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DOA Estimation of Mixture Signals Based on the PSA

Wen Dong*, Qianrong Lu, Siyuan Wu, Shujie Lei, and Bin Pu

Abstract—The problem of direction of arrival (DOA) estimation based on a polarization sensitive array
(PSA) is considered in this paper. In the environment of the mixture signal, a novel DOA estimation
for both the independent signals and coherent signals is proposed. The process of estimation is divided
into two steps. First, the root-multiple signal classification algorithm is employed to estimate the DOAs
of the independent signals. Then, the data covariance matrix which only contains the information of
the coherent signals is estimated with improved vector reconstruction technique. Theoretical analysis
and simulation results show that the proposed method can expand the array aperture and has small
computation load as well as excellent estimation performance.

1. INTRODUCTION

Polarization-Sensitive Arrays (PSA) have become a new research hotspot in the field of array signal
processing since the 1990s [1–7]. Polarization-sensitive array is a vector array in nature. Different
from scalar array, the polarization selection characteristic of its internal components is to observe the
wave field in a vector way, so that the microstructure information can be extracted. In this way,
the polarization sensitive array can not only obtain polarization information, but also obtain spatial
information by using the spatial distribution of array elements. Therefore, the polarization sensitive
signal processing includes both polarization domain and spatial domain processing. In recent years,
quaternion theory has been widely used in the field of signal processing, especially in polarization
sensitive array signal model. Compared with the long vector model, the quaternion model has stronger
orthogonality constraints and can reduce the computational complexity. Quaternion is a hypercomplex
number that can fully mine and utilize the space, time, and polarization information of electromagnetic
vector sensor, so the quaternion model with information in different positions can also be divided into
quaternion [8] and double quaternion [9]. According to the physical characteristics of electromagnetic
signal, the polarization information of electromagnetic signal includes three-dimensional electric field
component and three-dimensional magnetic field component, and there is an orthogonal relationship
among electric field component, magnetic field component, and Boynting vector. Therefore, in terms
of physical nature, the mathematical properties of the quaternion model are more consistent with the
inherent properties of electromagnetic signals. In addition, the data receiving model of polarized array
can be converted into a quaternion form to efficiently complete the array signal processing, which has
advantages that traditional complex modeling does not have. In the case of the same array element
number, the number of antennas of the vector antenna array can be twice or more than that of the scalar
array, so the data received will also be more. Therefore, combining with the characteristics of quaternion,
how to greatly reduce the computational complexity with high-precision parameter estimation will
become the focus of this paper.

In 1843, the Irish mathematician Hamilton extended a complex number to the four-dimensional
space, and finally created a quaternion, but the real application of quaternion to the field of signal
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processing was proposed by Schutte and Wenzel in 1990 [11]. As mentioned above, an important
reason to limit the polarization sensitive array is that the orthogonal polarization of the array elements
increases the complexity of the operation, resulting in a large increase in the amount of operation. This is
because the polarization sensitive array has increased the polarization amplitude angle and polarization
phase angle besides the unknown parameters of pitch angle and azimuth angle in the traditional scalar
array. The application of four parameters to the quaternion model can significantly reduce the amount of
computation, in which the classic algorithm is quaternion MUSIC(Q-MUSIC) [10] proposed by Miron et
al. in 2006. Although this method can greatly reduce the computational complexity, the whole process is
carried out in the quaternion domain. Therefore, the effective information carried by the four positions
is not equivalent, leading to a decrease in accuracy. Moreover, Q-MUSIC algorithm estimates unknown
parameters through spectral peak search, which requires a lot of calculation, and the accuracy is affected
by the search step size. The PAS algorithm proposed in [11] makes use of the polarization angle
rotation invariant subarray of the electromagnetic vector sensor for decocoherence, and can be further
extended to DOA estimation of mixture signals. On the basis of PAS, paper [12] proposed an improved
algorithm based on spatial difference algorithm, called improved polarization array smooth (IPAS)
algorithm, which is specialized in DOA estimation for mixture signals with coherent and incoherent
signals coexisting. However, the computational complexity of these two algorithms is still very high.
Till now, the estimation problem of mixture signals based on quaternion model has not been reported.
Combined with quaternion model, the computational complexity of DOA estimation of mixture signals
can be greatly reduced. Therefore, the research in this paper has practical significance.

The root MUSIC algorithm based on quaternion has high precision and can avoid searching for
spectral peak. The algorithm is divided into three steps. In the first step, the semi-quaternion model is
used to remove the redundant information of the received signal, and the dimension of the covariance
matrix is reduced, so as to reduce the computation amount caused by the subsequent eigenvalue
decomposition. In the second step, the root MUSIC algorithm is used to directly calculate the azimuth
angle and pitch angle to avoid searching the spectral peak. The third step is to directly calculate the
polarization amplitude and phase angle according to the principle of rank defect MUSIC method. In the
conventional MUSIC algorithm, the computational complexity mainly comes from the decomposition of
covariance and the search of spectral peak. However, the algorithm proposed in this section completely
avoids the search of spectral peak while reducing the dimension of covariance matrix, and effectively
reduces the calculation amount of DOA and polarization joint estimation. In practical engineering, due
to the influence of various interferences and multipath effects, there will be a large number of coherent
signals [13, 14], and even independent signals and coherent signals exist simultaneously. In this paper,
we introduce a DOA estimation method based on quaternion theory, in which independent signals
and coherent signals coexist. First of all, the method inherits the characteristics of low computational
complexity of quaternion theory, and the amount of computation is small. Secondly, after constructing
the quaternion model, the DOA estimation of independent signals and coherent signals is performed by
using the spatial difference principle. The proposed algorithm can realize DOA estimation of mixture
signals without loss of array aperture.

2. MATHEMATICAL MODEL

Consider completely polarized transverse electric and magnetic (TEM)† waves impinging on the
polarization linear array (PLA), with M sensors. Assume that K signals impinge on an uniform linear
array as shown Fig. 1. These K signals are composed of Ku independent signals and Kc coherent
signals, and the Kc coherent signals are produced by N independent sources. Assuming that the nth
independent sources produce Kn signals, we have

K = Ku + Kc (1)

Kc =
N∑

n=1

Kn (2)

† It is indicated that the electric and magnetic fields of the electromagnetic wave are in the plane perpendicular to the propagation
direction.
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Figure 1. Uniform linear array configuration of crossed dipoles.

Each sensor can receive two electric field components (x[1]
m (t) and x

[2]
m (t)). Here we assume azimuth

angle ϕ = 0◦, then we can get the output of the mth array element at time t as follows

x[1]
m (t) = −

K∑
k=1

sk(t)e1,ke−j2π(m−1)d sin θk/λ + n[1]
m (t) (3)

x[2]
m (t) = −

K∑
k=1

sk(t)e2,kejηke−j2π(m−1)d sin θk/λ + n[2]
m (t) (4)

where m = 1, 2, . . . ,M and k = 1, 2, . . . ,K. n
[1]
m (t) and n

[2]
m (t) are the corresponding noise vectors of

antennas parallel to x-axis and y-axis, respectively. λ denotes the wavelength of signal. e1 and e2

represent two electric field components. From [3], we can know[
e1,k

e2,k

]
=

[ − sin ϕk cos θk cos ϕk

cos ϕk cos θk sinϕk

] [
cos γk

sin γke
jηk

]
(5)

where 0 ≤ γk < π/2 is the auxiliary polarization angle, and −π ≤ ηk < π is the polarization phase
difference. Then Equations (3) and (4) can be further rewritten as

X(t) =
[

X1(t)
X2(t)

]
=

[
AP1S(t) + N1(t)
AP2S(t) + N2(t)

]
(6)

where S(t) and N(t) are the source and noise vectors, respectively. A is the M × K steering matrix,
and P1, P2 are given by

P1 =

⎡
⎣ e1,1

. . .
e1,K

⎤
⎦

P2 =

⎡
⎣ e2,1

. . .
e2,K

⎤
⎦

(7)
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Equation (6) can be rewritten as[
AP1S(t) + N1(t)
AP2S(t) + N2(t)

]
=

[
AuPu1Su(t) + AcPc1ΓSc(t) + N1(t)
AuPu2Su(t) + AcPc2ΓSc(t) + N2(t)

]
(8)

where Au is the M ×Ku steering matrix of independent signals, and Ac is the M ×Kc steering matrix
of coherent signals. Su is the signal vector of independent signals, and Sc is the signal vector of coherent
signals. Γ is a block diagonal matrix with {b1,b2, . . . ,bN} on its diagonal, and bi is a Kn × 1 vector
composed of the fading factor of the ith group of signals.

The quaternion model can be written as

Xq = X1 + X2 · j (9)

Then we can get the covariance of Xq as follows

R = E
{
XqXH

q

}
= E

{
(X1 + X2 · j)

(
XH

1 − j ·XH
2

)}
= E

{
X1XH

1 + X2XH
2

}
+

(
AP2E

{
SST

}
PT

1 AT + AP2E
{
SNT

1

}
+E

{
N2ST

}
PT

1 AT + E
{
N2NT

1

} − AP1E
{
SST

}
PT

2 AT

−AP1E
{
SNT

2

} − E
{
N1ST

}
PT

2 AT − E
{
N1NT

2

} )
· j (10)

where (·)H denotes the conjugate transpose matrix and (·)T the transposed matrix. Quaternion has the
following characters.

h · j = j · h∗

q∗q = qq∗

q1q2 �= q2q1

(q1q2)∗ = q∗2q
∗
1

(11)

where h ∈ C and q1, q2 ∈ Q (Q is the quaternion field). The basic assumptions utilized throughout this
paper are listed as follows.
(1). The K incoherent arriving signals S(t) are narrow band and circular signals, which means
E{SST } = 0.
(2). The entries of N(t) are white Gaussian noise and uncorrelated with each other. Noises from
different sensors are independent, which means E{N1NT

2 } = E{SNT
1 } = E{N2ST } = E{N1NT

2 } = 0.
Hence, Equation (10) can be written as

R = R1 + R2 (12)

where R1 = E{X1XH
1 } and R2 = E{X2XH

2 }.

3. DOA ESTIMATION OF INDEPENDENT SIGNALS

The covariance matrix of independent signals is a non-singular matrix, and the the covariance matrix
of coherent signals is a dissatisfied rank matrix. Note that the rank of R is Ku +N , then the covariance
matrix R can be further written as follows

R = UsΛsUH
s + UNΛNUH

N (13)

where Λs is the diagonal matrix which is composed of Ku + N larger eigenvalues, and Us is the
eigenvectors of larger eigenvalues. Λn is the diagonal matrix which is composed of M −Ku −N smaller
eigenvalues, and Un is the eigenvectors of smaller eigenvalues.

Invoking the MUSIC algorithm, we know

θ̂ = arg min
θ

aH(θ)UNUH
Na(θ) (14)

where a(θ) is the steering vector

a(θ) =
[
1, ej2πd sin θ/λ, . . . , ej2πMd sin θ/λ

]T
(15)
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Substituting Equation (15) in Equation (14), we have

aH(θ)UNUH
Na(θ) =

M−1∑
m=0

M−1∑
n=0

e2πmd sin θ/λRN (m,n)e−j2πnd sin θ/λ

=
M−1∑

l=−(M−1)

ej2πld sin θ/λ · rl (16)

where RN = UNUH
N is a M × M matrix, and rl is given by

rl =
∑

m−n=l

RN (m,n) (17)

Let z = ej2πd sin θ/λ, then Equation (16) can be written as

D(z) =
∑

m−n=l

rlz
l (18)

Thus the estimation of Equation (14) is changed into the solution of D(z) = 0. Notice that the
steering matrix Au which is composed of Ku eigenvectors is Vandermonde matrix. As z = ej2πd sin θ/λ,
Ku roots are supposed to lie on the unit circle. Then, the estimation of elevation angle is given by

θ̂ = arcsin
(

λ

2πd
arg(z)

)
(19)

4. DOA ESTIMATION OF COHERENT SIGNALS

The covariance matrix can be written as

ARSAH = AuRSuAH
u + AcΓRScΓHAH

c

= Ru + Rc (20)

where Ru is the covariance matrix of independent signals, and Rc is the covariance matrix of coherent
signals. The Toeplitz matrix satisfies the formula:

R = JRTJ (21)

where R is an M × M matrix; J is the anti-angular identity matrix; and then R is called Toeplitz
matrix. Since Ru and RSu in Equation (21) are real diagonal matrices, then:

JRT
uJ = JA∗

uRSuAT
uJ

= AuΦ−(M−1)
u RSuΦ−(M−1)

u AH
u

= AuRSuAH
u

= Ru (22)

where Φu = diag[e−jπ sin θ1 , . . . , e−jπ sin θKu ]. It satisfies the definition of the Toeplitz matrix, so Ru

is the Toeplitz matrix. Similarly, IM also satisfies the definition of Toeplitz matrix, so the same
transformation is performed for the received data covariance matrix R:

JRTJ = JRT
uJ + JRT

c J + σ2
NJIMJ

= Ru + JRT
c J + σ2

NIM (23)

where σ2
N = σ2

1 +σ2
2. According to Equations (20) and (23), the data matrix without independent signal

information and noise information can be obtained:

Rc1 = R − JRTJ
= Ru + Rc + σ2

NIM − JRT
uJ− JRT

c J − σ2
NJIMJ

= Rc − JRT
c J (24)
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4.1. DOA Estimation of Coherent Signals

The data covariance matrix Rc1 obtained after matrix transformation only contains the information of
Kc coherent signals, which are generated by N independent signal sources, that is to say, Kc = ΣN

n=1Kn.
At this point, perform eigenvalue decomposition on Rc1:

Rc1 = US1ΛS1UH
S1 + UN1ΛN1UH

N1 (25)

where ΛS1 is a diagonal matrix composed of large eigenvalues, and US1 is the corresponding eigenvector
matrix. ΛN1 is the diagonal matrix composed of small eigenvalues, and UN1 is the corresponding
eigenvector matrix. When M ≥ Kc, ΛS1 contains N pairs of large eigenvalues, and each pair of
eigenvalues is negative to each other. At this time, there is a Kc × 2N dimensional column full-rank
matrix T that satisfies:

US1 = AcT (26)

In order to obtain the signal subspace, a new data covariance matrix can be constructed:

Rc2 = US1UH
S1 = AcT̃A

H
c

= US2ΛS2UH
S2 + UN2ΛN2UH

N2 (27)

where T̃ = TTH , US2 is the subspace spanned by the eigenvectors corresponding to 2N large
eigenvalues, that is, the signal subspace.

According to the definition of eigenvectors, there exists a Kc × 1 dimensional column vector Ψi

that satisfies:
AcΨi = ui (28)

Let’s take the eigenvectors corresponding to 2N large eigenvalues, and call them {u1,u2, . . . ,u2N}.
At the same time, we define Lfi = �(Ki + 1)/2�, Lbi = Ki −Lfi, D = M + 1− �(max(Ki) + 1)/2�, and
��� is rounded down. Under the circumstance, according to the EVM method, the D×Lfi dimensional
forward matrix Rf

i can be constructed:

Rf
i =

[
ui1,ui2, . . . ,uiLfi

]
= ADDΨiA

T
Lfi

(29)

where uij = [ui(j), . . . ,ui(j + D − 1)]T ; AD is the matrix formed by the first D rows of array flow
pattern matrix A; AT

Lfi
is the matrix formed by the first Lfi

T rows of array manifold matrix A; and
DΨi is the diagonal matrix with the elements in Ψi as the diagonal. Similarly, construct an D × Lbi

dimensional backward matrix Rb
i :

Rb
i =

[
ub

i1,u
b
i2, . . . ,u

b
iLbi

]
= ADΦ−(M−1)DΨ∗

i
AT

Lbi
(30)

where ub
i = Ju∗

i , Φi = diag{e−jπ sin θ1 , . . . , e−jπ sin θKc}, ub
ij = [ub

ij(j), . . . ,u
b
ij(j + D − 1)]T. Then,

construct a D × Ki dimensional backward matrix Rf/b
i :

Rf/b
i =

[
Rf

i ,Rb
i

]
(31)

where Rf/b
i has the number of columns L = Lbi + Lfi. By substituting Equations (29) and (30) into

Equation (31), we can get:
Rf/b

i = ADDΨiGi (32)

where,
Gi =

[
AT

Lfi
,D−1

Ψi
Φ−(M−1)DΨ∗

i
AT

bi

]
(33)

According to [15], the probability that Gi is a full-rank matrix is 1. Moreover, because the rank of
matrix AD and matrix DΨi is kc, Rf/b

i is a column full rank matrix with rank ki. To restore the rank
of the received data covariance matrix, construct Rf/b:

Rf/b =
[
Rf/b

1 ,Rf/b
2 , . . . ,Rf/b

N

]
(34)
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By substituting Equation (32) into Equation (34), the following equation can be obtained:

Rf/b = [ADDΨ1G1,ADDΨ2G2, . . . ,ADDΨN
GN ] (35)

Since Rf/b
i is composed of independent eigenvectors ui, Rf/b

i is also independent of each other. In
summary, the rank of Rf/b is Kc =

∑K
i=1 Ki.

At this point, the restored full-rank data covariance matrix Rf/b is obtained, and the Q-Root-
MUSIC algorithm proposed in Section 3 can continue to perform DOA estimation of coherent signals.
It is worth noting that the quaternion based hybrid signal parameter estimation algorithm proposed in
this section performs DOA estimation of signals, while the polarization parameters need to be estimated
using the original data covariance matrix.

5. SUMMARY OF THE ALGORITHM

The quaternion based method proposed in this section can estimate M − 1 signals at most, while the
spatial smoothing class method can only estimate �2M/3� signals at most. The polarization smoothing
method can only estimate 3 coherent signals at most, but does not lose the array aperture, and has better
array utilization and higher estimation performance. The quaternion based Root-MUSIC algorithm
eliminates the need for spectral peak searching and reduces the dimension of the covariance matrix, so
it has a lower computational complexity.

To sum up, the proposed algorithm uses eigenvector method (EVM) under the quaternion model
to solve the coherence, realizes the DOA estimation of the mixture signal of uniformly polarized linear
array, and has the characteristics of low computation and good estimation performance. The proposed
algorithm firstly under the quaternion model uses the Q-Root-MUSIC algorithm for independent signal
DOA estimation, then according to the nature of the Toeplitz matrix, a new covariance matrix of
coherent signal information is obtained. Finally, the solution of the coherent covariance matrix still
uses Q-Root-MUSIC algorithm to estimate DOA of coherent signals.

6. EXPERIMENTAL ANALYSIS

This section verifies the effectiveness of the proposed algorithm through simulation experiments and
compares it with the polarized array spatial smoothing (SS) [16] algorithm mentioned. In the simulation,
a uniform linear array composed of orthogonal dipoles is used, and the array element spacing is half
wavelength. If no special instructions are given, the statistical results of 500 Monte Carlo experiments
are used in this section, and root mean square error (RMSE) is used to evaluate the estimation accuracy
of the algorithm.

Experiment 1 Estimation accuracy under different signal to noise ratios (SNRs). The number
of array elements is 11, and there are six far-field narrowband signals incident on the uniformly
polarized linear array, including two independent signals and two groups of coherent signals. The
pitch angle, polarization auxiliary angle and polarization phase difference of the two independent
signals are {5◦, 5◦, 11◦} and {16◦, 22◦, 34◦}, respectively. And the pitch angle, polarization auxiliary
angle, and polarization phase difference of the first group of coherent signals are {−28◦, 26◦, 56◦}
and {33◦, 35◦, 74◦}, respectively. Similarly, {−40◦, 46◦, 90◦} and {42◦, 66◦, 124◦} are the pitch angle,
polarization auxiliary angle, and polarization phase difference of the second group of coherent signals,
respectively. The three algorithms can estimate all independent signals and coherent signals, but the
proposed algorithm and IPAS algorithm estimate independent signals and coherent signals separately,
so the advantages and disadvantages of the three algorithms can be more clearly seen by comparing the
estimation accuracy of independent signals and coherent signals separately. The number of snapshots
is fixed at 1000. Fig. 2 shows the variation curve of the estimation accuracy with the SNR when the
three algorithms estimate independent signals, and Fig. 3 shows the variation curve of the estimation
accuracy with the SNR when the three algorithms estimate coherent signals.

It can be seen from Fig. 2 and Fig. 3 that the estimation accuracy of the two algorithms is improved
with the increase of SNR, but the proposed algorithm obviously has better estimation performance. This
is because the SS method of polarized array needs to extract all signals first, and the array aperture is
lost.
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Experiment 2 Estimated accuracy at different snapshots. The pitch angle and polarization angle
of the incident signal are the same as in Experiment 1. In this experiment, the SNR is fixed at
10 dB. Fig. 4 shows the variation curve of the estimation accuracy of the two algorithms with different
numbers of snapshots when independent signals are estimated, and Fig. 5 shows the variation curve of
the estimation accuracy of three algorithms with the different numbers of snapshots. The advantages
of the proposed algorithm and SS algorithm in aperture expansion can be clearly seen by comparing
the independent signal and coherent signal separately.
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Figure 4. The RMSE of independent signals
versus snapshot.
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It can be seen from Fig. 4 and Fig. 5 that the estimation accuracies of the two algorithms improve
with the increase of the number of snapshots, and the proposed algorithm has a higher estimation
accuracy. This is because the proposed algorithm not only increases the array aperture, but also uses
the quaternion method to remove the redundant information and improve the utilization rate of the
received data.

Experiment 3 Expansion of array aperture by algorithm. As in Experiment 1, there are six far-
field narrow-band signals incident on the uniformly polarized array, including two independent signals
and two sets of coherent signals. The difference is that the number of array elements in this experiment
is 6, and the SNR is 10 dB. Fig. 6 shows the estimated results of 50 independent experiments.
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Figure 6. The estimated results of the proposed method.

It can be seen from Fig. 6 that the proposed algorithm can successfully estimate the angle value
of mixture signals with good performance. Moreover, six signals can be successfully estimated in the
case of six array elements, which proves that the proposed algorithm has the ability to expand the
array aperture. This is because the proposed algorithm estimates independent signals and coherent
signals separately, which is also the premise of the proposed algorithm to improve the utilization of
array elements. As you can see, the smaller the angle is, the smaller the deviation is, and the larger the
angle is, the smaller the deviation is from the true value. The smaller the incident angle is, the higher
the estimation accuracy is, which is determined by the algorithm itself.

7. CONCLUSION

In this paper, the definition and properties of quaternion are introduced first, and then the quaternion
receiving model is reconstructed by using the characteristics of orthogonal dipole in polarization
sensitive array, which reduces the dimension of the received data matrix and reduces the operational
complexity. Based on the quaternion receiving model and uniform linear array, the DOA parameters
were estimated by Root-MUSIC algorithm, and the polarization parameters were estimated by the
generalized eigenvalue method to avoid the parameter search process. Finally, the Q-Root-MUSIC
method was proposed. This method has low computational complexity and can also take advantage of
the orthogonality of quaternion itself to remove the redundant information in the covariance matrix,
so as to improve the utilization of data. Further, the EVM method is used for decoherence in the
quaternion model, and Root-MUSIC algorithm is used for decoherence signals. The performance of
this method is still good in the case of the coexistence of independent signals and coherent signals.
Because the independent signals and coherent signals are estimated separately, this method realizes
the expansion of the array aperture. For the uniform linear array composed of biorthogonal dipoles,
this chapter studies the quaternion method in the case of independent signal and mixture signal. The
simulation results show that Q-Root-MUSIC algorithm has lower computational complexity than the
traditional polarized Root-MUSIC algorithm and higher estimation accuracy in the estimation of DOA
and polarization parameters. In the mixture signals case, compared with IPAS and SS algorithms,
the proposed algorithm has lower computational complexity and higher precision, while retaining the
advantages of IPAS algorithm for array aperture expansion.
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