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1. INTRODUCTION

The electromagnetic wave scattering from infinite periodic gratings
composed of strips or wires has been a classical topic in diffraction
theory. One application of this structure is to use the property of wave
absorption where the scatterers are not perfectly conducting but resis-
tive type. From this viewpoint, the strip grating with one-dimensional
periodicity has been treated by the method of Riemann-Hilbert bound-
ary value problem [1] and the singular integral equation method [2, 3].
Here the use of approximate boundary conditions [4] enabled us to
deal with the boundary value problems easily. The above methods
both are based on so-called regularization procedure, so that they not
only reduce the matrix size but also avoid the relative convergence [5]
in numerical computations.

Two-dimensional gratings are more general structure and have been
utilized as wave shielding/absorbing sheet [6–8], frequency selective
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surfaces (FSS) [9, 10], and so on. Since shielding materials are arrange-
ment of thin conducting fibers, the analyses have often performed by
taking account of only the axial component of the conducting current
[6, 7]. Although FSS treatments are mainly based on the full-wave
theory using the vector modal functions [10], the above-mentioned
regularization procedure is unfortunately difficult to achieve for such
two-dimensional structures. Therefore in numerical computations we
must choose the truncation numbers properly and carefully in order to
obtain correct results.

The objective of the present paper is to apply the full-wave treat-
ment to the multilayered strip gratings having crossed structure. This
type is regarded as a microscopic model of electromagnetic wave ab-
sorbing sheet of the fiber type [8]. We treat both the axial and perpen-
dicular components of the surface current on the strips. The boundary
value problem is formulated into the set of integral equations, which
is discretized to the linear equations by applying the moment method.
Numerical computation is carried out for the distribution of the inci-
dent power to the reflected, transmitted, and absorbed powers. We
direct our attention to the optimization of the grating parameters for
maximizing the absorptivity. The equivalent circuit parameters of the
crossed resistive grating will also be obtained.

The time dependence ejωt is suppressed throughout this paper.

2. INTEGRAL EQUATIONS

As illustrated in Fig. 1, the grating planes composed of infinite periodic
resistive strips are layered in vacuum with the constant interval h in
the z direction. The number of the plane is Q . The width of the
strips is 2w and its period of allocation in each plane is d along the
x and y axes alternatively. Assuming that the strips are thin enough
compared with the wavelength and the skin depth of the strip medium,
we impose the resistive type boundary conditions [4]

ET|z=zp+0 − ET|z=zp−0 = 0
1
2

[
ET|z=zp+0 + ET|z=zp−0

]
= R ẑ ×

[
H|z=zp+0 − H|z=zp−0

]

= RJ(p)






(on Sp; p = 1, 2, . . . , Q; zp = (p − 1)h) (1)
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(top view)

(side view)

Figure 1. Geometry of the crossed strip grating.

where Sp is the strip region included in the unit cell

Sp =
{
{(x, y, zp)| − w < x < w, −d/2 < y < d/2} (p : odd)
{(x, y, zp)| − d/2 < x < d/2, −w < y < w} (p : even) (2)

In (1), ẑ is the unit vector in the normal (z) direction, and the sub-
script T denotes the transverse (xy) components. The surface resis-
tance R is defined by

R =






1/[jωε0τ(εr − 1) + τσ] (lossy dielectric)
1/[jωε0τ(εr − 1)] (pure dielectric; σ = 0)
1/(τσ) (resistive; ωε0εr � σ)
0 (perfectly conducting; σ → ∞)

(3)
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Figure 2. Incident plane wave.

where εr, σ , and τ are the relative permittivity, conductivity, and
thickness of the strips, respectively. The function J(q) stands for the
density of conducting current (polarization current) if R is pure real
(pure imaginary).

The incident plane wave is illustrated with Fig. 2. The propagation
vector k0 makes an angle θ with respect to the grating normal, and
its projection onto the transverse (xy) plane is inclined from the x
axis by an angle ϕ . We classify the electromagnetic field into the TE
and TM modes in which the electric and magnetic fields, respectively,
are parallel with the transverse plane.

Let us express the total field by the sum of the incident and scattered
fields as

(E,H) =
(
Einc,Hinc

)
+

Q∑

p=1

(
Esc(p),Hsc(p)

)
(4)

The superscript sc(p) denotes the scattered field due to the induced
current on the strips Sp . The transverse components of the incident
and scattered fields are

[
Einc

T
Hinc

T

]
= ιτ

[
Ψτ00

ητ00 ẑ × Ψτ00

]
e−jγ00z (5)

ιτ =
{
−1 (τ = 1; TE-inc.)
cos θ (τ = 2; TM-inc.) (6)
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[
Esc(p)

T

Hsc(p)
T

]

=
∞∑

i=−∞

∞∑

l=−∞

2∑

t=1

ρ
(p)
til

[
Ψtil

sgn(z − zp) ηtil ẑ × Ψtil

]
e−jγil|z−zp|

(7)

The amplitude of the incident electric field is taken as 1/d , and the set
of ρ

(p)
til is the unknown coefficients of the TE (t = 1) and TM (t = 2)

scattered modes. In (5) and (7) we used the vector modal functions
defined by [10]

[
Ψ1il

Ψ2il

]
= Vil

[
βlx̂ − αiŷ
αix̂ + βlŷ

]
e−j(αix+βly), Vil =

1

d
√

α2
i + β2

l

(8)

where the propagation constants and modal admittances are





αi = k0 sin θ cos ϕ + 2iπ/d
βl = k0 sin θ sinϕ + 2lπ/d
γil = (k2

0 − α2
i − β2

l )1/2 (Im γil ≤ 0)
(9)

η1il = γil/(k0ζ0), η2il = k0/(ζ0γil) (10)

with k0 = ω
√

ε0µ0 = 2π/λ0, ζ0 =
√

µ0/ε0 . Note that the modal
function (8) satisfies the periodicity condition, for any component Ψ ,
that Ψ(x + md, y + nd) = Ψ(x, y)e−j(α0md+β0nd) . Note that the
following orthonormal condition holds

∫ d/2

−d/2

∫ d/2

−d/2
Ψtil · Ψt′i′l′ dx dy = δtt′δii′δll′ (11)

where the overline denotes complex conjugate, and the symbol δmn

stands for Kronecker’s delta.
Applying (7) into (1), we can write the induced surface current

density on Sp in terms of the modal coefficients as

J(p) = −2
∞∑

i=−∞

∞∑

l=−∞

2∑

t=1

ρ
(p)
til ηtilΨtil (12)

Fourier analysis of (12) over the unit cell and the absence of J(p) on
the gaps lead us to the integral representation of the coefficients

ρ
(p)
til = − 1

2ηtil

∫

Sp

J(p) · Ψtil dS (13)
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The expressions (4), (5), (7), and (13) are combined and substituted
into the resistive boundary condition E = RJ(p) in (1). Thus we
arrive at the set of integral equations

RJ(p)+
Q∑

q=1

∞∑

i=−∞

∞∑

l=−∞

2∑

t=1

1
2ηtil

Ψtil

∫

Sq

J(q) · Ψtil dS e−jγil|zp−zq|

= ιτΨτ00 e−jγ00zp (on Sp, p = 1, 2, · · · , Q) (14)

3. MOMENT METHOD

In the neighborhood of the edge of resistive strips, the surface cur-
rent that flows along the edge (toward the edge) approaches a nonzero
constant (vanishes) [11]. Taking account of this, we approximate the
unknown functions as

J(p) ≈ 1
ζ0

2∑

s=1

M+
p∑

m=M−
ps

N+
p∑

n=N−
ps

f (p)
smn Φ(p)

smn (15)

where the truncation numbers are

M−
ps =






0 (p : odd, s = 1)
1 (p : odd, s = 2)
−N‖ (p : even)

M+
p =

{
N⊥ (p : odd)
N‖ (p : even) (16)

N−
ps =






−N‖ (p : odd)
0 (p : even, s = 1)
1 (p : even, s = 2)

N+
p =

{
N‖ (p : odd)
N⊥ (p : even) (17)

and the basis functions are




Φ(p)

1mn

Φ(p)
2mn



 =






U
(1)
mn




jβnŷ

mπ

2w
x̂

mπ

2w
ŷ jβnx̂










cos
mπ(x − w)

2w

sin
mπ(x − w)

2w




 e−jβny

(p : odd)

U
(2)
mn




jαmx̂

nπ

2w
ŷ

nπ

2w
x̂ jαmŷ










cos
nπ(y − w)

2w

sin
nπ(y − w)

2w




 e−jαmx

(p : even)

(18)
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with the normalizing factors






U
(1)
mn =

√
w/d

(1 + δm0) [(mπ/2)2 + (βnw)2]

U
(2)
mn =

√
w/d

(1 + δn0)[(αmw)2 + (nπ/2)2]

(19)

The set of functions (18) is the transverse field of the orthogonal modes
in the parallel plate waveguide having the plate spacing 2w , and there-
fore satisfies the orthonormal condition

∫

Sp

Φ(p)
smn · Φ(p)

σµν dS = δsσδmµδnν (20)

After the expansion (15) is substituted into the integral equations (14),
the Galerkin procedure is used to discretize the system of equations.

We take the inner product of the both sides with Φ(p)
σµν and integrate

them over the area of strips Sp . Making use of the orthonormality
(20) and the symbol for the inner product

C
(p)
smn,til =

∫

Sp

Φ(p)
smn · Ψtil dS (21)

we are led to the set of the simultaneous linear algebraic equations

R

ζ0
f (p)

σµν +
Q∑

q=1

2∑

s=1

M+
q∑

m=M−
qs

N+
q∑

n=N−
qs

K(pq)
σµν,smn f (q)

smn = G(p)
σµν

(
p = 1, 2, . . . , Q; σ = 1, 2; µ = M−

pσ, M−
pσ + 1, . . . , M+

p ;

ν = N−
pσ, N−

pσ + 1, . . . , N+
p

)
(22)

where the matrix elements are represented by

K(pq)
σµν,smn =

L∑

i=−L

L∑

l=−L

e−jγil|zp−zq|
2∑

t=1

1
2ζ0ηtil

C
(p)
σµν,til C

(q)
smn,til (23)

G(p)
σµν = e−jγ00zp ιτ C

(p)
σµν,τ00 (24)
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The infinite sums in (23) are truncated at i, l = ±L for the numerical
computation. See Appendix for the analytical evaluation of the inner
product (21).

After (22) is solved numerically to obtain the coefficients f
(p)
smn , we

can compute the modal coefficients by

ρ
(p)
til = − 1

2ζ0ηtil

2∑

s=1

M+
p∑

m=M−
ps

N+
p∑

n=N−
ps

f (p)
smn C

(p)
smn,til (25)

which is derived from (13), (15), and (21).

4. POWER RELATIONS

The incident, reflected, and transmitted powers are obtained by inte-
grating the normal component of the Poynting vector ẑ · Re (E × H)
over the transverse plane for unit cell: |x| < d/2, |y| < d/2 , and
z = constant . From (5) the incident power is found to be ητ00 ι2τ .
Computing the reflected and transmitted powers from (7) and normal-
izing them by the incident one, we can express the relative reflected
and transmitted powers for each mode as






P ref
til =

ηtil

ητ00

∣
∣
∣
∣
∣
∣

1
ιτ

Q∑

p=1

ρ
(p)
til e−jγilzp

∣
∣
∣
∣
∣
∣

2

P tr
til =

ηtil

ητ00

∣
∣
∣
∣
∣
∣
δtτδi0δl0 +

1
ιτ

Q∑

p=1

ρ
(p)
til ejγilzp

∣
∣
∣
∣
∣
∣

2 (26)

The absorbed power that is dissipated inside the strips is obtained by
integrating R |J(p)|2 on the strips. Using (15) and (20), we have its
normalized value as

P abs =
1

ητ00ι2τ

Q∑

p=1

∫

Sp

R
∣
∣
∣J(p)

∣
∣
∣
2

dS

=
R

ζ2
0ητ00ι2τ

Q∑

p=1

2∑

s=1

M+
p∑

m=M−
ps

N+
p∑

n=N−
ps

∣
∣
∣f (p)

smn

∣
∣
∣
2

(27)
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The powers evaluated above must satisfy the conservation law

2∑

t=1

∑

i,l
(Re γil>0)

(
P ref

til + P tr
til

)
+ P abs = 1 (28)

The energy error is defined by the absolute value of the difference
between both sides of (28).

5. NUMERICAL RESULTS

Since the energy error is always less than machine epsilon in the present
numerical scheme, we must examine the behavior of physical values as
the truncation numbers are changed. Accuracy and efficiency in nu-
merical computations are much influenced by the choice of three trun-
cation numbers N⊥, N‖ , and L . In Fig. 3(a) we show the dependence
of the transmitted power on N⊥ for fixed N‖ and the parameter L .
The power first converges to the stable value at some critical number
of N⊥ , and then diverges. This is a typical behavior of the relative
convergence phenomenon [5], and this stable value is considered to lie
near the true value. From this we can set the criterion for N⊥ as

N⊥ =
[
2w

d
(2L + 1)

]
(29)

where [x] is an integer not exceeding x . In this figure the proper value
of N⊥ is 2, 4, 6, 8, and 10 for L = 3, 6, 9, 12, and 15, respectively.

Figure 3(b) shows the convergence of the transmitted power for the
different values of the layer distance h/d . If the grating planes lie
apart (h/d > 0.1), N‖ = 2 is enough. But for closed gratings the
value of N‖ should be more, because we have larger variation in the
surface current density due to the interaction among the planes.

In Fig. 4 the comparison is given for the transmission coefficients
between two types of perfectly conducting gratings: strips and wires
[6]. The wires are assumed to have the equivalent radius, i.e., a quarter
of the strip width [12]. Since the scatterers are extremely thin with
respect to the wavelength, it is enough to take into account the axial
current only (N⊥ = 0) . However the truncation number L must be
large to yield correct convergence; (29) is no longer applicable to such
a small value of 2w/d . The transmission coefficient [6] for co- and
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(a)

(b)

Figure 3. Convergence of the relative transmitted power of the co-
polarized dominant mode for TE-incidence. The parameters are Q =
2, 2w/d = 1/3, R = 0 (perfectly conducting), d/λ0 = 1.5, θ = 15◦ ,
and ϕ = 45◦ . (a) h/d = 0.1, N‖ = 2 , (b) N⊥ = 6, L = 9.
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Figure 4. Comparison of the transmission coefficients with the crossed
wire grid [6] having the equivalent wire radius w/2 . The parameters
are Q = 2, h/d = 1, 2w/d = 0.004, R = 0 (perfectly conducting),
d/λ0 = 0.1 , and θ = 45◦ . The truncation numbers are N⊥ = 0, N‖ =
1 , and L = 150.

cross-polarization is defined by Etr
ϕ /Einc

ϕ and Etr
θ /Einc

ϕ , respectively,
at TE-incidence. In the case of TM-incidence, it is defined by Etr

θ /Einc
θ

and Etr
ϕ /Einc

θ . We have very good agreement between the strip and
wire gratings.

Figure 5 shows the frequency characteristics of the transmitted
power for perfectly conducting gratings. Figure 5(a) concerns the
double-layered crossed gratings at h/d = 0.02 and 0.1, and the pe-
riodic square apertures perforated in a conducting screen (h/d = 0) .
The latter case was treated independently based on FSS analysis [10].
We observe that the strong resonance shifts to high frequencies as
the distance h/d increases. The common peak at d/λ0 ≈ 0.858
concerns Wood’s anomaly where the degenerated higher order modes
((i, l) = (0,−1), (−1, 0)) begin to propagate.

Figure 5(b) is obtained under the condition that the thickness of the
multilayered grating, i.e., the distance between two outermost grat-
ing planes, is fixed. We set the incidence almost normal, because
the computation at exactly normal incidence involves division by zero
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(a)

(b)

Figure 5. Frequency dependence of the relative transmitted power for
TE-incidence. The strips are perfectly conducting (R = 0) . (a) Co-
polarized dominant mode. 2w/d = 0.2, Q = 2, θ = 15◦ , and ϕ = 45◦ ,
(b) Total power. 2w/d = 0.3, (Q − 1)h/d = 0.2 , and θ = ϕ = 1◦.
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without special analytical preparation. Total transmission occurs at
d/λ0 ≈ 0.86 except for the double-layered grating. The circular marks
for Q → ∞ correspond to the periodic square apertures in a thick
conducting screen at normal incidence [9]. The curve approaches the
set of marks as Q is increased.

Figure 6 shows the absorbing rate P abs (in %) of the double-layered
crossed grating. There is no absorption on the abscissa 2w/d = 0 that
corresponds to the absence of strips. The values for 2w/d ≈ 1 are
predicted by those of an infinite plane sheet with the halved resistance
R/ζ0 = 1/2 , that is, P abs = 2 cos θ/(1 + cos θ)2 . The values based on
this formula is about 50.0%, 44.4% , and 32.7% at θ = 0◦ , 60 ◦ , and
75 ◦ , respectively, which is found to be good approximation for both
polarizations. Note that the 49%-contour for TE-incidence extends to
the region of small 2w/d and large θ . Simple analysis tells us that the
relative absorbed power never exceeds 50% by using such a resistive
sheet with negligible electrical thickness.

Figure 7 presents the absorbing rate of the 6-layered grating as a
function of the layer distance h/d and the surface resistance R/ζ0 .
The valley and hills appear alternatively with an approximate period
h/d ≈ 0.6 . This periodicity stems from the mode interaction among
the strip layers. The hills are predicted by h cos θ/λ0 ≈ (2ν − 1)/4
with ν being a positive integer. The maximum of absorption is about
94% at optimized parameters.

Figure 8 shows the equivalent impedance of the double-layered
crossed grating for very small h/d and ϕ as a function of wavelength.
With regard to the equivalent circuit in Fig. 9, the impedance is defined
by

Z

ζ0
=

{
−(1 + ρ)/(2ρ cos θ) (TE-inc.)
−(1 + ρ) cos θ/(2ρ) (TM-inc.) (30)

where is the reflection coefficient ρ is defined by

ρ =
{

Eref
ϕ /Einc

ϕ (TE-inc.)
Eref

θ /Einc
θ (TM-inc.)

(31)

In Fig. 8, the value of Z/ζ0 at the low frequency limit is 2 + 0j as
expected. The real part decreases monotonically as the frequency in-
creases, but that the imaginary part has a extreme at d/λ0 ≈ 0.03 .
This result is inconsistent with the widely accepted idea that the reac-
tance is negligibly small at the quasi-static region. We also see that,
at low frequencies, the curves are almost independent of the incident
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(a)

(b)

Figure 6. Dependence of the relative absorbed power P abs (in %)
on the incident angle and the strip width. The parameters are Q =
2, h/d = 0.01, R/ζ0 = 1, d/λ0 = 0.2 , and ϕ = 1◦ . (a) TE-incidence,
(b) TM-incidence.
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Figure 7. Dependence of the relative absorbed power P abs (in %) on
the layer distance and the surface resistance for TM-incidence. The
parameters are Q = 6, 2w/d = 0.65, d/λ0 = 0.85, θ = 15◦ , and
ϕ = 45◦.

angle and the polarization. The circular marks are added for reference,
which are computed by the a simple parallel connection formula

Z = ZEZH/(ZE + ZH) (32)

where ZE (ZH) is the equivalent impedance of one-dimensional grating
at E-wave (H-wave) incidence [1, 3]






ZE

ζ0
=

d

2w
· R

ζ0
+ j

d

λ0
S

(
2πw

d

)

ZH

ζ0
=

16d

3π2w
· R

ζ0
− j

(
4d

λ0
log csc

πw

d

)−1 (33)

with S(x) =
∑∞

l=1 sin2(lx)/l3 . Because the interaction of higher order
modes is not taken into account, it is natural that the marks are not so
accurate. However this comparison is quite suggestive to interpret the
behavior of the impedance curves. Since numerical computations for
the gratings of more than ten layers cost much CPU time and memory
storage, the above formula is useful in treating such structures.
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(a)

(b)

Figure 8. Frequency dependence of the equivalent impedance for the
resistive grating. The parameters are Q = 2, h/d = 0.01, 2w/d =
0.5, R/ζ0 = 1 , and ϕ = 1◦. (a) Normalized resistance, (b) Normalized
reactance.
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(a) (b)

Figure 9. Equivalent circuit for plane resistive sheet or grating. (a)
TE-incidence, (b) TM-incidence.

6. CONCLUSION

We have developed a numerical solution to the scattering problem with
regard to crossed multilayered strip gratings. The moment method
leads the problem into the set of linear equations, which is solved by
carefully choosing the truncation numbers in order to avoid the ill
convergence. Numerical computations were carried out to show the
distribution of the incident power to the reflected, transmitted, and
absorbed ones. The absorbing rate exceeds 94% by a proper choice of
grating parameters. The equivalent circuit parameters of the crossed
resistive grating were also obtained.

The treated structure is regarded as a microscopic model of electro-
magnetic wave absorbing sheet of the fiber type [8]. The knowledge
of the equivalent parameters of the grating is useful in designing such
absorbers. In view of applications, it is valuable to widen the absorb-
ing range by admitting the strip width and periods to be unequal.
Using multi-element gratings [13] seems another effective way. These
problems deserve further attention.

APPENDIX. EVALUATION OF INNER PRODUCT

The modal functions (8) and (18) are substituted into the definition
of the inner product (21) and evaluated analytically. The result is
arranged in the matrix form as
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C
(p)
1mn,1il

C
(p)
1mn,2il

C
(p)
2mn,1il

C
(p)
2mn,2il













=






δnlU
(1)
ml Vild






−jαiβlw mπβl/2
jβ2

l w mπαi/2
−mπαi/2 jβ2

l w
mπβl/2 jαiβlw






×




cos

mπ

2
−j sin

mπ

2

− sin
mπ

2
−j cos

mπ

2










I+

(m

2
,
αiw

π

)

I−
(m

2
,
αiw

π

)






(p : odd)

δmiU
(2)
in Vild






jαiβlw −nπαi/2
jα2

i w nπβl/2
nπβl/2 −jα2

i w
nπαi/2 jαiβlw






×




cos

nπ

2
−j sin

nπ

2

− sin
nπ

2
−j cos

nπ

2











I+

(
n

2
,
βlw

π

)

I−

(
n

2
,
βlw

π

)







(p : even)
(A.1)

where

I±(ξ, η) = sinc(ξ + η) ± sinc(ξ − η) (A.2)

sinc ξ =
sin(πξ)

πξ
(sinc 0 = 1) (A.3)
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