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1. INTRODUCTION

With the increase in the bandwidth of radiation and detection hard-
ware, there is an ever-increasing interest in the propagation of ultrafast
pulses in complex linear and nonlinear environments. A major chal-
lenge encountered in the course of development of this technology is
the modeling of the propagation of pulsed fields over large distances
using an explicit, discrete numerical approach such as the conventional
FDTD scheme [1–3]. The major difficulties are the vast computer re-
sources needed to discretize the entire region of interest and the accu-
mulation of numerical dispersion errors, which may affect significantly
the results for very long range propagation.

The moving coordinate frame FDTD approach makes tracking of
the wavepacket field over long distances feasible because (a) instead of
modeling a very large computational space with a stationary coordinate
frame, the numerical effort is confined to the restricted region contain-
ing the pulse, (b) the space-time trajectory for the moving frame is
calculated analytically using ray techniques, and (c) numerical disper-
sion errors are significantly reduced since the pulse is almost stationary
in the moving frame, once frame speed has been analytically deter-
mined as the physical speed of the center-of-mass of the pulse. The
method was initially presented for the inhomogeneous one dimensional
case in [4–5], while a similar one-dimensional moving frame FDTD for-
mulation has been used in [6] for pulse propagation in a homogeneous,
nonlinear optical medium. A related paper addresses the application of
this approach to the three-dimensional problem of long range tracking
of collimated wavepackets [7].

Moving frame concepts have been used extensively in various an-
alytical and numerical techniques in the past, mostly in the form of
the frequency domain parabolic equation (PE) method which is also
termed in the optical context as the beam propagation method (BPM)
[8, 9 (Ch. 6), 10–12]. These methods have also been extended to the
time-domain parabolic equation (TDPE) method [13, 9 (Ch. 8)]. They
are based on the extraction of the rapidly varying part of the solu-
tion, which is known analytically, resulting in an approximate, one-way
(parabolic type) equation for the slowly varying term. This approach
is very robust and has been used extensively for long range track-
ing of wave fields in complex media. It suffers, however, from several
drawbacks, i.e., the one-way approximation a priori precludes interac-
tions which produce backward-propagating solutions, it assumes weak
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inhomogeneities and a limited propagation angle.
The moving frame FDTD method is free of these limitations. It is

general, robust and fully vectorial, with no limitations on the medium
inhomogeneity. It is not based on the one-way approximation and thus
provides a full wave solution. Furthermore, the inhomogeneity in the
z direction is treated by mapping the z axis into an optical length
coordinate (see (4)), which lends itself naturally to the description of
fields in inhomogeneous media.

As mentioned above, we have recently applied the method for the
three-dimensional problem of long range tracking of collimated wave-
packets [7]. Here we address the electromagnetic/optical waveguide
problem of long range tracking of cylindrically symmetric pulsed fields
propagating along a waveguiding structure such as an optical fiber.
In order to describe the method in the most transparent fashion, we
refer to a vector acoustic equivalent of the problem which possesses
fewer vector components than its electromagnetic counterpart. Yet
the results are directly applicable to electromagnetic, or other, wave
fields.

The waveguiding structures considered are characterized by mono-
tonic increase of the wavespeed away from their axes (like a graded in-
dex optical fiber). Our code also accommodates inhomogeneities along
the waveguide axis. The moving frame FDTD code for cylindrically
symmetric configurations is presented in Section 2. In order to ac-
count correctly for the physical propagation speed of the pulsed guided
modes, the coordinate frame speed is chosen as the local wavespeed
along the axis. The numerical dispersion and stability expressions,
are then derived in Sections 2.2 and 2.3, respectively. The absorbing
boundary conditions (ABC’s) (Section 2.4) are, in essence, adaptations
of the first order Engquist-Majda-Mur [14–15] conditions. The diffi-
culty in the moving frame formulation is that the forward propagating
wave constituents are essentially stationary within the moving frame.
This introduces certain peculiarities into the ABC’s at the front and
back faces since the forward propagating constituents are also station-
ary with respect to these faces and therefore cannot be removed.

The scheme developed in Section 2 is applied in Section 3 to solve
pulse propagation along a waveguiding structure with a quadratic pro-
file. The initial field distributions are taken to be of a pulsed beam
(PB) type [16]: such solutions maintain their wavepacket structure over
a considerable distance along the guide. Approximate time-domain
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expressions for these fields in uniform and non-uniform guides, describ-
ing the wavepacket dynamics, are developed in Appendix A.1 using the
techniques in [16]. For the longitudinally uniform guide, the results of
the FDTD solution are also compared with exact frequency-domain
modal solution [17], while for a longitudinally nonuniform guide we
developed in Appendix A.2 an adiabatic type modal solution. The nu-
merical solution which is obtained successfully recovers the field even
at large distances and accommodates the physical (as opposed to nu-
merical) dispersion characteristics of the modal solution. This and
other conclusions are summarized in Section 4.

2. THE MOVING COORDINATE FRAME FDTD CODE

2.1 A Field Equations in the Moving Coordinate Frame

As has been mentioned in the Introduction, we will present the
moving frame FDTD in the context of the vector acoustic field; however
the results are directly applicable to the vector electromagnetic case.
We consider the acoustic wave equations

∂tv = −1
ρ
∇p ∂tp = −c2ρ∇ · v, (1)

where p is the pressure, v is the particle velocity vector, ρ = ρ(x) and
c = c(x) are the density and sound speed of the medium, respectively
and x = (x, y, z) denotes the position in a 3D coordinate frame. We
shall assume here that ρ = 1, while c has the cylindrically symmetric
form

c = c(z, r), r =
√

x2 + y2 (2)

with a minimum on the z axis and a monotonically increasing profile
away from the z axis. This structure can support guided waves that
propagate along the z axis. Since the propagation speed of these
waves is close to the axial speed, we denote the axial sound speed by
the special symbol

c̄(z) ≡ c(r, z)|r=0, (3)

and introduce the moving coordinate frame variable ζ via

ζ =
∫ z

0

c0

c̄(z′)
dz′ − c0t, (4)
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where c0 is an arbitrary reference velocity. The integral in (4) de-
fines the “optical” path length that maps the z axis onto an equi-
propagation-time axis. Subtracting c0t renders ζ an optical coordi-
nate centered around the pulse’s center of mass.

We now transform the field equations into the moving frame. To
this end, we denote

v(x, y, z, t) = ẑV (x, y, ζ, t) + U(x, y, ζ, t), where U · ẑ = 0 (5a)
p(x, y, z, t) =P (x, y, ζ, t), (5b)

where here and henceforth we use a caret to denote unit vectors. For
mathematical convenience we have also separated the longitudinal and
transversal components of the particle velocity vector, denoting them
as V and U, respectively. Using (4), the stationary field equations
(1) are transformed into the moving frame, as follows:

∂tV = c0∂ζV − c0

˜̄c
∂ζP (6a)

∂tU = c0∂ζU −∇tP (6b)

∂tP = c0∂ζP − c0c̃
2

˜̄c
∂ζV − c̃2∇t · U, (6c)

where ∇t = x̂∂x + ŷ∂y and we also use the tilde to denote velocities in
the moving frame, i.e., c̃(ζ, r, t) = c [z(ζ, t), r] and ˜̄c(ζ, t) = c̄ [z(ζ, t)] .

In this article we shall only consider cylindrically symmetric wave
solutions, thereby reducing the size of the problem. Accordingly, we
denote U = r̂U, bringing (6) to the form

∂tV = c0∂ζV − c0

˜̄c
∂ζP (7a)

∂tU = c0∂ζU − ∂rP (7b)

∂tP = c0∂ζP − c0c̃
2

˜̄c
∂ζV − c̃2 1

r
∂r(rU), (7c)

with the axial boundary conditions ∂rP = ∂rV = U = 0 at r = 0.
The central-difference discretized form of (7), organized in a “march-

ing in time” form, is thus:

V n+1
i,j = V n−1

i,j + γζ

(
V n

i+1,j − V n
i−1,j

)
−

(
γζ/˜̄c

n
i

) (
Pn

i+1,j − Pn
i−1,j

)
(8a)

Un+1
i,j = Un−1

i,j + γζ

(
Un

i+1,j − Un
i−1,j

)
− (γr/c0)

(
Pn

i,j+1 − Pn
i,j−1

)
(8b)

Pn+1
i,j = Pn−1

i,j + γζ

(
Pn

i+1,j − Pn
i−1,j

)
−

(
γζ(c̃n

i,j)
2/˜̄cn

i

) (
V n

i+1,j − V n
i−1,j

)

−
(
γr(c̃n

i,j)
2/c0

) 1
rj

(
rj+1U

n
i,j+1 − rj−1U

n
i,j−1

)
. (8c)
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The problem space is discretized uniformly: t, ζ and r are sampled
at the points tn = n∆t, ζi = i∆ζ, rj = j∆r, where i = 0, 1, ..., I
and j = 0, 1, ..., J [1]. We denote γζ = c0∆t

∆ζ , γr = c0∆t
∆r , c̃n

i,j =
c̃(i∆ζ, j∆r, n∆t), and ˜̄cn

i = ˜̄c(i∆ζ, n∆t).
The singularity of Eq. (8c) at r = 0 requires a special treatment.

Note that Eq. (8a) applies for j ≥ 0, while (8b) and (8c) apply for
j ≥ 1. In (8b) we have U = 0 for j = 0. The singularity of (8c) at
r = 0 is addressed by integrating (7c) within the elementary volume
dv = 2πr dr dζ around the r = 0 axis. Following essentially the same
procedure outlined in [7, Eqs. (8)–(11)] we obtain

Pn+1
i,0 = Pn−1

i,0 + γζ(Pn
i+1,0 − Pn

i−1,0)

− ˜̄cn
i γζ(V n

i+1,0 − V n
i−1,0) − 4(˜̄cn

i )2c−1
0 γrU

n
i,1. (9)

which replaces (8c) for j = 0.

2.2 Numerical Dispersion

In order to derive the numerical dispersion relation, we may assume
in the analysis that the medium is locally uniform in the z direction
so that the sound speed has the form c̄/n̄(r), where, again, we point
out that n̄ = 1 on the axis and decreases monotonically away from it.
We make an ansatz for a space-time harmonic solution of the following
form: 


V n

i,j
Un

i,j
Pn

i,j



 =




V0J0(krrj)
U0J1(krrj)
P0J0(krrj)



 e−ı[ωtn−kζζi] (10)

where kr and kζ , are wave numbers; J0 and J1 are Bessel functions
of the zero and first order, respectively. We denote ı−

√
−1, in order

to avoid confusion with the subscript i. Substituting (10) into (8), we
obtain the matrix equation



sin Ω + γζ sinKζ 0 −γζ c̄

−1 sinKζ

0 sin Ω + γζ sinKζ −ıγrc
−1
0 Kr

−γζ c̄n̄
−2
j sinKζ ıγr c̄

2c−1
0 n̄−2

j Kr sin Ω + γζ sinKζ








V0

U0

P0



=0

(11)
where Kζ = kζ∆ζ, Kr = kr∆r, Ω = ω∆t and n̄j = n̄(j∆r). The
local numerical dispersion relation is derived from the zeros of the
determinant:

sin Ω + γζ sinKζ = 0 (12a)
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(sin Ω + γζ sinKζ)2 −
1
n̄2

j

γ2
ζ sin2 Kζ −

c̄2

c2
0n̄

2
j

γ2
rK2

r = 0. (12b)

Eq. (12a) describes backward propagation at a wavespeed close to −co

in the moving frame, corresponding, in the stationary frame, to a ra-
dial propagation (cf. [7, Eq. (14a)]). Eq. (12b) resembles Eq. (14b) in
[7]; however, it has some important differences due to the transversal
inhomogeneity. Following [7, Eq. (16)] it may be rewritten as

sin Ω + γζ sinKζ = ±n̄−1
j γζ sinKζ

√

1 +
c̄2γ2

r

c2
0γ

2
ζ

K2
r

sin2 Kζ

≈ ±n̄−1
j γζ sinKζ

√

1 +
c̄2k2

r

c2
0k

2
ζ

, (13)

where the approximation applies for small Kζ . We approximate the
resulting numerical dispersion assuming an excitation by collimated
fields, characterized by

(kr/kζ)2 ≡ ε � 1. (14)

Using (14), Eq. (13) reduces to

sin Ω ≈
(
−1 ± n̄−1

j ± 1
2
εn̄−1

j c̄2/c2
0

)
γζ sinKζ . (15)

The upper sign is related to the forward propagating spectra, giving,
for small Ω and Kζ

vp =
ω

kζ
≈ c0

(
n̄−1

j − 1 +
1
2
εn̄−1

j c̄2/c2
0

)
(16)

For the collimated field, (16) implies vp � c0, i.e., the wave is practi-
cally stationary, in regions close to the axis. Note, however, that unlike
the plane stratified medium case of [7], the wave is not quite stationary
in regions away from the axis, where n̄j < 1, but is rather forward
propagating due to the faster off-axis sound speed.

The lower sign in (15) pertains to the backward propagating con-
stituents. It gives, for small Ω and Kζ ,

vp =
ω

kζ
≈ −c0

(
n̄−1

j + 1 +
1
2
εn̄−1

j c̄2/c2
0

)
, (17)
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such that vp ≈ −2c0 on axis.

2.3 Numerical Stability

To determine the stability condition, we first substitute g = e−ıΩ

into the numerical dispersion relations (12):

g−1 −g + ı2γζ sinKζ = 0, (18a)
(g−1−g+ ı2γζ sinKζ)2+ 4(c̄/c0)2n̄−2

j γ2
rK2

r + 4n̄−2
j γ2

ζ sin2Kζ =0. (18b)

Stability requires that gg∗ ≤ 1∀ real Kζ and Kr. Imposing this
condition on (18a) yields the first stability criterion

γζ ≤ 1, (i.e., c0∆t ≤ ∆ζ). (19)

Next, to determine the stability condition implied by (18b), we first
rewrite it in the form

g2 − ı2gγζ sinKζ

(
1 ± n̄−1

j

√
1 + εc̄2/c2

0

)
− 1 = 0, (20)

where we have used the same approximation as in (13)–(14). The so-
lutions of (20) satisfy |g1||g2| = 1, implying |g1| = |g2| = 1. Since this
condition should be satisfied ∀Kz, Kr, the stability condition becomes

γ2
ζ

(
1 ± n̄−1

j

√
1 + εc̄2/c2

0

)2

≤ 1. (21)

Taking the upper sign in (21), we obtain γζ ≤
(
1+n̄−1

j

√
1 + 1

2εc̄2/c2
0

)−1

≈ n̄j

1+n̄j
≤ n̄J

1+n̄J
, where the latter condition is obtained by noting that

n̄(r) is monotonically decreasing away from the center. Generaliz-
ing this condition for non-uniform guides we replace n̄J by n̄J(z) =
c̄(z)/c(rmax, z), resulting in

γζ ≤ min
z

{
n̄J(z)

1 + n̄J(z)

}
= min

z

{
c̄(z)

c̄(z) + c(rmax, z)

}
. (22)

The stability condition (22) is stronger than (19), because it is re-
lated to the back-propagating wave for which vp ≈ −2c0, whereas
(22) matches the radially propagating wave. This strong condition
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will be used throughout. It is the analog of the CFL condition in the
stationary coordinate frame, recalling that in the moving coordinate
frame the greatest wave speed is that of the backward propagating
wave at off-axis points, and it is given by c0

(
1 + c(rmax,z)

c̄(z)

)
. Taking,

on the other hand, the lower sign in (21), we obtain

γζ ≤
∣
∣
∣
∣1 − n̄−1

j

√
1 + εc̄2/c2

0

∣
∣
∣
∣

−1

≈ n̄j

1 − n̄j
. (23)

This condition is much weaker than (22), and therefore will not be
used. It is related to the forward propagating wave, which is almost
stationary. Therefore, this condition places no practical limit on γζ .

2.4 Absorbing Boundary Conditions

The formulation of boundary conditions for the moving coordinate
frame is now addressed. We assume, without loss of generality, that our
grid is located in the region between 0 ≤ ζ ≤ ζmax and 0 ≤ r ≤ rmax.

2.4.1 ABC’s for the Back and Front Boundaries Using the Diagonal-
ization Approach

In general, first order boundary conditions are found by considering
local propagation in a direction normal to the boundary at hand. Con-
sequently, when considering the back boundary ζ = 0 and the front
boundary ζ = ζmax, we assume ∂r = 0 in (7), obtaining:

∂tV = c0∂ζV − c0

˜̄c
∂ζP (24a)

∂tU = c0∂ζU (24b)

∂tP = c0∂ζP − c0c̃
2

˜̄c
∂ζV. (24c)

Next, in order to derive a boundary condition scheme that adapts to
the local changes in the medium properties, we transform the relevant
field constituents to adiabatic-type constituents

P̃ = c̃−1/2P, Ṽ = c̃1/2V, (25)

thus obtaining from (24a) and (24c)

∂tṼ = c0∂ζ Ṽ − c0
c̃
˜̄c
∂ζP̃ − 1

2
c̃zP̃ (26a)

∂tP̃ = c0∂ζP̃ − c0
c̃
˜̄c
∂ζ Ṽ +

1
2
c̃zṼ , (26b)
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where c̃z(ζ, r, t) ≡ ∂zc(z, r)|z=z(ζ,t). In deriving (26) we also note that
c is t-independent so that (∂t − c0∂ζ)c̃(ζ, r, t) = 0. Adding and sub-
tracting (26a) and (26b), one obtains

∂t

+

W = c0

(
1 − c̃

˜̄c

)
∂ζ

+

W − 1
2
c̃z

−
W (27a)

∂t

−
W = c0

(
1 +

c̃
˜̄c

)
∂ζ

−
W +

1
2
c̃z

+

W, (27b)

where
±
W = P̃ ± Ṽ = c̃−1/2P ± c̃1/2V. (28)

Neglecting the coupling terms, we finally obtain the diagonalized sys-
tem of equations

∂t

+

W = c0

(
1 − c̃

˜̄c

)
∂ζ

+

W (29a)

∂t

−
W = c0

(
1 +

c̃
˜̄c

)
∂ζ

−
W (29b)

∂tU = c0∂ζU. (29c)

From (29), we readily recognize that
+

W,
−
W, and U satisfy the corre-

sponding first-order one-way wave equations and propagate at veloc-
ities c0

(
c̃
˜̄c
− 1

)
, −c0

(
c̃
˜̄c

+ 1
)
, and −c0, respectively, in the ζ direc-

tion.
The back boundary: At the back boundary ζ = 0,

−
W is the inci-

dent one-way wave constituent and
+

W is the one-way wave constituent
which is reflected back into the numerical grid. Following a procedure
introduced in [7], we may remove

+

W from the problem space by let-
ting it propagate at an arbitrary speed c1. The effect of c1 on the
numerical results has also been explored in [7]. Here we shall simplify

the general formulation and choose c1 to be the speed at which
−
W

is incident upon the back boundary. Thus, the boundary condition
satisfied by

+

W at the back boundary is (cf. (29a))

∂t

+

W = c0

(
1 +

c̃
˜̄c

)
∂ζ

+

W. (30)
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Combining (30) with (29b), we rewrite the boundary conditions in
terms of the field constituents

∂t(c̃1/2V ) = c0

(
1 +

c̃
˜̄c

)
∂ζ(c̃1/2V ) (31a)

∂t(c̃−1/2P ) = c0

(
1 +

c̃
˜̄c

)
∂ζ(c̃−1/2P ). (31b)

Turning now to U, we use (29c). These continuous boundary condi-
tions are discretized as follows:

V n+1
0,j =

1
√

c̃n+1
0,j

[
√

c̃n
1,jV

n
1,j +

c0(1 + An
j )∆t − ∆ζ

c0(1 + An
j )∆t + ∆ζ

×
(√

c̃n+1
1,j V n+1

1,j −
√

c̃n
0,jV

n
0,j

)]

(32a)

Pn+1
0,j =

√
c̃n+1
0,j

[
Pn

1,j√
c̃n
1,j

+
c0(1 + An

j )∆t − ∆ζ

c0(1 + An
j )∆t + ∆ζ

×




Pn+1

1,j√
c̃n+1
1,j

−
Pn

0,j√
c̃n
0,j




]

(32b)

Un+1
0,j = Un

1,j +
c0∆t − ∆ζ

c0∆t + ∆ζ

(
Un+1

1,j − Un
0,j

)
, (32c)

where

An
j =

c̃n
0,j + c̃n

1,j + c̃n+1
0,j + c̃n+1

1,j

˜̄cn
0,j + ˜̄cn

1,j + ˜̄cn+1
0,j + ˜̄cn+1

1,j

. (33)

The front boundary: At the front boundary (ζ = ζmax)
+

W is the
forward moving one-way wave constituent impinging upon the bound-
ary, while

−
W is the reflected one-way wave constituent. Yet, if we try

to remove
−
W from the problem space at any removal speed, the nu-

merical scheme becomes unstable, (see [7]). Recalling the fact that the
moving frame tracks the forward moving wave constituents, we assume
a null field ahead of the frame. Consequently, we may specify

−
W |ζ=ζmax = 0. (34)
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Figure 1. Profile of the graded index waveguide configuration. In
the numerical simulation the waveguide has been surrounded with a
constant n cladding region for r > R , where R has been chosen so
that R 	 1

2reff
chan .

The same condition is used for U. Finally, for
+

W we use (29a). The
numerical representation of these boundary conditions is

+

Wn+1
I,j =

+

Wn
I−1,j +

c0(Bn
j − 1)∆t − ∆ζ

c0(Bn
j − 1)∆t + ∆ζ

( +

Wn+1
I−1,j −

+

Wn
I,j

)
(35a)

−
Wn+1

I,j = 0 (35b)

Un+1
I,j = 0, (35c)

where

Bn
j =

c̃n
I,j + c̃n

I−1,j + c̃n+1
I,j + c̃n+1

I−1,j

˜̄cn
I,j + ˜̄cn

I−1,j + ˜̄cn+1
I,j + ˜̄cn+1

I−1,j

. (36)

The final result for the actual field components is then

V n+1
I,j =

1

2
√

c̃n+1
I,j

+

Wn+1
I,j (37a)

Pn+1
I,j =

√
c̃n+1
I,j

2

+

Wn+1
I,j . (37b)
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2.4.2 Side Boundary

A natural tendency for truncation of the grid in the r direction
would be to use a Higdon-type operator as in [7]. However, attempt-
ing to use such an operator results in exponentially growing numeri-
cal solutions for large r, which, though being legitimate solutions of
the wave equation outside of the propagation channel 1 , they are non-
physical. To annul these solutions, we simulate the physical condition
P, U

r→∞−→ 0, by requiring a large enough numerical grid so that the
boundaries are beyond the propagation channel, and then imposing
the numerical boundary condition

Pn+1
i,J = 0, Un+1

i,J = 0 (38)

For V, we use the field equation (8a) as before, since it has no deriva-
tives in the r direction.

It should be noted, however, that extending the numerical grid to
large r requires also a smaller time-step ∆t as follows from the CFL
condition in (22). To circumvent this problem we note that guided
fields are exponentially decaying outside the propagation channel so
that we may replace the medium at some distance beyond the effec-
tive propagation channel by a uniform cladding region shown in Fig. 1.
Note also that even though the cladding region was introduced for nu-
merical implementation reasons, the cladding geometry matches more
closely real physical configurations.

2.4.3 Corner Points

At the corner points of the numerical grid boundary, we use the
same approach as in [7]. At these points, both the ζ direction and r
direction boundary conditions apply. However, since the moving frame
FDTD code is intended to track collimated pulsed fields that propagate
mainly in the ζ direction, we shall prefer the ζ direction boundary
conditions over the r direction ones and use the boundary conditions
as given in Section 2.4.1.

1 We use the term “propagation channel” to denote the region near the waveguide

axis where the modal field is confined. Outside this region the physical solution is

exponentially decaying. Note also that the propagation channel width typically in-

creases as the frequency decreases (see Appendix A), and thus the “effective channel

width” is approximated by the channel width at the lowest frequency ωmin in the

signal.
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3. NUMERICAL EXAMPLES: PULSED BEAMS IN
NONUNIFORM QUADRATIC GUIDES

3.1 Physical Configuration

We test the moving frame FDTD scheme on a quadratic profile
waveguide having

c = c̄(z)/n̄(r), n̄(r, z) =
√

1 − ν2(z)r2 (39)

We consider both longitudinally uniform guides with constant c̄ and
ν, for which an exact modal solution is available in the frequency
domain, and nonuniform guides. Specifically we take c̄ = c0(1 + az)
with a = 0 (uniform guide) or a = 0.015 (slowly varying guide) and
ν = 7. The coordinates are chosen such that c0 = 1. As indicated in
Sec. 2.4.2, the guide is surrounded by a cladding region with constant
n̄ for r > R, where R is chosen so that R 	 1

2reff
chan, reff

chan being the
effective propagation channel (see Fig. 1). For the quadratic guide, the
channel width as a function of ω is (see (A26a)) rchan(ω) =

√
8c0/νω,

hence reff
chan is calculated by estimating ω ≈ T−1, where T is the

pulselength.
The initial field distributions are taken as those of the pulsed-beam

(PB) type. Such fields maintain their wavepacket structure over a con-
siderable propagation range. Furthermore, approximate time domain
solutions are available for these cases (see Appendix. A.1). The initial
data for the FDTD algorithm has thus been produced by setting t = 0
in the wavepacket expression (A10), in which

+

f(t) is any analytic pulse
(as defined in (A2)), q(z) and α(z) are given in (A15) or in (A18) for
a uniform or nonuniform guide, and α(0) is a complex constant with
Imα(0) > 0. The properties of this wavepacket solution are discussed
in detail in A.1. Here, we only mention the fact that the transversal
confinement of the field is affected by the imaginary part of the argu-
ment in

+

f(t), which becomes negative as r grows and thus causes a
decay of the analytic signal. It should also be noted that the width
of the PB fluctuates as it propagates in the guide (see discussion after
(A15)), unless α(0) is chosen as α(0) = ıν(0)/c̄(0), in which case the
PB is matched to the guide.

In our case, since the c̄(z) changes slowly over the scale of the pulse
length, we may calculate the initial data for the FDTD algorithm at
t = 0 and t = ∆t by approximating the wavepacket expression (A10)
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around z ≈ 0, giving

+
p(r, t) = Re

+

f(t − z/c̄(0) − 1
2
α(0)r2). (40)

The excitation pulse in the numerical simulations has been chosen to be
a twice differentiated analytic delta (or Lorentzian) pulse (see (A20))

+

f(t) = −
+

δ (2)(t − ı
1
2
T ), T > 0 (41)

The parameter T that controls the pulse length has been taken to be
c0T = 1.410−2.

3.2 Numerical Results

Numerical results for several test cases are shown in Figs. 2–4. “Mat-
ched” and “non-matched” PB initial conditions are shown in Figs. 2
and 3, respectively, for a uniform guide. The results are compared
with the exact modal solution of Sec. A.2 (transformed into the time
domain), and also with the approximate PB solution of Sec. A.1. Fig.
4 gives the corresponding results for a non-uniform guide with “non-
matched” PB initial conditions. In this case the numerical results are
compared with the adiabatic mode solution of Appendix A.2, and also
with the PB solution of Appendix A.1.

The case represented by Fig. 2 corresponds to a uniform guide with
c̄(0) = c̄0 = 1 and ν(0) = ν0 = 7 and PB initial conditions with
α(0) = ı7 = ıν(0)/c̄(0). In this case the PB is matched to the guide
and the exact solution is described by a single mode as discussed after
(A33): The reference mode solution has been calculated by numerically
transforming into the time domain the m = 0 term in (A31), wherein

Ψ̂m and κm are now z-independent and â0 =
√

πc̄(0)
ων(0) as discussed

after (A33). Alternatively, one has the approximate PB expression
of (A16) which is valid, though, only in the “non-dispersive” regime
defined in (A34). Setting there ω ≈ T−1 we obtain z � 2π

ν2
0 c̄0T

. Sub-
figures 2(a)–2(c) depict the initial data and snapshots of the numerical
solutions for two different propagation times. The time in Fig. 2(b)
has been chosen so that the wavepacket is centered about the point
zj = jπ/2ν0 with j being an odd integer. According to the approxi-
mate PB solution of (A16), the waveform at zj for odd j is a Hilbert
transform of the initial distribution, whereas, for even j, the waveform
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Figure 2. Snapshots of the p field propagating in a quadratic wave-
guide. The uniform guide is described in (39) with c0 = 1, ν = 7 and
a = 0. The initial distribution is given in (40) with α0 = i7 (a matched

PB) and with a
+
δ
(2)

pulse with T = 1.4 × 10−2. The numerical im-
plementation uses ∆ζ = 2 × 10−4, ∆r = 10−3, γζ = 0.4 (i.e., ∆t =
5.71 × 10−3T ), I = 400 and J = 160. The cladding region begins
at R = J∆r/2. The time in (b) was chosen so that the wavepacket
is essentially a Hilbert transform of the initial distribution, while (c)
is at very late time. In (d) the axial distribution for the numerical
solution in (c) or r = 0 is shown versus the corresponding exact and
the approximate solutions (note that the numerical solution correctly
models the modal dispersion of the exact solution).
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is a replica of the initial distribution. Fig. 2(c) is a snapshot of the field
at a very long propagation distance (103 pulse lengths). Finally, in
Fig. 2(d) we compare the axial distributions of the numerical solution
shown in Fig. 2(c) with the exact modal solution (transformed nu-
merically to the time domain), and with the approximate PB solution.
Note that the numerical solution is very close to the exact solution and
that it models correctly the modal dispersion which is quite significant
at that distance. One also observes that this modal dispersion is not
accounted-for in the nondispersive PB approximation, which breaks
down at this large distance.

In Fig. 3 the parameter α(0) = ı9 and the PB is not matched to the
guide. Since the guide is uniform as it was in Fig. 2, the exact solution
is now found via a numerical transformation of the modal summation
in (A31) into the time domain. The spectra of the mode amplitudes
âm(ω) in (A31) are specified in (A33). The approximate PB solution
for this case is given in (A10) with (A15). As discussed after (A15), the
PB solution fluctuates along the guide. Since α(0) is chosen here to
be pure imaginary with Imα(0) > ν0/c̄, the wavepacket is narrowest
at zj = jπ/2ν0 with even j and is widest at odd j. The figure
format is the same as in Fig. 2. The observation time in Fig. 3(b) has
been chosen so that the wavepacket is centered about zj with j odd;
hence, the wavepacket is wider than the initial distribution and is also
the Hilbert transform of the initial distribution. Here too one observes
a good agreement between the exact modal summation solution and
the numerical solution at long observation distances (see Fig. 3(d)).

Finally, in Fig. 4 we consider the nonuniform guide defined in (39)
with ν0 = 7 and c̄ = c0(1 + az) with c̄0 = 1 and a = 0.015. The
initial conditions are given by a non-matched PB with α0 = ı9 so
that all modes are excited via (A33). The reference adiabatic mode
solution has been calculated via (A31) with the âm(ω) specified in
(A33). The approximate PB solution in this case is given by (A10)
with (A18). One finds that in this case the PB fluctuates along the
guide, with quasi-periods defined by

∫ zj

0 ν(z)dz = 2jπ. Again since
Imα(0) > ν(0)/c̄(0) here, one finds that the PB is narrowest at zj

with even j, and is widest at odd j. As in the previous figures the
observation time for subfigure 4(b) has been chosen so that the PB
is centered about zj with odd j, where the PB is widest and is a
Hilbert transform of the initial distribution. Finally, from Fig. 4(d)
one observes that the FDTD result agrees with the adiabatic mode
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Figure 3. Same as in Fig. 2 but for a non matched initial PB distri-
bution with α0 = ı9.

solution (note that the adiabatic mode approximation again provides a
better solution, at large distances, than the approximate PB solution).

4. SUMMARY AND CONCLUSIONS

It has been shown that the modeling of long range propagation of
pulsed fields along graded index waveguides is feasible using the mov-
ing frame FDTD approach. The distances modeled so far exceed the
order of 104 pulse lengths. The important characteristics of the solu-
tion, such as those impacted by physical dispersion phenomena, are
reconstructed quite accurately. Obviously, a stationary frame for-
mulation would be impractical for this size of problem. In another
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Figure 4. Same as in Fig. 2 but for a non uniform guide with a = 0.015
and a non matched initial PB distribution with α0 = ı9.

paper [7], the propagation of a pulsed beam in non-guiding media such
as stratified media is analyzed using a similar technique. For non-
guiding environment, the space-time trajectory of the moving frame is
also solved for, either by the usage of ray methods or by an automatic
numerical technique as suggested in [18]. Initial steps have also been
taken towards incorporation of the tools which track pulsed beams
along curved trajectories in inhomogeneous media, as was discussed
in [7].

In the present case, however, the propagation axis was determined
by the guide axis. The moving frame FDTD code for cylindrically sym-
metric pulsed wave solutions propagating along this axis was given in
Sec. 2. In order to account correctly for the physical propagation speed



152 Pemper et al.

of the pulsed guided field, the coordinate frame speed was chosen as
the local wavespeed along the axis. Based on numerical dispersion and
stability expressions, derived in Sections 2.2 and 2.3, respectively, it
was shown that the CFL (Courant-Friedrich-Lövy) stability condition
for the moving frame FDTD code is governed by the highest possible
wavespeed value relative to the frame. For the present case this is the
local speed of the backward propagating wave constituents at the side
boundary r = rmax relative to forward propagating frame: The result
is the sum of the on-axis speed c̄(z) and the fastest off-axis speed
c(rmax, z), see (22).

The absorbing boundary conditions (ABC’s) we used in the mov-
ing frame FDTD scheme (Section 2.4) are, in essence, adaptations of
the first order Engquist-Majda-Mur [14–15] conditions. The ABC’s at
the front and back boundaries were obtained by transforming the field
constituents into adiabatic one-way wave constituents (see (28)) which
allowed approximate diagonalizing of the field equations into weakly
coupled one-way wave equations. At the back boundary we then re-
moved the incoming (forward propagating) wave constituents from the
numerical grid (see (30)), while at the front boundary we set the incom-
ing (backward propagating) wave constituents to zero (see (34)). The
difficulty in the formulation of these ABC’s was due to the fact that
the forward propagating wave constituents were essentially stationary
in the moving frame and did not leave it. For the side boundary, it
was noted that the propagating field is concentrated in the propaga-
tion channel about the axis of the guide, while outside this channel the
field is evanescent. Thus, it was shown that the side boundary must
be far enough away from the waveguide axis so as to be outside of the
propagation channel, even at the lowest end of the frequency spectrum
where the channel’s width is widest. To annul the non-physical, expo-
nentially growing solutions which are mathematically possible outside
of the propagation channel, we set the field constituents to be zero on
the side boundary (see (38)).

Finally, the code developed in Section 2 was applied in Section 3 to
solve the problem of pulse propagation along waveguiding structures
with quadratic profiles. We considered both longitudinally uniform
and nonuniform guides. The initial conditions where chosen to give
rise to pulsed beam (PB) type solutions [16]. Such PB solutions main-
tain their wavepacket structure over a considerable distance along the
guide. Approximate time domain expressions were developed using
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the techniques in [16] and are given in Appendix A.1. These expres-
sions describe the parameters controlling the wavepacket dynamics.
For the longitudinally uniform case we also compared the numerical
solution with an exact frequency-domain modal solution [17], while for
the nonuniform case we developed in Appendix A.2 an adiabatic type
modal solution. The numerical solution which was obtained with the
moving frame FDTD approach successfully recovers the physical (as
opposed to numerical) dispersion characteristics of the modal solution.

APPENDIX A. WAVEPACKET SOLUTIONS IN GRADED
INDEX GUIDES

In this appendix we consider a class of pulsed field solutions in nonuni-
form graded index waveguides (e.g., optical and dielectric
waveguides). We employ the three dimensional coordinate frame r =
(x1, x2, z) where z is the coordinate along the waveguide axis and
(x1, x2) are the transverse coordinates. Within the scalar approxima-
tion, the field p satisfies the time-dependent wave equation

(
∂2

z + ∂2
x1

+ ∂2
x2

− 1
c2(r)

∂2
t

)
p(r, t) = 0. (A1)

The wavespeed c(r) in the guide has a minimum along the z-axis, for
any constant z. Since the field is localized within the vicinity of the
z axis, it suffices to expand the transverse variations of c to second
order in x1,2. Henceforth we shall assume that c(r) is cylindrically
symmetric, although the solution may readily be extended to non-
symmetric cases. Under these conditions, c(r) has the general form in
(39) where r =

√
x2

1 + x2
2, c̄(z) is the on-axis wavespeed, and n̄(r, z)

denotes the waveguide profile. Both functions vary slowly with z.
In Sec. A.1 below we develop closed form approximate expressions

which are used to clarify the parameters that control wavepacket dy-
namics, while in Sec. A.2 we derive the alternative adiabatic mode
solution of these wavepackets.

A.1 Pulsed Beam Solutions in Nonuniform Guide

A.1.1 Analytic Signal Representation

The time domain solutions considered here are described in the sim-
plest form by using the analytic signal representation. An analytic
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signal
+
p(t′), t′ ∈ C

− corresponding to the real signal p(t), t ∈ R with
frequency spectrum p̂(ω), is defined by the positive frequency inverse
Fourier transform

+
p(t′) =

1
π

∫ ∞

0
dωe−ıωt′ p̂(ω), Imt′ ≤ 0 (A2)

This integral definition implies that
+
p is an analytic function in the

lower half of the complex t′-plane. It may also be defined directly from
the real signal p(t) via

+
p(t′) =

1
πı

∫ ∞

−∞
dt

p(t)
t − t′

, Imt′ ≤ 0 (A3)

The real t limit of
+
p(t′) is thus related to p(t) via

+
p(t) = p(t) +

ıHp(t), where H = P
πt⊗ is a Hilbert transform with ⊗ denoting a

convolution and P denoting Cauchy’s principal value. Thus, if
+
p(r, t)

is an analytic wave solution, then for t ∈ R both pR ≡ Re
+
p and

pI ≡ Im
+
p = HpR are real wave solutions. We usually consider only

pR , since pI (or any other linear combination of pR and pI ) may be
obtained by multiplying

+
p by a complex constant and taking the real

part.

A.1.2 Wavepacket Solutions

Since the PB is localized in space-time we shall express
+
p in a

moving coordinate frame centered about the pulse:

+
p(r, t) =

+

P (r, τ), τ = t −
∫ z dz′

c̄(z′)
. (A4)

This coordinate transformation yields ∂2
z

+
p = (∂2

z − 2
c̄∂z∂τ + 1

c̄2 ∂2
τ +

c̄′

c̄2 ∂τ )
+

P where the prime denotes a derivative with respect to z. Next,
it is assumed that pulse length is very short, while the pulse shape is
slowly varying function of z, i.e.,

|∂z

+

P | � |c−1∂τ

+

P |. (A5)

Eq. (A5) implies the approximation ∂2
z 
 (−2

c̄∂z∂τ + 1
c̄2 ∂2

τ + c̄′

c̄2 ∂τ )
+

P .

Defining
+

P =
√

c̄
+

V and substituting in (A1) with (39), we obtain the
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“wavepacket equation” for our quadratic profile case:
(

∂2
x1

+ ∂2
x2

− 2
c̄(z)

∂z∂τ +
ν2(z)
c̄2(z)

r2∂2
τ

)
+

V (r, τ) = 0. (A6)

It is shown below that (A6) has an exact closed form solution of the
form

+

V (r, τ) = A(z)
+

f

(
τ − 1

2
r2α(z)

)
(A7)

where
+

f(t) is an arbitrary analytic signal, which will be assumed to
be a short pulse of length T (e.g., see Sec. A.1.5), while A and α are
complex functions to be determined. Imα controls the PB width. In
order to ensure transversal confinement of the solution it is required
that Imα(z) > 0 (see footnote 3 for proof that this condition is satis-
fied if the initial value is Imα(0) > 0). 2

Substituting (A7) into (A6), one obtains r2[α′/c̄ + α2 + ν2/c̄2]Af ′′

− [Aα+A′/c̄]f = 0. Thus (A7) is a solution for any
+

f if the following
z-dependent ODE’s are satisfied:

α′ + c̄α2 + ν2/c̄ = 0 and Aα + A′/c̄ = 0 (A8)

To solve the first (Riccati-type) equation in (A8) we set α(z) = p(z)/
q(z) and obtain the linear system of first order equations

q′ = c̄p, p′ = −(ν2/c̄)q (A9)

with the initial conditions q(0) = 1 and p(0) = α(0). In the most
general case this equation will have to be solved numerically. Specific
analytic solutions are given in Secs. A.1.3 and A.1.4. Its solution also
determines A(z) via (A8) which yields A′/A = −c̄α = −q′/qA(z) =
1/q(z). The final solution is thus given by

+
p(r, t) =

√
c̄(z)
c̄(0)

1
q(z)

+

f

(
t −

∫ z

0

dz′

c̄(z′)
− 1

2
α(z)r2

)
(A10)

This expression is the general solution for a cylindrically symmetric PB
in a nonuniform, cylindrically symmetric guide with quadratic profile.

2 For astigmatic solutions, r2α is replaced by the quadratic form xtαx where

α is a 2 × 2 complex symmetric matrix with Imα(z) positive definite.
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This solution has the characteristics of a pulsed beam, i.e., it is local-
ized both in the axial and transversal directions: Axial confinement
around z 
 c̄t is provided by the pulse shape of

+

f. Transverse con-
finement is due to the general property of analytic signals which tend
to decay as the imaginary part of their argument becomes more neg-
ative (see (A2)). In our case, since Imα(z) > 0, (see proof below 3 )

the argument of
+

f in (A10) has a negative imaginary part whose mag-
nitude increases quadratically with r, causing the waveform in (A10)
to decay away from the beam axis. The beam is narrow if the decay
rate of

+

f in the lower half of the complex plane is high; this can be
affected by either (a) a higher frequency content in

+

f, or (b) a larger
Imα(z) (see a specific example in Sec. A.1.5).

To further quantify the properties of the field we separate the terms
in (A10) into real and imaginary parts as follows:

+
p(r, t) = {AR(z) + ıAI (z)}

+

f [t − tp(z, r) − ıη(z, r)] (A11)

where

tp(z, r) =
∫ z

0

dz′

c̄(z′)
+

1
2
r2Reα(z), (A12a)

η(z, r) =
1
2
r2Imα(z) > 0. (A12b)

Clearly, tp(z, r) is the paraxial delay and thus (c̄(z)Reα)−1 is the
wavefront radius of curvature. The transverse decay of the wavepacket
is caused by the term ıη; as alluded to above, the larger η (or Imα(z))
the weaker the signal and the narrower the beamwidth.

Finally, we discuss the properties of the real PB field. It is conve-
nient to introduce the real functions fη(t) and

−
fη(t) = Hfη(t) via

(see discussion following (A3))

+

f(t − ıη) ≡ fη(t) + ı
−
fη(t) (A13)

3 We start with Imα(z) = [α(z)−α∗(z)]/2ı = [pq∗−p∗q]/2ıqq∗. Noting from Eq.

(A9) that d
dz [pq∗ − p∗q] = 0 and taking the initial values of p and q as specified

after (A9), we arrive at Imα(z) = Imα(0)/qq∗ which implies that Imα(z) > 0

provided that Imα(0) > 0.
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From (A11), the real field solution is given by

pR = AR(z)fη(t − tp) − AI

−
fη(t − tp) (A14)

where η and tp are functions of (z, r) as defined in (A12). In this
formulation, the PB property of transversal confinement is due to the
fact that fη decays with increasing η. Note also that the balance
between AR and AI changes with z, thereby affecting the relative

excitation amplitudes of fη and
−
fη.

A.1.3 Special Case I: A Longitudinally Uniform Guide

We consider first the PB solution for the case where c̄ and ν are
independent of z, i.e., c̄ = c̄0 and ν = ν0. In this case, exact frequency
domain modal solutions are available. Their relation to the PB solution
is considered in Sec. A.2.3.

For the longitudinally uniform medium, Eq. (A9) takes on the har-
monic form q′′ + ν2

0q = 0 whose solution for the initial conditions
shown after (A9) is

q(z) = cos ν0z + (c̄0α(0)/ν0) sin ν0z (A15a)

α(z) = α(0)
cos ν0z − (c̄0α(0)/ν0)−1 sin ν0z

cos ν0z + (c̄0α(0)/ν0) sin ν0z
(A15b)

The final solution is given by (A10) with (A15). Its characteristics have
already been discussed after (A10). In the present context we also note
from (A15) that the beamwidth fluctuates along the z axis with period
2π/ν0. Taking, without loss of generality, α(0) = ıᾱ0 to be pure
imaginary with ᾱ0 > 0 (see discussion in footnote 3), then Imα(z)
changes between the two extreme values of ᾱ0 and ν2

0/c̄2
0ᾱ0, obtained

at zj = πj/2ν0. For the case, say, of ᾱ0 > ν0/c̄0, the wavepacket
becomes narrowest or widest at zj with even or odd j, respectively.
At these points, Reα = 0, i.e., the wavefronts are planar. In the
regions between these points, Reα >< 0 such that the wavefront diverges
or converges as the PB approaches a wide or narrow point, respectively.

An important special case occurs when the PB is matched to the
guide, i.e., when α(0) = ıν0/c̄0. In this case α(z) = α(0)∀z so that
the solution in (A10) reduces to

+
p(r, t) = e−ıν0z

+

f
(
t − z/c̄0 − ı(ν0/2c̄0)r2

)
, (A16)
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i.e., the beamwidth does not fluctuate with z.

A.1.4 Special Case II: A Weakly Nonuniform Guide

In this case we can rewrite (A9) as

(
q/
√

c
)′′ +

(
ν2 + c̄′′/2c̄ − 3(c̄′)2/4c̄2

) (
q/
√

c
)

= 0 (A17)

Assuming next that ν 	 |c̄′/c̄| and solving the resulting equation for
q/
√

c via the WKB approximation yields

q(z) =

√
c(z)
c(0)

ν(0)
ν(z)

(cos ψ(z) + (c̄(0)α(0)/ν(0)) sinψ(z)) (A18a)

where ψ(z) =
∫ z
0 ν(z′)dz′. Finally, one has

α(z) = α(0)
ν(z)
ν(0)

c̄(0)
c̄(z)

cos ψ(z) − (c̄(0)α(0)/ν(0))−1 sinψ(z)
cos ψ(z) + (c̄(0)α(0)/ν(0)) sinψ(z)

(A18b)

All other properties of the PB are the same as those discussed in the
content of the longitudinally uniform guide. Note in particular that
the wavefunction is nonuniformly periodic, with quasiperiods defined
by the points ψ(z) = 2πj. For the special case of α(0) = ıν(0)/c̄(0)
we find that α(z) = ın(z)/c̄(z) giving the matched PB solution of the
form (see (A10))

+
p(r, t) =

√
ν(z)
ν(0)

e−ıψ(z)
+

f

(
t −

∫ z

0

dz′

c̄(z′)
− ıν(z)r2

2c̄(z)

)
(A19)

A.1.5 Specific Pulse Shapes: Analytic δ Pulses

The PB solution may accommodate any analytic pulse shape. As
an example, we consider the n-times differentiated analytic-δ pulse

+

f(t) =
+

δ (n)

(
t − ı

1
2
T

)
= (−)nn!/πı

(
t − 1

2
ıT

)n

, T > 0 (A20)
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where T is a measure of the pulse length. The spectrum of these pulses
is f̂(w) = (−ıω)ne−ωT/2. The derivatives suppress the low frequencies
and thus create a more localized (faster decaying) PB in both the
axial and transversal directions. Typically, we use n = 2, however for
simplicity we discuss the PB properties for the case n = 0.

The real waveforms in (A13) are given by

fη(t) = Re
+

δ

(
t − ı

(
1
2
T + η

))
= π−1

1
2
T + η

t2 +
(

1
2
T + η

)2 (A21a)

−
fη(t) = Im

+

δ

(
t − ı

(
1
2
T + η

))
= −π−1 t

t2 +
(

1
2
T + η

)2 (A21b)

For a given η, the half-amplitude pulse-width in (A21a) is (T+2η) and
the peak amplitude is π−1(1

2T +η)−1. Thus the waveform is strongest
and shortest for η = 0 (the beam axis), and decays as η grows away
from the axis. The half-amplitude beamwidth is obtained when η =
1
2T. Using (A12b), the beam diameter is found to be

W (z) = 2
√

T/Imα(z) (A22)

where α(z) is the solution of (A8). Using (A22) for the special case
of a matched PB where α(z) = ıν(0)/c̄(0) (see (A16) and (A19)), we
obtain the beam diameter at z = 0 :

W0 = 2
√

c̄(0)T/ν(0). (A23)

This relation between the pulse length and the beam width may be
used as a rule of thumb for the matching condition of any pulsed field
excitation. If this condition is not met, then, as discussed in conjunc-
tion with (A15), the beamwidth fluctuates as the PB propagates along
the guide.

Other pulse types, such as non-modulated or modulated Gaussian
pulses, or modulated δ pulses, can be treated by the same procedure.

A.2 Adiabatic Mode Approximation

A.2.1 Frequency Domain Solutions

As in the previous section, we restrict the discussion to cylindri-
cally symmetric field solutions in cylindrically symmetric guides with



160 Pemper et al.

quadratic profile as in (39). In the frequency domain, the field satisfies
the wave equation

(
r−1∂rr∂r + ∂2

z +
ω2

c̄2(z)
(1 − ν2(z)r2)

)
p̂(r, ω) = 0 (A24)

For any given z, the transversal eigenfunctions Ψ̂m(r; z) are defined
by

(
r−1∂rr∂r +

ω2

c̄2(z)
(1 − ν2(z)r2)

)
Ψ̂m = (ωκm)2Ψ̂m (A25)

The eigenfunctions Ψ̂m and eigenvalues κm are given by

Ψ̂m(r; z) =

√
ων(z)
πc̄(z)

e−ξ/2Lm(ξ), ξ = ων(z)r2/c̄(z) (A26a)

κm(z) = c̄−1(z)
√

1 − 2ν(z)c̄(z)(2m + 1)/ω (A26b)

where Lm are the Laguerre polynomials of order m. At any given z,
these eigenfunctions satisfy the orthonormality condition

< Ψ̂n, Ψ̂m >≡ 2π

∫ ∞

0
r drΨ̂mΨ̂n = δm,n (A27)

where δm,n is the Kronecker-function.
Next, we expand the field in the form

p̂(r, ω) =
∑

m

âmP̂m(z)Ψ̂m(r; z) (A28)

where P̂m(z) are amplitude functions, normalized to have P̂m(0) = 1,
and âm are determined from the initial conditions

âm = 2π

∫ ∞

0
r drΨ̂mp̂|z=0 (A29)

Substituting (A28) into (A24) using, and then projecting the result on
Ψ̂n using (A27), one obtains

(∂2
z + κ2

n(z))P̂n +
∑

m

< Ψ̂n, ∂2
z Ψ̂m > (âm/ân)P̂m = 0 (A30)
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The first term on the left is the wave operator for the modal amplitude.
Since the Ψ̂n’s are slowly varying functions of z, the summation which
represents mode coupling due to the z variations will be neglected.
Note also that typically âm/ân → 0 as m → ∞. The resultant equa-
tion may then be solved by an adiabatic (WKB-type) approximation,
giving the final solution

p̂(z, r;ω) =
∑

m

âm(ω)Ψ̂m(r; z)

√
κm(0)
κm(z)

e
ıω

∫ z

0
κm(z′)dz′

(A31)

Finally, the time-domain field is obtained by transforming this expres-
sion into the time domain. Note in particular that the solution in
(A31) is exact for a longitudinally uniform guide.

A.2.2 Modal Amplitudes for the PB Excitation

For a PB excitation (A10), the coefficients âm in (A29) can be found
in closed form. We first note that the frequency domain counterpart
of the initial field distribution of the PB in (A10) is given by

p̂(0, r;ω) = f̂(ω)eıωα(0)r2/2 (A32)

where f̂ is the frequency spectrum of the analytic pulse
+

f. Substi-
tuting in (A32) in (A29), and using the identity

∫ ∞
0 dξe−ηξLm(ξ) =

(η − 1)nη−m−1, one obtains

âm(ω) = (−)m

√
4πc̄(0)
ων(0)

(1 + ıα(0)c̄(0)/ν(0))m

(1 − ıα(0)c̄(0)/ν(0))m+1
(A33)

Note in particular that under the matched PB conditions α(0) =

ıν(0)/c̄(0) (see (Al9)), âm = 0 for m ≥ 1, while â0 =
√

πc̄(0)
ων(0) . Thus

the matched PB is in fact a wide band solution tuned to excite only the
m = 0 mode at all frequencies.

A.2.3 The Non-dispersive PB Approximation

In general, the mode series cannot be transformed into the time
domain analytically. For high frequency excitations, however, the series
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may be summed in closed form and transformed into the time domain.
We start by approximating (A26b) in a Taylor series

κm ≈ 1/c̄(z) − ν(z)(2m + 1)/ω (A34)

This approximation may be used as long as the phase error introduced
by the next order term is negligible. For the mth mode, this condition
is ∫ z

0
dz′

1
2
c̄(z′)ν2(z′)(2m + 1)2ω−1 � π (A35)

Next, we substitute (A34) into the expressions for the modal phases,
while for the amplitudes we use only the first order term. The mth
term in the series (A31) now becomes

f̂(ω)âm(ω)

√
c̄(z)
c̄(0)

Ψ̂m(r, z)eıω
∫ z

0
dz′

c̄(z′) e
−ı(2m+1)

∫ z

0
ν(z′)dz′

. (A36)

Using ân from (A33) and the standard expansion of e−ηξ

e−ηξ =
∞∑

m=0

(
η − 1

2

)m (
η +

1
2

)−m−1

e−ξ/2Lm(ξ) (A37)

the m-series may be summed in closed form, giving

p̂(r, ω) = f̂(ω)

√
c̄(z)
c̄(0)

1
q(z)

e
iω

∫ z

0
dz′

c̄(z′)+ıω 1
2α(z)r2

(A38)

where α(z) and q(z) are given in (A18). This expression is readily
recognized as the frequency domain counterpart of (A10). As a special
case, one should note that the matched PB solution in (A16) is the
time domain counterpart of the m = 0 mode under the high frequency
approximation in (A34).

This analysis establishes the PB solution in Section A.1 as a non
dispersive approximation of the modal solution (A31). Essential in this
identity is the requirement that the mode amplitude spectra should be
prescribed by (A33), i.e., the PB blends the wide spectrum superpo-
sition of modes in such a way that the time domain solution retains
its wavepacket structure throughout the non-dispersive propagation
regime defined by (A35).
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