1(g, k) propagates without attenuation, behaves in the

same way as the function W+
−1(k). The maximum radiation intensity at a harmonic W−

0 (k) propagating
without attenuation in the frequency range k < k−

0 ≈ 0.314, which does not contain resonance points,
is much lower and comparable to the corresponding values for the case of a flat interface [2].

In the case considered above, the frequency band kεkμ(k2
μ + k2

ε)
−1/2 < k < ksing within which

the propagation constant ζ̄±n (k) of the ‘unusual true eigen waves’ can be detected [2] is very narrow
(0.384 < k < 0.424). It adjoins directly to the point k = ksing and therefore it is practically impossible
to accurately match any resonance with a precisely defined eigen wave. Let us expand this band to
0.1 < k < 0.707, putting kε = 1.0, kμ = 0.1, and consider in detail how the ‘synchronism’ with the
‘unusual true eigen waves’ is related to the anomalous changes in the behavior of the functions W±

n (k)
characterizing the efficiency of conversion of the field of the density modulated electron beam into the
field of waves leaving the periodic interface (Fig. 8).

In Fig. 8 the frequencies meeting the conditions ζ̄±n (k) ≈ ζ(k) are numbered: from the first to the
seventh. The first two of them (here ζ(k) ≈ ζ̄−−1(k) and ζ(k) ≈ ζ̄+

−1(k)) are located near the cutoff
points k = k+

−1 of the spatial harmonic U+
−1(g, k) and the function W+

−1(k) reacts to this in a predictable
way [1, 5–7]. In the immediate vicinity of the third point (here ζ(k) ≈ ζ̄−−2(k)), there are no propagating
harmonics, and about the fifth (here ζ(k) ≈ ζ̄−−4(k)) can be said the same as about the first two, but
now for the cutoff point k = k+

−2 of the harmonic U+
−2(g, k). The fourth point (here ζ(k) ≈ ζ̄−−3(k))

falls into the middle of the range where the harmonic U+
−2(g, k) propagates without attenuation. Here

‘synchronism’ leads to a resonant fall to zero of the value of W+
−2(k), and as it is easy to see from

Fig. 8(b), to the complete disappearance of diffraction radiation.
The points 6 and 7 (here ζ(k) ≈ ζ̄+

−1(k) and ζ(k) ≈ ζ̄+
0 (k)) are already close to the point k = ksing,

and the ‘synchronism’ corresponding to them leads to a fantastic increase in the energy capacity of the
only harmonic U+

−3(g, k) propagating in the corresponding range: with the parameter k sampling step
equal to 0.0001, the calculated levels of W+

−3(k) were W+
−3(k) ≈ 780 at k = 0.6763 and W+

−3(k) ≈ 1750
at k = 0.6957.

4. CONCLUSION

A plane, density-modulated electron beam, moving at a constant speed over an infinite one-dimensional
periodic grating, generates homogeneous plane electromagnetic waves in the environment space. The
number of waves, their wavelength, and direction of propagation are determined by the speed of the
electron beam, its period of modulation and by the length of the period of grating. The same beam
moving with a constant speed in a medium, where the speed of light is less than the speed of charged
particles, generates in it two homogeneous plane electromagnetic waves, diverging from the direction of
flow. The length of these waves and the direction of their propagation are determined by the period of
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beam modulation, the ratio of its velocity to the speed of light in the medium, as well as by the sign of
the refractive index of the medium. The field of plane waves propagating above or below the grating or
in a sufficiently optically dense medium is generated by the field of the charged particles flow.

This is how the processes that we today call coherent diffraction radiation or Vavilov-Cherenkov
radiation [3, 14, 15] and Smith-Purcell radiation [4, 12, 13] are usually represented. The study of the
relevant phenomena within the framework of such a concept has significantly enriched modern physics
and made it possible to create a number of unique devices and systems of radio electronics and electronics
of high power. The foundations were established for a reasonably rigorous mathematical modeling of
diffraction radiation processes, which, in turn, made it possible to significantly expand the scope of
the phenomena under the study due to the inclusion in them the so-called ‘wave analogs of SPR and
VChR’ — the role of the intrinsic field of a beam of charged particles is played here by the field
of an inhomogeneous plane wave or of a field of a surface wave directed by an open, for example,
dielectric waveguide, and the polarization of this field can be arbitrary. New tasks, new results, and
new opportunities for their practical use have appeared (see, for example, works [10, 16–22]).

The present work, continuing study [1, 2], presents new information about the possibility and
conditions for the implementation of a number of anomalous and resonant phenomena in the processes
of diffraction radiation generated by a density-modulated electron beam flying over a periodically uneven
interface, in particular, over the periodic boundary separating vacuum and artificial dispersive medium.
A detailed analysis of such phenomena can serve as a basis for the development of fundamentally
new, accurate measuring schemes, e.g., diagnostic schemes and determination of intrinsic parameters of
dispersive media and charged particle beams.
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