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Abstract–In this paper, scattering and coupling problems of the di-
rectional coupler for the dielectric rectangular waveguides are analyzed
by the mode-matching method in the sense of least squares for the
fundamental mode incidence. This directional coupler is composed of
three parallel dielectric rectangular waveguides cores which are placed
at equal space in the dielectric medium. Namely, respective cores are
core regions of three respective rectangular waveguides. The central
rectangular core among them has periodic groove structures of finite
extent on its two surfaces which face each other and other two wave-
guide cores are perfect. In the central waveguide, the fundamental
mode is incident from perfect part toward the periodic structure of this
waveguide. The power of the incident mode to the central waveguide
is coupled to other two waveguides through periodic groove structure.
The coupled mode propagates in the other waveguides to the same
or opposite direction for the direction of the incident mode when the
Bragg condition is selected appropriately. The method of this paper
results in the integral equations of Fredholm type of the second kind
for the unknown spectra of scattered fields. The results of the first
order approximate solutions of the integral equations are presented in
this paper.
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1. INTRODUCTION

In optical waveguide used in integrated optics and light transmission
circuit and so on, it is often desired to transfer optical power from
one to another waveguide. Therefore dielectric rectangular waveguides
[1–7] and directional couplers [3, 5] have been presented and studied
enthusiastically. In this paper, scattering and coupling problems of
directional couplers for dielectric rectangular waveguides are analyzed
by the mode-matching method in the sense of least squares for the
fundamental mode incidence. This directional coupler is composed of
three parallel waveguide cores with rectangular cross section which are
placed at equal space in the dielectric medium. Respective cores form
core regions of three respective waveguides. The central rectangular
core among them has periodic groove structures on two surfaces which
face each other and other two waveguide cores are perfect. In the
central waveguide, the fundamental mode is incident from the perfect
part toward the periodic structure of this waveguide. The power of
the incident fundamental mode to the central waveguide is coupled to
other two waveguides through periodic groove structure. When the
Bragg condition is selected appropriately, the mode which is coupled
to other two waveguides propagates to the same or opposite direction
for the direction of the incident mode of the central waveguide. In
this analysis, we shall apply a mode-matching method in the sense of
least squares [8–11] for analyzing the electromagnetic fields of above-
mentioned directional coupler when the fundamental mode is incident
to the perfect part of the waveguide having a periodic structure of
finite extent. Approximate wave functions of scattered fields in each
region of the coupler are described by the Fourier transform with band-
limited spectra. These integral transforms can be regarded as modal
expansions and the expansion theorem of mode-matching method in
the sense of least squares can be applied [12]. These approximate wave
functions are determined in such way that the mean-square boundary
residual is minimized. This method results in simultaneous integral
equations of Fredholm type of the second kind for the unknown spectra
[8–11]. The results of analyses for coupling efficiency and scattered
fields are presented on the basis of the first order approximate solutions
of the integral equations in this paper.



Analysis of scattering and coupling problem 297

2. FORMULATION OF THE PROBLEM

The discussion is developed about the directional couplers for dielec-
tric rectangular waveguides. This coupler is composed of three par-
allel waveguide cores which are placed at equal space in the dielec-
tric medium. The central waveguide core among them has sinusoidal
groove structures of finite extent on the both surfaces of y direction
as shown by Fig. 1. In this discussion, the fundamental mode is inci-
dent from the perfect part toward the periodic structure of the central
waveguide. Fig. 1(a) shows the overhead view of the coupler, Fig. 1(b)
shows the plane figure of it and Fig. 1(c) shows the cross figure. Three
parallel waveguide cores with rectangular cross section are placed at
equal space H in the dielectric medium. Each core region is denoted
as the waveguide hereinafter. This coupler has a symmetrical struc-
ture about x-z and y-z plane which contain origin o and incident
wave is assumed to be the fundamental symmetric mode with regard
to x and y direction in the square cross section of the perfect part the
central waveguide. Therefore scattered fields are considered that they
are symmetrical about x-z and y-z plane. Then the scattering and
coupling problems of this coupler can be analyzed with regard to the
region of x ≥ 0 and y ≥ 0 and formulation of only that region is given
in this paper. Fig. 2 shows cross sections of this coupler at z = 0 . In
this figure, waveguide, regions and surfaces of this coupler are denoted
by two superscripts. The first superscript denotes those of x ≥ 0 and
x < 0 by u and l , respectively. The second superscript denotes those
of y ≥ 0 and y < 0 by r and l , respectively. The cross section of
the perfect part of waveguide-1 is square with width 2a and that of
waveguide-2r is rectangle and its width is 2a, 2b in x, y direction,
respectively. The waveguide-1 has a periodic groove structure in the
finite region (|x| ≤ a, |z| ≤ t) on surface of y direction of the core.
The boundary surface Su,r

1ξ with sinusoidal grooves is given as follows:

y = ξ(x, z) =
{

a + δaη(z), 0 ≤ x ≤ a, |z| ≤ t
a, 0 ≤ x ≤ a, |z| > t

, (1)

where

η(z) = cos(Kz), (2)

t =
(

N +
1
4

)
D, (3)
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Figure 1. Geometry of directional coupler for rectangular dielectric
waveguides. (a) Overhead view of the coupler. (b) Plane figure. (c)
Cross figure.
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Figure 2. Cross section of directional coupler composed of three rect-
angular waveguides cores and its field distribution.

K =
2π

D
, (4)

and D is the spatial period in the z direction. N is an integer and
it denotes the groove number. 2δa is the depth of the groove and δ
is a perturbation parameter. 2t is the length of the periodic groove
structure in the z direction. The boundary surface Su,l

1,ξ is given by

y = −ξ(x, z). (5)

The regions occupied by respective media (x ≥ 0, y ≥ 0, −∞ ≤ z ≤
∞) are denoted as follows:



Iu,r
0 ; (0 ≤ x ≤ a, 0 ≤ y ≤ ξ(x, z), |z| ≤ ∞)

Iu,r
1 ; (x > a, 0 ≤ y ≤ ξ(x, z), |z| ≤ ∞)

IIIu,r; (0 ≤ x ≤ a, ξ(x, z) < y < a + H, |z| ≤ ∞)
IIu,r

0 ; (0 ≤ x ≤ a, a + H ≤ y ≤ a + H + 2b, |z| ≤ ∞)
IIu,r

1 ; (x > a, a + H ≤ y ≤ a + H + 2b, |z| ≤ ∞)
IIu,r

2 ; (0 ≤ x ≤ a, y > a + H + 2b, |z| ≤ ∞)

. (6)

Also boundary surfaces of core of waveguide-2r; Su,r
23 , Su,r

22 are de-
scribed as follows:

y =H + a, 0 ≤ x ≤ a, |z| ≤ ∞ (7)
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y =H + a + 2b, 0 ≤ x ≤ a, |z| ≤ ∞ (8)

Each region has refractive index, n1, n2, n2, n1, n2 and n2 , respec-
tively. Refractive indices are such that

n1 > n2, (9)

and
n1 − n2

n1
� 1. (10)

The wavenumber in free space is k0 and wave length is λ0 . The
implied time factor is exp(−jωt) .

Superscripts u, r of regions and surface are neglected such as
I0, I1, II0, II1, II2, III and S1,ξ hereinafter because of symmetrical
structure.

In this paper, Marcatili’s field expression and approach is applied
[3–5]. The incident wave to the perfect part of the waveguide-1 is as-
sumed to be the fundamental mode. It is polarized in x direction
and has only one maximum in x and y direction in the rectangu-
lar cross section with regard to the electric and magnetic field distri-
bution. In Marcatili’s approach, this fundamental mode has mainly
Ex, Ez, Hy, and Hz components and Hx, Ey components are ne-
glected. Marcatili’s field expression will be valid only if the effect of
the shaded areas of Fig. 2 may be ignored. Moreover it is assumed that
Ex component of this mode and its derivatives in x and y direction
are continuous over the entire cross Section [5] in this paper. When
these conditions are satisfied, Ex, Ez, and Hz components satisfy the
fundamental boundary condition on each surface of waveguide-1. Then
Hy component satisfies the fundamental boundary condition approxi-
mately under the weakly guiding approximation given by Eq. (10). It
is defined that this mode is Ex

11 mode and above-mentioned continuos
conditions with regard to Ex component are boundary conditions in
this paper. The x component of the electric field of this Ex

11 mode
which is incident to the perfect part of waveguide-1 is denoted as E

(1)
x

hereinafter and it is given by

E(1)
x (x, y, z) = Ẽ(1)

x (x, y)ejβ1z, (11)

Ẽ(1)
x (x, y) =X(1)(x) · Y (1)(y), (12)
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where

X(1)(x) =
{

cos(κ10x); |x| ≤ a
cos(κ10a) exp {jκ11(|x| − a)} ; |x| > a

, (13)

Y (1)(y) =
{

cos(ζ10y); |y| ≤ a
cos(ζ10a) exp {jζ13(|y| − a)} ; |y| > a

. (14)

In Eq. (11), β1 is a propagation constant in the z direction of wave-
guide-1 and κ10, κ11, ζ10 and ζ13 are wavenumbers of this waveguide
in x and y directions, respectively. Wavenumbers, κ10 and ζ10 are
positive real numbers and κ11, ζ13 are pure positive imaginary num-
bers. Those wavenumbers satisfy following relations from Hermholtz
equation in respective regions:

(κ10)2 + (ζ10)2 + (β1)2 =n1
2k0

2, (15)
(κ11)2 + (ζ10)2 + (β1)2 =n2

2k0
2, (16)

(κ10)2 + (ζ13)2 + (β1)2 =n2
2k0

2, (17)

where k0 is the wavenumber in vacuum.
Eigenvalue equations for wavenumbers of x and y directions are

obtained from the boundary conditions in which E
(1)
x and its deriva-

tives in x and y directions are continuous over the entire cross section.
From boundary condition at x = ±a and y = ±a , eigenvalue equa-
tions of x and y directions are obtained, respectively as follows [13]:

I(1)
ex (κ10, κ11) = jκ11 cos(κ10a) + κ10 sin(κ10a) = 0, (18)

I(1)
ey (ζ10, ζ13) = jζ13 cos(ζ10a) + ζ10 sin(ζ10a) = 0. (19)

When the waveguide-2 is isolated and x, y coordinates of the center of
its cross section is (0, H +a+b) , the x component of the electric field
of Ex

11 mode of this waveguide is given similarly to one of waveguide-1
and denoted as E

(2)
x . Then it is given as follows:

E(2)
x (x, y, z) = Ẽ(2)

x (x, y)ejβ2z, (20)

Ẽ(2)
x (x, y) =X(2)(x) · Y (2)(y) (21)

where

X(2)(x) =
{

cos(κ20x); |x| ≤ a
cos(κ20a) exp {jκ21(|x| − a)} ; |x| > a

, (22)
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and

Y (2)(y)=




cos {ζ20(y−H−a−b)} ; H+a ≤ y ≤ H+a+2b

cos(ζ20b) exp{−jζ23(y−H−a)} ; y<H+a

cos(ζ20b) exp{jζ23(y−H−a−2b)} ; y>H+a+2b

. (23)

In Eq. (20), β2 is a propagation constant of the lowest order even mode
of waveguide-2 when it is isolated. Wavenumbers κ20, ζ20 are positive
real numbers and κ21, ζ23 are positive pure imaginary numbers. The
propagation mode of this waveguide has same wavenumbers of the y
direction in the region III and II2 . Therefore they are denoted as
ζ23 . Wavenumbers of above equations satisfy following equations;

(κ20)2 + (ζ20)2 + (β2)2 =n1
2k0

2, (24)
(κ21)2 + (ζ20)2 + (β2)2 =n2

2k0
2, (25)

(κ20)2 + (ζ23)2 + (β2)2 =n2
2k0

2. (26)

From boundary conditions on S21 and S23 and S22 , eigenvalue equa-
tion of x and y directions of waveguide-2 are given as follows:

I(2)
ex (κ20, κ21) = jκ21 cos(κ20a) + κ20 sin(κ20a) = 0, (27)

I(2)
ey (ζ20, ζ23) = jζ23 cos(ζ20b) + ζ20 sin(ζ20b) = 0. (28)

Eigenvalue equations Eqs. (18) and (27) are identical and wavenumbers
of x direction of two waveguides satisfy following equations:

(κ10)2 − (κ11)2 = (n1
2 − n2

2)k0
2, (29)

(κ20)2 − (κ21)2 = (n1
2 − n2

2)k0
2. (30)

Consequently, from Eqs. (18), (27), (29), and (30), the relations are
given as follows: {

κ10 = κ20

κ11 = κ21
. (31)

In the case that three parallel rectangular waveguides cores are per-
fect, namely, the central waveguide has not periodic structure and the
central waveguide core and other two cores are different and the space
between waveguides H is sufficiently large, the power of incident mode
to the central waveguide is coupled to other two waveguides scarcely
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[14, 15]. In this paper, it is postulated that the distance between
waveguides H is large and the central waveguide core is different from
other two ones with regard to width in the y direction. Therefore the
incident mode to the central waveguide is considered that this mode is
coupled scarcely to other two waveguides when these cores of waveg-
uides are perfect.

When Ex
11 mode is incident to the central waveguide having pe-

riodic groove structure, total fields of Ex component in each region
(x ≥ 0, y ≥ 0) of this coupler are given as follows:

E(t)
Im,x

(x, y, z) =E(i)
Im,x

(x, y, z) + ΨIm
(x, y, z), (m = 0, 1), (32)

E(t)
IIm,x

(x, y, z) = ΨIIm
(x, y, z), (m = 0, 1, 2), (33)

E(t)
III,x

(x, y, z) =E(i)
III,x

(x, y, z) + Ψ
III

(x, y, z). (34)

Scattered field of Eqs.(32)–(34) are given by

ΨV (x, y, z) =
1
2π

∫ ∞

−∞
ψV (h)φV (h, x, y) exp(jhz)dh,

(V = I0, I1, II0, II1, II2, III; x, y, z ∈ V ). (35)

Both faces of the x direction of the central waveguide-1 and four
faces of waveguide-2 are perfect. From boundary conditions on those
faces, relations of spectra and φV (h, x, y) are derived to satisfy the

boundary conditions, namely, ΨV ,
∂ΨV

∂x
, and

∂ΨV

∂y
are continuous

through surfaces, S11, S21, S22, and S23 and they are given by

ψI0
(h) =ψI1

(h), (36)
ψII0

(h) =ψII1
(h) = ψII2

(h), (37)

ψIII(h) =
exp

{(
−jζ̃23(h)H

)}

jζ̃23(h)
ψII0

(h). (38)

and φV (h, x, y), (V = I0, I1, II0, II1, II2, III; x, y ∈ V ) are given as
follows:

φI0
(h, x, y) = cos(κ10x) cos

{
ζ̃10(h)y

}
, (39)

φI1
(h, x, y) = cos(κ10a) cos

{
ζ̃10(h)y

}
exp{jκ11(x − a)}, (40)
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φIII(h, x, y) = cos(κ10x)
{

ϕ(1)
III

(h, y) + ϕ(2)
III

(h, y)
}

, (41)

φII0
(h, x, y) = cos(κ10x)

{
ϕ(1)

II0
(h, y) + ϕ(2)

II0
(h, y)

}
, (42)

φII1
(h, x, y) = cos(κ10a)exp{jκ11(x−a)}

{
ϕ(1)

II0
(h, y)+ϕ(2)

II0
(h, y)

}
, (43)

φII2
(h, x, y) = ζ̃20(h) cos(κ10x) exp

{
jζ̃23(h)(y − H − a − 2b)

}
, (44)

where

ϕ(1)
III

(h, y) = Ĩ(2)
ey (h, b)Ĩ(2)

oy (h, b) exp
{

jζ̃13(h)(y − a)
}

, (45a)

ϕ(2)
III

(h, y) = − 1
2

exp
(
jζ̃23(h)H

) (
ζ̃2
20(h) − ζ̃2

23(h)
)

· sin
{

2ζ̃20(h)b
}

exp
{
−jζ̃23(h)(y − H − a)

}
, (45b)

and

ϕ(1)
II0

(h, y) = Ĩ(2)
oy (h, b) cos

[
ζ̃20(h){y − (H + a + b)}

]
, (46a)

ϕ(2)
II0

(h, y) = Ĩ(2)
ey (h, b) sin

[
ζ̃20(h){y − (H + a + b)}

]
, (46b)

and

Ĩ(2)
ey (h, b) = jζ̃23(h) cos

{
ζ̃20(h)b

}
+ ζ̃20(h) sin

{
ζ̃20(h)b

}
, (47)

Ĩ(2)
oy (h, b) = ζ̃20(h) cos

{
ζ̃20(h)b

}
− jζ̃23(h) sin

{
ζ̃20(h)b

}
, (48)

and

ζ̃2
10(h) =n1

2k0
2 − h2 − κ10

2, (49a)

ζ̃13(h) =n2
2k0

2 − h2 − κ10
2, (49b)

ζ̃2
20(h) =n1

2k0
2 − h2 − κ20

2, (49c)

ζ̃2
23(h) =n2

2k0
2 − h2 − κ20

2. (49d)

When the right hand sides of Eqs. (49b) and (49d) is negative, ζ̃13(h)
and ζ̃23(h) are defined as positive pure imaginary numbers.

The boundary condition on the surface S1ξ with the periodic groove
structure of finite extent is as follows:

Ψ
I0

(x, y, z) − ΨIII(x, y, z) =
{

ejβ1zf(x, y), |z| ≤ t
0, |z| > t

, (50)

∂

∂y
ΨI0

(x, y, z) − ∂

∂y
ΨIII(x, y, z) =

{
ejβ1zg(x, y), |z| ≤ t
0, |z| > t

. (51)
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where

f(x, y) = cos(κ10x) cos(ζ10a) exp {jζ13(y − a)}
− cos(κ10x) cos(ζ10y), (52)

g̃(x, y) =
∂

∂y
f̃(x, y). (53)

The continuos condition of
∂

∂x
ΨI0

and
∂

∂x
ΨIII on the surface, S1ξ is

satisfied naturally when Eq. (50) is satisfied. The above-mentioned
conditions are equivalent to the fundamental boundary conditions on
S1ξ , namely, the continuous conditions of tangential component of the
electric and magnetic field on S1ξ . If the scattered fields of the regions
I0, I1, II0, II1, II2, and III are described by the Fourier transforms
with plane waves whose integral domain are not limited, they generally
diverge [16]. Therefore band-limited superpositions of plane waves are
used generally as approximate wave functions for scattered fields in
each region as follows:

ΨV W (x, y, z) =
1
2π

∫ w

−w
ψV W (h)φV (h, x, y) exp(jhz)dh,

(V = I0, I1, II0, II1, II2, III; x, y, z ∈ V ), (54)

where φV (h, x, y), (V = I0, I1, II0, II1, II2, III) is given by Eqs. (39)–
(49). In Eq. (54), ψV W (h), (V = I0, I1, II0, II1, II2, III) is band-limited
spectra of each region.

From Eqs. (35), (39), (41), (50)–(53), the boundary conditions on
S1ξ are independent to the x direction and they are given by applying
Eq. (54) as follows:

Ψ̃I0W (y, z) − Ψ̃IIIW (y, z) =
{

ejβ1z f̃(y), |z| ≤ t
0, |z| > t

, (55)

∂

∂y
Ψ̃I0W (y, z) − ∂

∂y
Ψ̃IIIW (y, z) =

{
ejβ1z g̃(y), |z| ≤ t
0, |z| > t

, (56)

where

Ψ̃I0W (y, z) =
1
2π

∫ W

−W
ψI0W (h)φ̃I0

(h, y) exp(jhz)dh, (57)

Ψ̃IIIW (y, z) =
1
2π

∫ W

−W
ψIIIW (h)φ̃III(h, y) exp(jhz)dh, (58)
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and

φ̃I0
(h, y) = cos

{
ζ̃10(h)y

}
, (59)

φ̃III(h, y) =
{

ϕ(1)
III

(h, y) + ϕ(2)
III

(h, y)
}

, (60)

and

f̃(y) = cos(ζ10a) exp {jζ13(y − a)} − cos(ζ10y), (61)

g̃(y) =
∂

∂y
f̃(y). (62)

3. ALGORITHM

From concept of the method of least squares, the following mean-square
error is defined on S1,ξ to obtain the wave functions Ψ̃I0W (y, z) and
Ψ̃IIIW (y, z) that satisfy the boundary conditions stated in Eqs. (55)–
(62) approximately:

ΩW =

∫ ∞

−∞

∣∣∣Ψ̃W (z, y) − ejβ1z f̃(y)
∣∣∣2 dz

∫ ∞

−∞

∣∣∣f̃(y)
∣∣∣2 dz

+

∫ ∞

−∞

∣∣∣∂yΨ̃W (z, y) − ejβ1z g̃(y)
∣∣∣2 dz

∫ ∞

−∞
|g̃(y)|2 dz

, (63)

where
Ψ̃W (z, y) = Ψ̃I0W (y, z) − Ψ̃IIIW (y, z). (64)

in which y is function of z . Since Ψ̃V W (y, z), (V = I0, III) are given
by Eqs. (57) and (58), ΩW is functional of spectra ψV W (h), (V =
I0, III) . Therefore, if the first variations of ΩW with respect to the
complex conjugate spectra of ψV W (h), (V = I0, III) are set equal to
zero, the simultaneous integral equations with two unknown spectra
can be derived. These equations are in the form of the Fredholm
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integral equation of the second kind for the vector whose components
are two unknown spectra. The integral equation [8, 10] is given by

(
A + α2B

)
· ψ

W
(h) =

∫ W

−W

{
K(h, h′, δ) + α2L(h, h′, δ)

}

· ψ
W

(h′)dh′ + F(h, δ) + α2G(h, δ) (65)

in which “ · ” denotes an inner product. In Eq. (65) ψ
W

(h), F(h, δ),
G(h, δ) are vectors, and A, B and the integral kernels K(h, h′, δ),
L(h, h′, δ) are dyadics and they and α2 are shown in Refs. 8 and 10.
The vector ψ

W
(h) is given by

ψ
W

(h) =
[
ψI0W (h)
ψIIIW (h)

]
(66)

4. FIRST ORDER APPROXIMATE SOLUTIONS

In this paper, the couplers with very shallow grooves are analyzed
and the parameter δ is assumed to be very small in comparison with
unity. Therefore the perturbation method [17] is applied to solve the
integral equation. In Eq. (65), the solution ψ

W
(h) is expressed by the

perturbation expansion of the form

ψ
W

(h) = δψ(1)
W

(h) + δ2ψ(2)
W

(h) + δ3ψ(3)
W

(h) + · · · . (67)

Also terms such as K(h, h′, δ), L(h, h′, δ), F(h, δ), G(h, δ) and α2 can
be expanded into the Taylor series about δ = 0 . When terms of equal
powers of δ are equated and the condition for the existence of the
solution is taken into account, equations for the first order expansion
coefficients ψ(1)

W
(h) is obtained as follows:

A · ψ(1)
W

(h) = 0, (68)

B · ψ(1)
W

(h) =G(1)(h). (69)

where G(1)(h) is the first order expansion coefficient of G(h, δ) . The
first order approximate solution of Eq. (65) is defined as the first term
of the perturbation expansion of Eq. (67). Eqs. (68) and (69) can be
solved analytically and ψ(1)

W
(h) is given by

ψ(1)
W

(h) =
[
ψI0W (h)
ψIIIW (h)

]
= − G(1)(h)

I(h, H, a, b)

[
φ̃III(h, a)
φ̃I0

(h, a)

]
, (70)
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where

G(1)(h) = δa
(
ζ2
10 − ζ2

13

)
cos(κ10a)F (1){β1, h, η(z)}, (71)

F (1){β1, h, η(z)} =
∫ t

−t
cos(Kz) exp{j(β1 − h)z}dz

=
[
sin{(K+β1−h)t}

K+β1−h
+

sin{(K−β1+h)t}
K−β1+h

]
, (72)

I(h, H, a, b) = − Ĩ(1)
ey (h, a)Ĩ(2)

ey (h, b)Ĩ(2)
oy (h, b)

+ exp
{

2jζ̃23(h)H
}

I1(h, b)I2(h, a) (73)

and

Ĩ(1)
ey (h, a) = jζ̃13(h) cos

{
ζ̃10(h)a

}
+ ζ̃10(h) sin

{
ζ̃10(h)a

}
, (74)

I1(h, b) =
1
2

{
ζ̃2
20(h) − ζ̃2

23(h)
}

sin
{

2ζ̃20(h)b
}

, (75)

I2(h, a) =
[
ζ̃10(h) sin

{
ζ̃10(h)a

}
− jζ̃13(h) cos

{
ζ̃10(h)a

}]
. (76)

From Eq. (73), the eigenvalue equation of the compound structure
composed of three parallel perfect waveguide cores without a periodic
groove structure [11, 15] is given by

I(β, H, a, b) = 0, (77)

where β is the eigenvalue of the compound perfect waveguide. The
first order approximate scattered fields of the regions I0, I1, II0, II1,
II2 and III are given by

Ψ(1)
V W

(x, y, z) =
1
2π

∫ W

−W

[
G(1)(h)

I(h, H, a, b)
fV (x, y) exp(jhz)

]
dh,

(V = I0, I1, II0, II1, II2, III), (78)

where

fI0
(h, x, y) =

[
Ĩ(2)
ey (h, b)Ĩ(2)

oy (h, b) − exp
{

2jζ̃23(h)H
}

I1(h, b)
]

· cos(κ10x) cos
{

ζ̃10(h)y
}

, (79)

fI1
(h, x, y) =

[
Ĩ(2)
ey (h, b)Ĩ(2)

oy (h, b) − exp
{

2jζ̃23(h)H
}

I1(h, b)
]



Analysis of scattering and coupling problem 309

· cos(κ10a) exp{jκ11(x − a)} cos
{

ζ̃10(h)y
}

, (80)

fII0
(x, y) = jζ̃23(h) exp

{
jζ̃23(h)H

}
cos

{
ζ̃10(h)a

}
· cos(κ10x)I3(h, y), (81)

fII1
(x, y) = jζ̃23(h) exp

{
jζ̃23(h)H

}
cos

{
ζ̃10(h)a

}
cos(κ10a)

· exp{jκ11(x − a)}I3(h, y), (82)

fII2
(x, y) = jζ̃20(h)ζ̃23(h) exp

{
jζ̃23(h)H

}
cos

{
ζ̃10(h)a

}
cos(κ10x)

· exp
{

jζ̃23(h)(y − H − a − 2b)
}

, (83)

fIII(h, x, y) = cos
{

ζ̃10(h)a
}

cos(κ10x)
[
Ĩ(2)
ey (h, b)Ĩ(2)

oy (h, b)

· exp
{

jζ̃13(h)(y − a)
}
− exp

{
jζ̃23(h)H

}
I1(h, b)

· exp
{
−jζ̃23(h)(y − H − a)

}]
, (84)

and

I3(h, y) =
[[

Ĩ(2)
oy (h, b) cos

[
ζ̃20(h){y − (H + a + b)}

]

+ Ĩ(2)
ey (h, b) sin

[
ζ̃20(h){y − (H + a + b)}

]]]
. (85)

The amplitudes of modes which are excited by the periodic groove
structure of finite extent are derived from Eqs. (78)–(85) by the cal-
culation of residues at the propagation constant [18, 19], namely, at
h = ±β . In this case, following equation is satisfied:

I(±β, H, a, b) = − Ĩ(1)
ey (±β, a)Ĩ(2)

ey (±β, b)Ĩ(2)
oy (±β, b)

+ exp
{

2jζ̃23(±β)H
}

I1(±β, b)I2(±β, a) = 0. (86)

Because the mode fields in regions with refractive index n2 are the
evanescent fields, they decay in proportion to exp{jζ̃23(β)(y − H − a

− 2b)} for example. Therefore ζ̃23(β) is a pure positive imaginary
number and ζ̃23(β) is given by

jζ̃23(β) = −
√

β2 + κ10
2 − n2

2k0
2. (87)
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In eigenvalue equation,

exp
{

2jζ̃23(±β)H
}
� 1, (88)

is satisfied when H is large space between waveguides. Therefore
eigenvalue equation can be approximated as follows:

I(±β, H, a, b) ∼= −Ĩ(1)
ey (±β, a)Ĩ(2)

ey (±β, b)Ĩ(2)
oy (±β, b). (89)

Therefore the mode field of the compound waveguide, which consists
of three parallel perfect waveguide cores placing at equal space each
other, can be considered approximately as superposition of fields of
modes of isolated waveguide-2r and waveguide-2l and the mode of
isolated central waveguide-1 when cores of waveguides are placed at
large space [15].

From above discussion and Eqs. (78)–(85) and (89), it is consid-
ered approximately that modes of waveguide-2r and waveguide-2l and
modes of the waveguide-1 are coupled with incident mode through the
periodic groove structure of finite extent and propagate in those waveg-
uides.

In this paper, scattering and coupling problems are analyzed in the
region of normalized frequency where only the fundamental Ex

11 mode
can exist in the waveguide-1 and waveguide-2r . It is given by

0 ≤V2 < V1 ≤ π

2
, (90a)

V1 =
√

n1
2 − n2

2k0a, (90b)

V2 =
√

n1
2 − n2

2k0b, (90c)
V2

V1
=

b

a
< 1. (90d)

In waveguide-2r , the fundamental Ex
11 modes of this waveguide are

coupled with the incident mode by the periodic groove structure of
waveguide-1 and propagate to positive(forward) and negative (back-
ward) z direction. Then Ex component of these coupled fundamental
modes having the first order approximate amplitudes are denoted as
E

(1)(f,b)
2,x (x, y, z) . Wavenumbers, κ20, κ21 and ζ20, ζ23 are derived by

Eqs. (27) and (28) in the region of the normalized frequency, V1 and V2

given by Eqs. (90a)–(90d), respectively. The propagation constant β2
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of the waveguide-2r is given by using one of Eqs. (24)–(26) after ob-
taining those wavenumbers. Propagation constants ±β2 satisfy the
equation given by Eqs. (47), (49c), and (49d) as follows:

Ĩ(2)
ey (±β2, b) = jζ̃23(±β2) cos

{
ζ̃20(±β2)b

}
+ζ̃20(h) sin

{
ζ̃20(±β2)b

}
= 0.

(91)
Then E

(1)(f,b)
2,x (x, y, z) is derived from the calculation of the residues at

h = ±β2 [18, 19]. Consequently, E
(1)(f,b)
2,x (x, y, z) is given as follows:

E
(1)(f,b)
2,x (x, y, z) = − j

2
A2G

(1)(±β2) exp
{

jζ̃23(β2)H
}

exp(±jβ2z)

·




cos(κ10x) cos
{

ζ̃20(β2)b
}

exp
{
−jζ̃23(β2)(y − H − a)

}
;

x, y, z ∈ III

cos(κ10x) cos
[
ζ̃20(β2) {y − (H + a + b)}

]
; x, y, z ∈ II0

cos(κ10a) exp{jκ21(x − a)} cos
[
ζ̃20(β2) {y − (H + a +b)}

]
;

x, y, z ∈ II1

cos(κ10x) cos
{

ζ̃20(β2)b
}

exp
{

jζ̃23(β2)(y − H − a − 2b)
}

;

x, y, z ∈ II2




(92)

where

G(1)(±β2) = δa
(
ζ2
10 − ζ2

13

)
cos(κ10a) ·


sin

{
(K + β1 − (±β2)) t

}
K + β1 − (±β2)

+
sin

{
(K − β1 + (±β2)) t

}
K − β1 + (±β2)


 (93)

A2 is given by

A2 = A2

{
jζ̃23(β2)

} cos
{

ζ̃10(β2)a
}

I
(1)
ey (β2, a)

, (94)
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where

A2 =
jζ̃23(β2) cos

{
ζ̃20(β2)b

}

β2

[
1 − jζ̃23(β2)b

] . (95)

In above equations, ζ̃20(β2) and ζ̃23(β2) satisfy naturally following
relations: {

ζ̃20(β2) = ζ20

ζ̃23(β2) = ζ23

. (96)

In the waveguide-1, the fundamental Ex
11 modes of this waveguide

are exited by the periodic groove structure and propagate to forward
and backward in this waveguide. Then Ex component of these funda-
mental Ex

11 modes with the first order approximate amplitudes are
denoted as E

(1)(f,b)
1,x (x, y, z) . It is derived in the same manner as

E
(1)(f,b)
2,x (x, y, z) and given as follows:

E
(1)(f,b)
1,x (x, y, z) = − j

2
A1G

(1)(±β1) exp(±jβ1z)

·




cos(κ10x)cos
{

ζ̃10(β1)a
}

exp
{

jζ̃13(β1)(y−a)
}

; x, y, z∈ III

cos(κ10x) cos
{

ζ̃10(β1)y
}

; x, y, z ∈ I0

cos(κ10a) exp{jκ11(x−a)} cos
{

ζ̃10(β1)y
}

; x, y, z ∈ I1




, (97)

where

A1 =
jζ̃13(β1) cos

{
ζ̃10(β1)a

}

β1

[
1 − jζ̃13(β1)a

] . (98)

In Eqs. (97) and (98), ζ̃10(β1) and ζ̃13(β1) satisfy naturally following
equations: {

ζ̃10(β1) = ζ10

ζ̃13(β1) = ζ13

. (99)

From Eqs. (92) and (93), it is considered that Ex
11 mode which prop-

agates positive z direction (forward) in the waveguide-2r is coupled
with the incident mode strongly when the Bragg condition is satisfied
as follows:

K =
2π

D
= ±(β1 − β2). (100)
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Signs of right hand side of this equation are defined in such way that
K takes a positive number. Similarly, Ex

11 mode which propagates
the negative z direction (backward) in the waveguide-2r is coupled
with the incident mode strongly when the Bragg condition is satisfied
as follows:

K =
2π

D
= β1 + β2. (101)

In this paper, scattering and coupling problems of the directional cou-
pler is analyzed when the Bragg condition of Eq. (101) is satisfied.

Applying the method of steepest descent to scattered fields repre-
sented by the integral transform, the first order approximation of the
far-field of the scattered wave in the region IIr2, Ẽ(1)

II2
(x, ρ, θ) is ob-

tained as follows:

Ẽ(1)
II2

(x, ρ, θ) = −
√

γ0k0

2π
· exp

(
−j

π

4

) exp(jγ0k0ρ)
ρ1/2

· sin θ cos(κ10x)ψ(1)
II2

(h), (102)

h2 + ζ̃2
23(h) =n2

2k
2
0 − κ2

I0
= γ2

0k2
0, (103){

h = γ0k0 cos θ
ζ̃23(h) = γ0k0 sin θ

. (104)

where ψ(1)
II2

(h) is given from Eqs. (78) and (83) as follows:

ψ
(1)
22 (h) =

G(1)(h)
I(h, H, a, b)

jζ̃10(h)ζ̃23(h) exp
{

jζ̃23(h)H
}

cos
{

ζ̃10(h)a
}

.

(105)
and θ is measured counterclockwise from the z axis. The far-field of
the scattered field given by above equations depends on the x coordi-
nate. However the far-field pattern can be obtained independently on
the x coordinate on the y-z plane with any x coordinate in the region
IIr2 because it is drawn by normalizing with the maximum amplitude
of the scattered fields on any y-z plane in that region. Therefore the
profile of the far-field pattern is independent on the x coordinate in
that region. The profile of the far-field pattern of the region IIl2 is
symmetry to one of IIr2 with regard to x-z plane.

The incident power to waveguide-1 is denoted as Pi and the re-
flected power derived from the first order approximate amplitude is
denoted as PW1r . The radiation power is the sum of ones in the
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region IIr2 and IIl2 and it is denoted as Prad . Moreover powers which
are coupled with the incident mode and propagate forward and back-
ward in the waveguide-2r are denoted as PW2f and PW2b , respec-
tively. The transmitted power of the waveguide-1 is denoted as PW1t .
The same amount of powers are coupled with waveguide-2l as ones of
waveguide-2r . Then PW1t is given by

PW1t = Pi − PW1r − Prad − 2 · (PW2b + PW2f). (106)

Normalized powers of each power are expressed as follows:

PTW1 =
PW1t

P i
, (107a)

PBW1 =
PW1r

P i
, (107b)

PRAD =
Prad

Pi
, (107c)

PBW2 =
PW2b

P i
, (107d)

PFW2 =
PW2f

P i
. (107e)

5. RESULTS AND DISCUSSION

In this paper, the scattering problems of the directional couplers are
analyzed for the fundamental Ex

11 mode incidence. This directional
coupler is composed of three parallel rectangular waveguide cores which
are placed at equal space in the dielectric medium. Periodic groove
structures of finite extent are formed on two opposite surfaces of rectan-
gular core of the central waveguide among them. The above-mentioned
problems are analyzed in the region of the normalized frequency given
by Eqs. (90a)–(90d). In that region, only the fundamental Ex

11 mode
of each waveguide can be coupled with the incident mode. The Bragg
condition of Eq. (101) is applied in this analysis.

In Figs. 3–7, refractive indices distributions of couplers of this paper
are n1 = 1.20, n2 = 1.18 .

In Figs. 3–6, PBW2 and PFW2 denote as the normalized power,
namely, coupling efficiency of Ex

11 modes of the waveguide-2r , which
are coupled with the incident mode of the waveguide-1 through the
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Figure 3. Normalized powers of directional coupler for rectangular
waveguides shown by Fig. 1 as a function of normalized frequency V
under Bragg condition of Eq. (101).

periodic structure and the propagate to negative (backward) and pos-
itive (forward) z direction, respectively. The same amount of powers
are coupled in the waveguide-2l as ones of waveguide-2r . PBW1 is
the normalized powers of Ex

11 modes in the waveguide-1 which is re-
flected by the periodic structure and normalized by the incident power.
PRAD is the sum of the normalized powers of radiation fields in re-
gions IIr2 and IIl2 . Above-mentioned quantities are derived from the
first order approximate fields. PTW1 is the normalized power of the
fundamental Ex

11 mode which is transmitted through periodic struc-
ture in the waveguide-1 and this quantity is derived from Eqs. (106)
and (107a).

Figure 3 shows PBW1, PTW1, PRAD and two times of PBW2
as a function of the normalized frequency V when the Bragg condi-
tion given by Eq. (101) is satisfied. Therefore it is shown that the
fundamental Ex

11 modes propagating backward in the waveguide-2r

and waveguide-2l are coupled strongly with the incident mode to the
central waveguide-1. In Fig. 3, the half length of the periodic struc-
ture in the z direction, t is equal to 3500.25D. It is shown that two
times PBW2 has maximum value nearby V = 0.6 and its value is
about 38%. Therefore it is considered that the structure presented
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Figure 4. Comparison between normalized powers carried backward
and forward by the mode in waveguide-2 as a function of normalized
frequency V under the Bragg condition of Eq. (101).

in this paper has a function of the directional coupler for rectangular
waveguides.

Figure 4 shows a comparison between normalized powers PBW2
and PFW2 as a function of the normalized frequency with regard to
same directional coupler as one of Fig. 3 when the Bragg condition
of Eq. (101) is satisfied. The incident Ex

11 mode of the waveguide-
1 is coupled with Ex

11 modes of the waveguide-2r and waveguide-2l

through the periodic groove structure. Then coupled modes propagate
backward and forward in those waveguides. This figure shows that
the power carried by the mode propagating backward in waveguide-2r

and waveguide-2l , PBW2 is very large in comparison with the power
carried by the mode propagating forward in those waveguides, PFW2
when the condition of Eq. (101) is satisfied. The result of this figure
has good agreement with physical consideration qualitatively.

Figure 5 shows PTW1 and two times of PBW2 as a function
of space between rectangular cores of waveguides H when the Bragg
condition given by Eq. (101) is satisfied. This figure shows that PBW2
decreases exponentially with increase of H . Results of this analysis
have good agreement with physical consideration qualitatively.
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Figure 5. Normalized powers of directional coupler for rectangular
waveguides as a function of space between rectangular waveguide cores
H under Bragg condition of Eq. (101).

1 0-4

1 0-3

1 0-2

1 0-1

1 00

1 01

1 02

0 700 1400 2100 2800 3500

PTW1
2x( PBW2 )
PBW1
PRAD

N
O

R
M

A
L

IZ
E

D
  

 P
O

W
E

R
S

  
  

  
  

( 
%

 )

           

( GROOVE NUMBER N )

  δ = 0.02 , V = 0.6

H = 3.0 a ,
b
a

= 0.6

n1 = 1.20 , n2 = 1.18

  ( × D)

Figure 6. Normalized powers of directional coupler for rectangu-
lar waveguides as a function of groove number N under the Bragg
condition of Eq. (101).
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Figure 7. Far-field pattern drawn on the y-z plane in the regions
IIr2 and IIl2 of the directional coupler under the condition of Eq. (101).

Figure 6 shows normalized powers as a function of the number of
groove N when the Bragg condition given by Eq. (101) is satisfied.
This figure shows that PBW2 increases monotonously with increase
of groove number in the first order approximation but it is shown
that fair amount of the incident power can be coupled into the other
waveguides in any ratio by selecting groove number appropriately.

Figure 7 shows far-field patterns on any y-z plane in regions IIr2 and
IIl2 . when the Bragg condition given by Eq. (101) is satisfied. The far-
field given by Eqs. (102)–(105) depends on x coordinate. However
the far-field pattern is independent on x coordinate in the regions
IIr2 and IIl2 because the far-field pattern is drawn on each y-z plane
in those region by normalizing by the maximum amplitude of the scat-
tered field of each y-z plane. Therefore the profile of the far-field
pattern is independent on the x coordinate in those regions. The pro-
file of the far-field pattern of the region IIl2 is symmetry to one of IIr2
with regard to x-z plane. This figure shows that the propagation field
is scattered backward with regard to direction of the incident mode
strongly in this case.
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6. CONCLUSIONS

A method based on the mode matching method in the sense of least
squares has been applied to analyze a coupling and scattering prob-
lems of the directional coupler for rectangular waveguides. This direc-
tional coupler is composed of three parallel rectangular cores which are
placed at equal space in the dielectric medium. The central rectangular
core has periodic groove structures on its two surfaces which face each
other and other two waveguide cores are perfect. From results based
on the first order approximate solution of the integral equation, it is
considered that the structure presented in this paper has function of
directional coupler for rectangular waveguides when the Bragg condi-
tion is applied appropriately. Moreover it is considered that results of
analyses have good agreement with the physical consideration qualita-
tively. Therefore this method is expected to be useful for the analysis
of the rectangular waveguides which have a periodic groove structure
of finite extent and have functions such as directional couplers and so
on.
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