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1. INTRODUCTION

Increased research in relativistic electron beams has followed interest
in their propagation in gas, in their use as sources of intense microwave
radiation, or their possible use in controlled fusion devices. Their as-
sociated self fields are, of course, similarly of interest.

Somewhat surprisingly, most work to date has studied Cerenkov ra-
diation of beams in air [1–7], appropriate roughly for energies >∼ 22
MeV (STP air), even though less energetic beams have been of at least
as much interest, and the conventional (non-Cerenkov) fields can be
enormous for any energy and are not so sharply confined to small radi-
ation angles. It appears most attention has been directed to frequency
domain parameters such as intensity distributions, whereas there has
been relatively little analysis of the explicit time domain nature of the
fields.

Here we study the conventional (non-Cerenkov) electromagnetic
fields of relativistic particles and beams entering air or vacuum. The
small difference of the index of refraction from unity in air plays no role.
Special attention is given to electrons or beams exiting a conducting
foil into vacuum.

These transient fields of emerging particles are further of general in-
terest, since the fields of many particle configurations, especially those
passing through accelerator gaps or emerging from accelerators, origi-
nated under similar circumstances.

While field calculation for these circumstances is a relatively-
straightforward exercise in classical electromagnetic theory, certain fea-
tures make the fields of especial interest.

The particles can safely be assumed to move at constant velocity.
Since neither a perfect conductor nor constant velocity particles can
separately emit radiation, it is somewhat surprising that there should
be any radiation at all when a particle exits a perfect conductor at
constant velocity. Thus the “mechanism” by which the radiation is
produced is of interest itself, and of wider generality.

Further, in this and many electromagnetic problems, perfect conduc-
tor boundary conditions at the metal surface are used to calculate the
fields. But a point electron cannot exit a perfect conductor; infinite en-
ergy is required. Thus the boundary conditions employed preclude the
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effect from happening at all, and it is not clear that the calculational
procedure is correct or self-consistent. Indeed, related treatments [8–9]
have introduced an artificial finite radius hole to sidestep the problem.
These subtleties are related to the point nature of an electron and the
classical abstraction of a perfect conductor as a continuous medium.
It is useful to know when these elementary calculations are valid and
when one must use a more realistic model of the material.

One has the intuitive feeling that, if the result is reasonable, these
apparent paradoxes can safely be ignored. Here we show under what
circumstances the usual boundary conditions (Etangential = 0), and
standard electromagnetic calculation procedures, can be used. The
necessary mathematics is not complicated.

It is further demonstrated here that the radiation produced when
a particle exits a conductor at constant velocity is equivalent to the
time averaged fields of a charge undergoing finite acceleration. This
allows one to reconcile the angular dependence sin θ/(1−β cos θ) with
the well-known angular dependence sin θ/ (1 − β(t′) cos θ)3 of finite
acceleration, where t′ is retarded time.

We also show that the fields produced by an electron exiting a con-
ductor at constant velocity are equivalent to those of a suddenly accel-
erated charge or to beta-decay fields, the fields in those cases exhibit-
ing no additional bremsstrahlung due to sudden acceleration over and
above the radiation in the conductor problem.

Radiation peaks at the angle 1/γ , similar to the case of a longi-
tudinally accelerated electron. This angle is shown to have a simple
geometric origin; it is where the Lorentz-compressed Coulomb fields
intercept the causality sphere, and their flux joins the radiation flux,
causing 1/γ to be the angle where the field both peaks and signifi-
cantly changes its angular dependence. With minor modification, this
is also true for a particle undergoing any motion.

If the conductor has finite conductivity the problem can be consid-
ered one of transition radiation, and this is calculated. In this case the
transition radiation formation length reduces to the usual conductor
skin depth. The above subtleties can be clarified, and it is shown that
perfect conductor boundary conditions can be used so long as one ob-
serves frequencies less than 4πσ/ε , where σ is the conductivity, and
ε the dielectric constant, of the metal.

Since the fields are a straightforward consequence of Maxwell’s Equ-
ations, we may be accused of belaboring the obvious. However, in addi-
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tion to there being radiation with no accelerated charge, certain other
features of beam fields are very unfamiliar. Field structure is unusual in
that Coulomb fields blend with radiation fields for an extended length
of time. Also, radiated fields are proportional to beam current I ,
rather than the usual dI/dt . The fields evolve through an “immersion
phase” where the beam is still immersed in its own radiation fields, to
a “separation phase” in which the radiation field has broken away from
the beam. The immersion phase obtains for almost all practical times
for realistic beams. Then the Coulomb fields drop off like 1/R , not
1/R2 , wherever they are non-zero, i.e., everywhere inside the causality
sphere. It is worth clarifying these features.

No matter how distant, the Coulomb fields alone and the radiation
fields alone do not have zero divergence, but the sum of course does.
We explain how the radiation fields break away from the beam, with
field lines always remaining connected. Total energy carried off in
radiation is computed.

It is of value to understand a phenomenon from several viewpoints,
as has been emphasized before [10]. We show that beam radiation
is “equivalent” to radiation from accelerated charges, and to dipole
radiation, and to transition radiation, and, for beams exiting an open
ended pipe, to scattering of fields off conductors of finite size, and to
similar field structures just outside a terminated transmission line. The
existence and general behavior of radiation follows as well merely from
the general principles of flux conservation and field line continuity.

2. FIELDS OF A POINT CHARGE

When a beam of charged particles is injected into vacuum from, say,
an accelerator, the fields of the newly exposed charge must develop in
time, eventually taking on the character of the Lorentz-transformed
Coulomb fields riding with the beam at velocity υ < c , together with
any radiation fields advancing outward at speed c .

We start by studying the fields of an individual point charge in the
two cases of 1) its being suddenly accelerated from rest to a velocity
υ , and 2) its exiting from a perfect conductor at constant velocity.
Fields are obtained by directly solving Maxwell’s Equations via the
retarded potentials. Potentials for a beam are then constructed by
superposing those of elementary charges, and beam fields obtained by
differentiation. Again two cases are considered: 1) a beam of total
charge Q and finite length � emerges from the origin at constant
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velocity while −Q accumulates at the origin, and 2) the beam exits a
perfectly conducting plane at constant velocity.

A point particle of charge q starts from rest at the origin of co-
ordinates x = y = z = 0 at time t = 0 and suddenly receives
an infinite pulsed acceleration. It subsequently moves with speed υ
in the positive z direction, leaving an equal opposite charge −q at
the origin. We shall also use spherical coordinates (R, θ, ϕ) , with
R = (x2 + y2 + z2)1/2 , the polar angle measured from the +z axis,
and ϕ the azimuth angle, as well as cylindrical coordinates (r, ϕ, z) ,
with r = (x2 + y2)1/2 = R sin θ , and z = R cos θ . We imagine some
external agent supplying the force necessary to move the charge.

In Gaussian units the charge density for t > 0 is

ρ(�R, t) = −qδ3(�R) + qδ(x)δ(y)δ(z − υt), (1)

and the current density is

�J(�R, t) = υqδ(x)δ(y)δ(z − υt)ẑ. (2)

2.1 Potentials for Pulsed Acceleration

In the absence of all conducting boundaries, and in the Lorentz
gauge, the scalar and vector potentials Φ and �A are given by

Φ(�R, t) =
∫

d3R′ ρ( �R′, t′)
R1

(3)

A(�R, t) =
1
c

∫
d3R′J( �R′, t′)

R1
(4)

in terms of the free space retarded Green’s function 1/R1 . Here

R1 = |�R − �R′|ret =
√

r2 + [z − z′(t′)]2 (5)

and t′ = t − R1/c is the retarded time. J and �A have only a z
component which we denote by J and A as in Eq. (4). Figure 1
sketches the geometry.

Evaluating A first, the integrals over x and y are trivial, leaving

A = βq

∫ ct

0
dz′

δ(z′ − υt + βR1)
R1

(6)
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Figure 1. Charge q at z = υt , with −q left at origin. Observer is
at R = (x, y, z) .

substituting for t′ , where β = υ/c . Since the charge is never beyond
z′ = ct , we may stop the integral at that upper limit. The δ function
contributes at z′ = υt − βR1 < υt , and doing the integral in Eq. (6),
we obtain for R < ct ,

A =
βq

R1
∂

∂z′
(z′ − υt + βR1)

=
βq

R1 + β(z′ − z)
, (7)

where we have used ∂R1/∂z′ = (z′ − z)/R1 , and where z′ is to be
evaluated where the δ function makes its contribution. Using Eq. (5),
this is where

z′ − υt + β
√

r2 + (z − z′)2 = 0. (8)

Further using

R1 + β(z′ − z) =
√

(υt − z)2 + r2/γ2, (9)

where γ = (1− β2)−1/2 is the usual relativistic factor, we finally have

A(�R, t) =
βq√

(υt − z)2 + r2/γ2
u(ct − R). (10)

u(x) is the step function, u(x) = 0 for x < 0 , and u(x) = 1 for
x > 0 . We shall not always explicitly write this causality factor; fields
and potentials will always vanish for R > ct .

On the spherical shell ct = R , the square root in Eq. (10) becomes,
after a little algebra,

√
(βR − z)2 + r2/γ2 = R − βz = R(1 − β cos θ) (11)
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so that A jumps from 0 to

A =
βq

R(1 − β cos θ)
(12)

just behind the spherical wave front.
A similar calculation of Φ shows

Φ(�R, t) = q

[
1√

(υt − z)2 + r2/γ2
− 1

R

]
u(ct−R) =

1
β

A− q

R
u(ct−R).

(13)
where A is that of Eq. (10). Equations (10) and (13) are the potentials
of a point charge starting at t = 0 and moving with constant velocity.

2.2 Potentials for Particle Exiting a Conducting Plane

Turning now to the case of a particle passing out of a conductor,
an elemental beam is a particle exiting an infinite perfectly conducting
plane at z = 0 at constant velocity υ . An image charge −q guaran-
tees the boundary conditions, and the same free space Green’s function
can be used with

ρ(�R, t) = q[δ(z − υt) − δ(z + υt)]δ(x)δ(y), (14)

J(�R, t) = υq[δ(z − υt) + δ(z + υt)]δ(x)δ(y), (15)

for t > 0 . Then one finds by a similar evaluation of integrals,

A(�R, t) = βq

[
1

S−
+

1
S+

]
u(ct − R), (16)

Φ(�R, t) = q

[
1

S−
− 1

S+

]
u(ct − R). (17)

The first term in each equation here is the potential of the charge
q , and the second term is that of the image charge −q . We have
introduced

S− ≡
√

(υt − z)2 + r2/γ2,

S+ ≡
√

(υt + z)2 + r2/γ2. (18)
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Equations (16) and (17) are the potentials for t > 0 of a particle
exiting a conducting plane at constant velocity.

On the shell ct = R, S+ is [(βR+z)2 + r2/γ2]1/2 = R(1+β cos θ) ,
and S− is given by Eq. (11). When they are combined, the potentials
jump from zero to

A =
2βq

R(1 − β2 cos2 θ)
, (19)

Φ =
2βq cos θ

R(1 − β2 cos2 θ)
(20)

just behind the spherical wave front. A , Eq. (19), is just 2/(1+β cos θ)
times the vector potential of Eq. (12). Just behind the wave front the
two vector potentials are not very different; the image charge does not
radiate much in its backward hemisphere. The radiation fields likewise
will be not very different in the two cases of either a pulsed acceleration
with −q left at the origin or a charge q emerging from a conducting
plane at constant velocity.

2.3 Fields for Pulsed Acceleration

The non-zero cylindrical field components, B = Bϕ, Er , and Ez ,
are readily obtained from potentials Eq. (10) and (13),

B =
βq

γ2

r

S3
−

u(ct − R) +
βq sin θ

R(1 − β cos θ)
δ(ct − R), (21)

Er = q

[
r

γ2S3
−
− sin θ

R2

]
u(ct − R) +

βq sin θ cos θ

R(1 − β cos θ)
δ(ct − R), (22)

and

Ez = q

[
z − υt

γ2S3
−

− cos θ

R2

]
u(ct − R) − βq sin2 θ

R(1 − β cos θ)
δ(ct − R). (23)

These are the cylindrical field components when charge −q is left at
the origin. See Figure 2. The first terms, proportional to u(ct − R) ,
are the Lorentz-transformed Coulomb fields of the moving charge and
the Coulomb fields of the stationary charge. They are confined to the
spherical volume R < ct , and drop suddenly to zero at R = ct . They
clearly decay as 1/r2 from axis, or as 1/R2 from the origin.



Fields of particles and beams exiting a conductor 155

Figure 2. Fields of charge q moving with velocity υ , and −q left at
origin.

The second terms in Equations (21)–(23) are the radiation fields,
confined to the infinitely thin shell at R = ct . The spherical compo-
nents of these fields are ER = 0 , and

Eθ = B =
βq sin θ

R(1 − β cos θ)
δ(ct − R). (24)

These radiation fields, and those discussed later, share a factor (1 −
β cos θ)−1 . Its origin is field compression arising from the coherent
superposition of radiations from a moving charge due to the component
of its motion toward the observer [11].

2.4 Peak Radiation Angle

Before obtaining fields of a particle exiting a conductor, observe
that by direct calculation the radiated field, Eq(24), is found to peak
at sin θ = 1/γ, cos θ = β .

From Figure 2, the Coulomb field intersects the radiation sphere at
angle θ1 given by

cos θ1 =
υt

ct
= β,

sin θ1 =
√

1 − β2 = 1/γ ∼ θ1.
(25)
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This is precisely the peak radiation angle, and is caused by maximum
flux density where the Coulomb field joins the radiation field. Instan-
taneous field patterns of particles undergoing continuous finite accel-
eration show the same merging of fields, but at a somewhat smaller
angle due to a (1 − β cos θ)3 denominator instead of the first power
as in Eq. (24); see Section 3. This demonstrates the physical reason
why radiation from accelerated charges peaks at ∼ 1/2γ . This result
is often derived, but its physical origin is seldom made clear. At an-
gles greater than 1/γ , the same flux is spread over an increasing area,
making radiated fields smaller. For angles less than 1/γ most of the
flux has already been taken by the Coulomb fields.

Even though the radiation fields, Eq. (24), decay as 1/R while the
Coulomb field decays as 1/R2 , no matter how distant the observer the
radiation field itself violates �∇· �E = 0 since Eθ is a function of θ not
equal to 1/ sin θ . Its non-zero divergence (∼ 1/R2) is balanced by
the contribution from the radial Coulomb field suddenly dropping to
zero at R = ct , so the total fields are divergence free. The Coulomb
field picks up the electric flux from the radiation field.

The energy flux radiated per unit solid angle in frequency interval
dω is

I(ω)dω =
cR2

8π2
|Ẽ(ω)|2dω (26)

where Ẽ(ω) =
∫

dte−iωt�E(�R, t) is the Fourier transform of the radia-
tion field. From Eq. (24) find

I(ω) =
q2β2 sin2 θ

8π2c(1 − β cos θ)2
(27)

independent of ω . The zero acceleration time sets no time scale; all
frequencies are present with equal strength, and the total energy radi-
ated is infinite.

2.5 Fields for a Particle Exiting a Conducting Plane

For this case, from the potentials Eqs. (16) and (17), one finds

B =
βq

γ2

[
r

S3
−

+
r

S3
+

]
u(ct − R) +

2βq sin θ

R(1 − β2 cos2 θ)
δ(ct − R), (28)

Er =
q

γ2

[
r

S3
−
− r

S3
+

]
u(ct − R) +

2βq sin θ cos θ

R(1 − β2 cos2 θ)
δ(ct − R), (29)
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Ez =
q

γ2

[
z − υt

S3
−

− z + υt

S3
+

]
u(ct−R)− 2βq sin2 θ

R(1 − β2 cos2 θ)
δ(ct−R), (30)

likewise the sum of Coulomb and radiation fields. See Figure 3.

Figure 3. Fields of charge q moving with velocity υ away from per-
fectly conducting plane at z = 0 .

The spherical components of only the radiation fields are ER = 0 ,
and

Eθ = B =
2βq sin θ

R(1 − β2 cos2 θ)
δ(ct − R). (31)

The denominator (1 − β2 cos2 θ) in Equations (28)–(31) comes from
combining the term from the radiating charge (1−β cos θ)−1 with that
from the image charge (1 + β cos θ)−1 . By factoring 2/(1 + β cos θ)
out of Eq. (31), one sees

E(Eq. 31) =
2

1 + β cos θ
· E(Eq. 24), (32)

so these radiated fields are not very different from the case of pulsed
acceleration, as mentioned after Eq. (20). When β = 1 , the factor
(1+cos θ)/2 is the fractional solid angle at angles greater than θ , and
the difference between (24) and (31) is whether flux is or is not bled
out of the radiation sphere into −q at the origin.
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The radiated field peaks at θ = sin−1(1/γβ) if γ >
√

2 , and π/2
if γ <

√
2 , reducing to the former case (Equation (25)) when γ � 1 .

Non-relativistically both cases peak near π/2 , as does non-relativistic
dipole radiation.

The radiated frequency spectrum is

I(ω) =
q2β2 sin2 θ

2π2c(1 − β2 cos2 θ)2
, (33)

to be compared with Equation (27). It takes zero time for a point
charge to cross the surface z = 0 , so again there is no physically
occurring time to set a characteristic time scale or frequency scale.
For a related problem, Maresca and Liboff [8] obtained fields Eqs.
(28)–(30) by much more elaborate mathematical machinery.

2.6 Divergent Radiated Energy

The infinite radiated energy is associated with the point nature of q
and the mathematical plane interface of the conductor. Infinite work
is required to extract a particle from inside this medium. The work
required to move q from z1 to z2 off the surface is W = q2(1/4z1 −
1/4z2) , and diverges as z1 → 0 . This is also true for a moving charge,
for its Lorentz compressed fields still behave as 1/z2 .

A line charge (beam of zero radius) also requires infinite work to
extract from a perfect conductor, but it diverges only as ln(z1) . A
beam of finite radius (of continuous charge density) requires only finite
work.

Just outside a real material, when z approaches the inter-atomic
spacing d ∼ 10−8 cm, the functional form for W breaks down, and it
settles in, to order of magnitude, near the value W ≈ q2/4d ≈ 3.5eV ,
which is the correct order of magnitude of typical work functions.

The only reason the beam can exit the metal at all is precisely
because a real metal differs from an idealized perfect conductor. Nev-
ertheless, as shown in Section 5, it is justified to use perfect conductor
boundary conditions, at least for not too high frequencies.

3. RADIATION FROM FINITE ACCELERATION

The particle radiation fields, Eq. (24) or (31), have an angular depen-
dence sin θ/(1−β cos θ) , whereas conventional acceleration fields have
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a dependence sin θ/(1 − β cos θ)3 evaluated at retarded time. It is
worth reconciling these two expressions.

The Lienard-Wiechert fields for a particle in free space with pre-
scribed velocity cβ(t) show [12] it produces radiation

E =
q

c

[
β̇ sin θ

(1 − n̂ · �β)3R2

]

ret

(34)

where R2 = |�R−�Rp(t)| is the distance between the observer at �R and
the particle at �Rp(t), n̂ is the unit vector from particle to observer,
β̇ = dβ/dt , and the subscript ret means the right hand side is evaluated
at the earlier time t′ = t − R2(t′)/c .

Let the particle undergo constant acceleration cβ̇ = cβ0/∆t for a
short time ∆t , carrying it from velocity υ = 0 to υ = cβ0 < c , and
from z = 0 to z = (1/2)cβ̇∆t2 = z1 . Figure 4 sketches the radiation
pattern for R2 � z1 .

Figure 4. Field of a charge undergoing finite constant acceleration.
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For small retarded times t′, β(t′) � 1 , and the fields vary as sin θ ,
being ordinary non-relativistic dipole radiation. For late retarded
times, β ≈ β0 ≈ 1 , and the angular dependence is sin θ/(1−β0 cos θ)3 ,
sharply peaked forward. The angular dependence quickly shifts for-
ward within the pulse as β increases from 0 to β0 .

If ∆t is short compared to measuring instrument resolution time,
the observer can measure only the time average field; it is the only
observable when the maximum measured frequency is less than 2π/∆t .
This, of course, is always the case when ∆t → 0 .

For R2 � z1 , the time average field is

E =
q sin θ

cR∆t

∫ [
β̇

(1 − β cos θ)3

]

ret

dt. (35)

From Eq. (5) and the definition of t′ , one has dt = (1−β(t′) cos θ)dt′ ,
so the integral here is

∫
β̇dt′

(1 − β(t′) cos θ)2
=

β0

1 − β0 cos θ
, (36)

so that

E =
q

c

β̇ sin θ

R(1 − β0 cos θ)
, (37)

with an angular dependence intermediate between the two extremes.
In the limit ∆t → 0, β̇ → β0δ(t) , and E is what is observed and is as
calculated previously [Eq. (24) with β̇/c = βδ(ct − R)] . E , Eq. (37),
is also the field, and I , Eq. (27), the intensity spectrum, due to beta
decay (with heuristic quantum corrections) [13].

Likewise, radiation from a charge q exiting an infinite plane con-
ductor at constant velocity is the same as charges q and −q moving
together in space without conductors, and charge −q suddenly revers-
ing its motion and continuing in the opposite direction, or the same as
pair production in the rest frame.

3.1 Physical Origin of Factor 1/(1 − β cos θ)

The potentials of a particle at rest are

Φ =
q

R
, A = 0.
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For a moving particle the finite speed of light has two effects, retarda-
tion and compression. Its potentials are

Φ(�R, t) =
q

R(t′)[1 − n̂(t′) · �β(t′)]
, A = β(t′)Φ. (38)

The retarded time argument t′ expresses retardation. The factor
1/(1− n̂ ·�β) = 1/(1−β cos θ) expresses field compression in the direc-
tion of the observer [11].

The compression factor arises from the finiteness of c , not its con-
stancy. It is of first order in υ/c and would also occur for acoustic
waves. Purists may therefore not refer to it as a relativistic effect.

Although Φ and A behave as 1/(1− n̂ ·�β) , the instantaneous field

E ∼ ∂A

∂t
=

1

1 − n̂ · �β
∂A

∂t′
∼ 1

(1 − n̂ · �β)3
(39)

has the denominator cubed. The time averaged field regains the po-
tentials’ behavior as the inverse first power.

The time average fields [∼ (1 − β cos θ)−1] radiate most at θ ∼
1/γ , due to the merging of Coulomb and radiation fields as discussed
following Eq. (25). The more sharply peaked acceleration fields, Eq.
(34), for β → 1 radiate most at the somewhat smaller angle [14]
θ ∼ 1/2γ , but the physical reason is the same.

4. FIELDS OF A BEAM

Fields of a beam are obtained by superposition of point particle ex-
pressions. The beam contains total charge Q and is taken to have
constant current I = Q/τ that turns on and off suddenly with pulse
duration τ .

4.1 Opposite Charge Left at Origin

In the case that −Q accumulates at the origin while the beam
emerges at constant velocity, the superposition of Equation (10) gives
for the vector potential

A = β

∫
0

Iu(c(t − t1) − R)√
(υ(t − t1) − z)2 + r2/γ2

dt1. (40)
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When the observer’s retarded time T = t−R/c is less than the beam
pulse length τ (sec) then the upper limit in Eq. (40) is T , and

A =
I

c
ln

[√
(βR − z)2 + r2/γ2 − (βR − z)√
(υt − z)2 + r2/γ2 − (υt − z)

]
u(ct − R). (41)

Using Eq. (11), the numerator here can be simplified, obtaining

A =
I

c
ln

[
(1 − β)(R + z)
S− − (υt − z)

]
. (0 < T < τ) (42)

A parallel calculation for the scalar potential shows

Φ =
1
β

A − Q′υT

R
. (0 < T < τ) (43)

Here A is from Eq. (42), Q′ = I/υ = Q/� is the charge per unit
length, and � = υτ is the beam pulse length.

For retarded times after the beam has exited, T > τ , the upper
limit in Eq. (40) is τ , and one finds

A =
I

c
ln

[√
υt − � − z)2 + r2/γ2 − (υt − � − z)

S− − (υt − z)

]
(T > τ) (44)

Φ =
1
β

A − Q

R
, (T > τ) (45)

where A is from Eq. (44). Equations (42)–(45) are the potentials of
a thin beam of length � emerging from the origin at constant velocity
with the opposite charge −Q accumulating at the origin.

For the fields, one finds, for 0 < T < τ ,

B =
I

cr

(
υt − z

S−
+ cos θ

)
,

Er =
1
β

B − I sin θ

cR

(
1 +

cT

R

)
,

Ez = Q′
(

1
γ2S−

− 1
R

)
− I cos θ

cR

(
1 +

cT

R

)
.

(46)
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For later retarded times it is convenient to define

S�− ≡
√

(υt − � − z)2 + r2/γ2,

S�+ ≡
√

(υt − � + z)2 + r2/γ2,
(47)

and obtain for T > τ ,

B =
I

cr

(
υt − z

S−
− υt − � − z

S�−

)
,

Er =
1
β

B − Q sin θ

R2
,

Ez =
Q′

γ2

(
1

S−
− 1

S�−

)
− Q cos θ

R2
.

(48)

The terms in Q/R2 are the fields due to charge −Q left at the origin.
In the shell 0 < T < τ , the fields (46) behave as 1/R for large

R . In the limit R � υT , the terms of order 1/R , after converting to
spherical components of E , are ER = 0 , and

Eθ = B =
βI sin θ

cR(1 − β cos θ)
, (49)

having the same form as the point particle fields, but finite and stret-
ched over a time τ . There are no radiation fields for T > τ . The
radiation fields are a pulsed step function in time, as is the beam
current itself, and are proportional to I .

Fields for the case β → 1 are sketched in Figure 5, adapted from
Longmire [15], who studied this limit.

For a fixed observer, the time integral of the radiation field, Eq.
(49), ∫

Eθdt =
Qβ

c

sin θ

R(1 − β cos θ)
(50)

is the same as the time integral of the point particle field, Eq. (24),
and depends only on the amount of charge in the beam.

The frequency spectrum of radiated energy is

I(ω)dω =
Q2β2 sin2 θ

8π2c(1 − β cos θ)2

(
sinωt/2

ωt/2

)2

dω, (51)
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Figure 5. Field for beam moving near the speed of light.

differing from the point particle case by the modulating factor sinc2(ω
τ/2) ≡ [sin(ωτ/2)/(ωτ/2)]2 , arising from the square pulse wave form.
Radiated energy is discussed later.

4.2 Beam Exiting a Conducting Plane

For this case superposition of Equations (16) and (17) yields

A(�R, t) =
I

c

[
ln

(
(1 − β)(R + z)
S− − (υt − z)

)
+ ln

(
(1 − β)(R − z)
S+ − (υt + z)

)]
,

(0 < T < τ) (52)

Φ(�R, t) = Q′
[
ln

(
(1 − β)(R + z)
S− − (υt − z)

)
− ln

(
(1 − β)(R − z)
S+ − (υt + z)

)]
,
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(0 < T < τ) (53)

These potentials again vanish for T < 0 , and start to rise linearly in
T for T > 0 . Similarly, for later retarded times

A =
I

c

[
ln

(
S�− − (υt − � − z)

S− − (υt − z)

)
+ ln

(
S�+ − (υt − � + z)

S+ − (υt + z)

)]
,

(T > τ) (54)

Φ = Q′
[
ln

(
S�− − (υt − � − z)

S− − (υt − z)

)
− ln

(
S�+ − (υt − � + z)

S+ − (υt + z)

)]
.

(T > τ) (55)

The second terms in these four equations are the potentials of the
image beam.

The complete fields are, for 0 < T < τ ,

B =
I

cr

(
υt − z

S−
+

υt + z

S+

)
,

Er =
Q′

r

(
υt − z

S−
− υt + z

S+
+ 2 cos θ

)
,

Ez =
Q′

γ2

(
1

S−
+

1
S+

)
− 2Q′

R
,

(56)

and, for T > τ ,

B =
I

cr

[
υt − z

S−
− υt − � − z

S�−
+

υt + z

S+
− υt − � + z

S�+

]
,

Er =
Q′

r

(
υt − z

S−
− υt − � − z

S�−
− υt + z

S+
+

υt − � + z

S�+

)
,

Ez =
Q′

γ2

(
1

S−
− 1

S�−
+

1
S+

− 1
S�+

)
,

(57)

Equations (56) and (57) are the complete exterior fields of a thin beam
of length � emerging normally at constant velocity from an infinite
perfectly conducting plane. (They are also the fields of a beam exiting
a long, thin pipe, whose image charge races back on the pipe’s outer
surface. See Section 7).
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As written, Equations (56) are not the simple manifest sum of beam
fields plus image fields. The fields due to the beam alone are, for
0 < T < τ ,

B =
I

cr

(
υt − z

S−
+ cos θ

)
,

Er =
1
β

B,

Ez = Q′
(

1
γ2S−

− 1
R

)
. (58)

For T > τ , Equations (57) are the manifest sum of beam and image
fields, the first two terms (in S− and S�−) being the beam fields and
the last two terms (in S+ and S�+) being the fields due to the image
beam.

For T > τ there are no radiation fields and the exact fields in
Eqs. (48) or (57) are Lorentz-transformed Coulomb fields. For T < τ
both Coulomb and radiation fields are present. These fields have been
combined algebraically, and the individual terms in Eqs. (46) or (56)
do not separately correspond to either Coulomb or radiation fields.
The expressions are simpler when so combined.

4.3 Relativistic Beam

For large γ fields are very small behind the shell R < c(t − τ) .
Radiation fields propagate at speed c and the Coulomb fields move
with the beam at speed υ . We imagine the beam remaining of constant
radius. Field structure is as follows.

The beam tip υt lags slowly behind the field tip ct . So long as
ct − υt < cτ = �/β , or

ct <
�

β(1 − β)
=

1 + β

β
γ2� ≈ 2γ2�, (59)

the beam is still immersed in the shell 0 < T < τ . The beam and its
fields are then as depicted in Figure 6a (“Immersion” phase). When
ct = �/β(1 − β) the beam has lagged the full distance cτ behind the
field front and the fields are as shown in Figure 6b. For ct � 2γ2� ,
the beam is widely separated from the shell defined by 0 < T < τ ,
and the fields are as depicted in Figure 6c (“Separation” phase).
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Figure 6. Developing field structure of a relativistic beam.
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The very late time fields, Figure 6c, after separation, look like those
of a small bunch of charge as in Figure 3, but with the thin radiation
shell spread out to thickness cτ = �/β , and the point particle Coulomb
field replaced by that of a line charge of length � .

Practical beams are almost always in the immersion phase. For a
nominal pulse length, say � = 10 m, and a moderate γ , say γ =
20, 2γ2� = 8 km, much farther than endoatmospheric propagation dis-
tances. [The minimum energy loss rate of relativistic electrons in full
density air is ∼ 0.2 MeV/m, so an electron’s range is always less than
Re = (γ − 1)mc2/0.2 = 2.5(γ − 1) meters. Thus the critical distance
2γ2� exceeds Re by a factor

2γ2�

2.5(γ − 1)
≈ γ� � 1,

with � measured in meters]. During propagation, the field structure
of almost all endoatmospheric beams (of constant radius) would be as
shown in Figure 6a. The � used in 2γ2� should be that appropriate
to the mean forward beam velocity, somewhat less than the individual
particle γ when betatron oscillations are accounted for.

4.4 Field Structure and Radiation

As was the case for a point particle, the plane of the beam tip,
z = υt , intersects the field front R = ct at polar angle θ given by
sin θ = 1/γ , and radiation likewise peaks there.

After separation has occurred the field lines are roughly as drawn in
Figure 7. In this figure field lines are shown dashed, the length of each
dash roughly corresponding to field strength. All field lines terminate
either on the beam or the image charge at z = 0 .

For θ > 1/γ , significant fields are confined almost entirely to the
shell 0 < T < τ . The θ component of electric flux in this region is

F = 2πr
�

β
Eθ = 4πQ, (60)

the last equality following from
∫

d�S · �E = 4πQ . Thus for θ � 1/γ ,
Equation (60) shows

Eθ =
2βQ

�r
≈ 2Q′

r
. (61)

This field is the usual static cylindrical field from a line charge, swept
back into a spherical shell.
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Figure 7. Field lines when ct � 2γ2� . Field strength is indicated by
length of line segment, not by line density.

In the radiation shell 0 < T < τ , one may use υt − z = υT +
(β−cos θ)R to expand the exact fields in powers of υT/R . The terms
behaving as 1/R , when converted to spherical components, are

Eθ = B =
2βI sin θ

cR(1 − β2 cos2 θ)
. (62)

These are the radiation fields from a relativistic beam exiting a con-
ducting plane. This field is just 2/(1 + β cos θ) times the field when
the charge −Q is left at the origin, Equation (49).

For γ � 1 , in the separation phase at all angles, or in any phase
at θ � 1/γ and R � � , Coulomb fields ER are small compared with
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radiation fields Eθ . Forming ER from Eq. (56) and using Eq. (62),
one finds, neglecting angle factors,

ER

Eθ
∼ �

β2R
∼ �

R
.

For a very distant observer Eθ will be the only sensibly large field.
However its divergence is not zero. It is balanced by the Coulomb field
dropping to zero in the radiation shell, contributing a counterbalancing
divergence.

4.5 The Immersion Phase

When ct � 2γ2� fields are almost entirely confined to the radiation
shell. In the plane of the beam tail, z = υt− � , the largest cylindrical
radius available in the causality sphere is r1 , indicated in Figure 6a,
given by r1 = ct sin θ1 , where cos θ1 = z/ct = β − �/ct , or

r1 = ct
√

1 − (β − �/ct)2. (63)

The quantity inside the radical is, after some algebra,

1 −
(

β − �

ct

)2

=
2β�

ct

(
1 − �

2βct
+

ct

2βγ2�

)
≈ 2β�

ct
,

so that

r1 ∼
√

2β�ct = γ�

√
2βct

γ2�
� γ� (64)

The Lorentz transformed Coulomb field of a beam is packed into a
disc containing the beam and, for r > γ� , fans out with an angle ∼ 1/γ
about the disc’s plane. (In the plane of the beam center, z = υt−�/2 ,
it is Er = (Q/r)[(�/2)2 + r2/γ2]−1/2 .) This field falls off as 1/r for
r < γ� , and as 1/r2 for r > γ� . Equation (64) shows that the
available radii are too small to reach the radius γ� . Relativity and
causality conspire to cut off the Coulomb fields before they have a
chance to decay as 1/r2 . Both the Coulomb fields and the total fields
everywhere behave as 1/r , or, for fixed θ, as 1/R .

When ct � 2γ2� , radii greater than γ� are available, and the
Coulomb field will exhibit its 1/R2 limiting form. Then the Coulomb
fields are spatially separated from the radiation fields.
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5. TRANSITION RADIATION FROM A GOOD
CONDUCTOR

The fields of an electron exiting a conductor are the same as those of
an impulsively accelerated electron (plus image field). We shall also see
that they are the same as those of an electron exiting an open-ended
tube, in which there is only one medium, and so clearly are not tran-
sition radiation. The fields are the same, but the physical mechanism
of their origin is necessarily different; the equality of fields by them-
selves cannot be used to ascertain the physical origin of the radiation.
It is therefore a meaningful question to ask whether a particle exiting
a “perfect” conductor can be considered a limiting case of transition
radiation.

5.1 Single Particle Transition Radiation

Transition radiation when a particle of constant velocity passes from
a medium of relative dielectric constant ε1 into one with relative di-
electric constant ε2 is generally discussed in the frequency domain and
intended for common dielectric materials [16].

The complex dielectric constant of a medium with conductivity σ
and relative dielectric constant ε′1 is

ε1 = ε′1 + 4πiσ/ω. (65)

We investigate the transition radiation when an electron exits such a
material into vacuum (ε2 = 1) . For typical metals, the conductivity
term is of order 1017/ω , completely dominating the ordinary dielectric
constant except at extremely high frequencies.

The quantity usually presented is the power spectrum

I(ω) =
q2υ2√ε2 sin2 θ cos2 θ

π2c3
|D|2, (66)

where

D =

(ε1 − ε2)(1 − β2ε2 − β
√

ε1 − ε2 sin2 θ)

(1 − β2ε2 cos2 θ)(1 − β
√

ε1 − ε2 sin2 θ)(ε1 cos θ +
√

ε1ε2 − ε22 sin2 θ)
.

(67)
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We are interested in the limit ε2 → 1 , and ε1 � 1 . In this limit, D
approaches

D → 1
(1 − β2 cos2 θ) cos θ

, (68)

and the spectrum

I(ω) → q2β2 sin2 θ

π2c(1 − β2 cos2 θ)2
, (69)

the same as calculated previously with perfect conductor boundary
conditions, Eq. (33). (The factor of 2 difference is due to the con-
vention of folding negative frequencies into positive frequencies in the
present formulas). Thus, radiation due to particles or beams exiting
a conductor can be considered the limit of transition radiation from a
good conductor as the conductivity becomes arbitrarily large.

The above discussion shows conventional electromagnetic methods
with perfect conductor boundary conditions can safely be used so long
as we only observe frequencies

ω <
4πσ

ε′1
≈ 1017

ε′1
. (70)

The numerical value makes conservative use of typical (DC) metal con-
ductivities. Thus models of a real material are needed only for the ex-
tremely high frequency part of the spectrum. As we concentrate on the
basic electrodynamics of the process, the perfect conductor formalism
will suffice.

Transition radiation accumulates over a formation length L = υ/(ω
|1− β

√
ε1 cos θ|) when observed at angle θ from the particle’s trajec-

tory. We note that for frequencies obeying Eq. (70), ε1 ∼ 4πiσ/ω � 1,
and, not too near θ = π/2 , L reduces to

L ∼ δ√
2 cos θ

, δ =
c√

2πσω
, (71)

essentially the usual conductor skin depth δ , as it must.

5.2 Beam Transition Radiation

It takes some 10−8 cm for an electron to emerge from a surface.
A relativistic 1kA beam contains 2 × 1011 electrons/cm. Therefore
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typical beams appear to be continuous charge distributions as they
exit. Shot noise, always present, would be discernable only for weak
beams or sensitive detectors. The individual electrons’ low frequency
(wavelength comparable with or larger than beam radius) transition
radiations add coherently, and the observer sees the coherent superpo-
sition over the entire beam. The dominant wavelength is therefore on
the order of the beam length. Beam radiation can be thought of as low
frequency (∼ RF) coherent transition radiation from all electrons.

An observer would not see this coherence in optical frequencies emit-
ted in transition radiation as beams exit foils. There is no phase co-
herence among the optical photons emitted from individual electrons
across the beam diameter. Optical transition radiation is sometimes
used as a beam diagnostic. Since the term “transition radiation” is
commonly employed in this latter sense, the term must be used with
caution when referring to the low frequency electromagnetic pulse from
beams.

6. RELATION TO DIPOLE RADIATION

Beam radiation may be thought of as ordinary dipole radiation. A
beam has a dipole moment P =

∫
ρzdz = Q′υ2t2/2 which increases

quadratically in t while the beam is emerging, with P̈ = υI , and
linearly in t after the beam has fully emerged, with P̈ = 0 . The
non-relativistic radiated field is

Erad =
P̈ sin θ

c2R
=

βI sin θ

cR
. (72)

To this one may heuristically append the field compression factor to
account for the charge motion,

Erad → βI sin θ

cR(1 − β cos θ)
, (73)

the same as obtained in Eq. (49). The emerging charge exposes fields
that must build up in the new medium (vacuum); the radiated field
structure is just that of the dipole moment of the rapidly moving
charge.

7. BEAM EXITING OPEN-ENDED PIPE

Figure 8 shows a beam pulse moving down a drift tube. Its self fields
terminate on the inside walls on the image charge. As the beam exits,
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Figure 8. Beam exiting an open-ended pipe.

the image charge turns the corner and moves in the opposite direc-
tion on the outside pipe wall. The field structure is as shown, always
terminating on the image charge.

For an open ended pipe, the beam electrons never transition from
one medium to another; there is no transition radiation. Nevertheless
the effect is similar to beams exiting a conducting medium. In the
pipe case, before launch, the pipe shorts out the beam self fields for
r > rpipe . In the perfect conductor case, the conductor shorts out fields
for r > 0 . In both cases fields are “released” upon launch. The fields
differ in the two cases only for wavelengths shorter than or comparable
to the pipe radius. Thus even for open ended pipes the radiation is
similar to the coherently superposed transition radiation of Section 5.

7.1 Ordinary Scattering

Consider a charge Q that has been moving at constant velocity
υ < c through empty space for a long time. It is accompanied only
by its Lorentz compacted Coulomb field and circumferential magnetic
field, each of which falls off like 1/R2 far from the charge. Far ahead,
off in the distance, sits a conducting object (sphere). cf. Figure 9a.
There is no radiation and nothing is happening.

Eventually, as the charge passes, the field will sweep over the sphere,
set it ringing, and scatter off that conducting object, Figure 9b. This
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Figure 9. Showing how radiation of a beam exiting an open-ended
pipe is equivalent to field scattering off a conductor.

scattering gives rise to radiation fields that drop off as 1/R from the
sphere. The energy radiated comes from the energy that was in the
charge’s fields. Eventually it will come from the charge’s kinetic energy.

Repeat the experiment with the sphere replaced by an elongated
cigar (Figure 9c). Scattering and radiation are produced when the
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fields sweep over either end, Figure 9d. No radiation is produced when
the field is between ends.

Now extend the cigar azimuthally into an annular band partway
around the particle’s trajectory (Fig. 9e). Again radiation is created
only when the field passes over either end.

Continue the annular band, closing it into a cylinder surrounding
the trajectory (Fig. 9f). Scattering occurs and radiation is produced
only at the ends, when the particle enters and exits the cylinder.

Now extend the left end of the cylinder far back to where the particle
was originally accelerated, or back to where we do not care about
the radiation created when Q entered the long, narrow cylinder, and
enclose the region in a large conducting building (Fig. 9g). Scattering
and radiation are now produced only as Q exits the right end. It is
the radiation from the launch of a charged particle beam from an open
ended pipe, and its origin may be considered to be ordinary scattering.

7.2 Transmission Line Fields

The same radiation can be understood in terms of a transmission
line terminated in a certain way. Consider a coaxial transmission line
propagating a short TEM monopulse. The only energy in the system
is in the fields. Extend the center conductor, and splay back the shield
into a perpendicular plane, Figures 10a and 10b. Let the pulse emerge.

The extended wire permits the pulse to continue past the shield
plane. A reflected pulse is possible; TEM modes are still supported.
The part not reflected continues out the wire, with field structure
shown, Fig. 10c. These are radiation fields, behaving as 1/R . The
hardware is an elementary stub antenna, with perhaps a long stub,
and imperfect impedance match.

Now replace the center conductor with a pencil of charge moving
down the axis of the shield cylinder, Fig. 10d. There is kinetic energy
as well as field energy. The fields are still TEM, terminating on the
charge instead of a wire. Let the charge emerge.

The entire field exits; TEM reflection is now forbidden, Figure 9e.
The exterior field structure is the same as in Figure 10c. Thus beam
radiation may be understood as ordinary antenna radiation.

The preceding discussion has made it clear, perhaps painfully clear,
that radiation of a particle or beam exiting a conductor may be un-
derstood from different points of view, as a stand alone solution to
Maxwell’s Equations, as dipole radiation, accelerated particle radia-
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Figure 10. Beam radiation as extended transmission line fields.

tion, transition radiation, antenna radiation, scattering, etc.
Once a charge Q is released from a conducting enclosure, open

ended or not, its Coulomb fields must build up anew. At the outer
extent of these field lines, at R = ct , the radial Coulomb field lines
cannot terminate; they must connect with a transverse field. Only
Eθ is permitted, the azimuthal component Eϕ being ruled out by
symmetry. The total flux in Eθ must equal 4πQ . As the area available
to Eθ increases linearly with R, Eθ must drop off as 1/R . Thus flux
conservation alone implies the existence of radiation when a charge is
suddenly exposed.
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8. GENERAL RADIATED FIELDS AND ENERGY

When beam current is not constant, expressions are more complicated,
but tractable formulae can still be obtained for the radiation fields,
if not the total fields. Non-constant beam currents can arise from
time dependent launched beam currents themselves or from net cur-
rent changing in time as the beam propagates, as would be the case for
a beam launched into a gas that can be ionized. Fields can then be ex-
pressed as the (time-dependent) field due to beam launch, plus a term
corresponding to additional radiation arising from changes in current
waveform during beam propagation after launch. Approximate treat-
ments including air plasma currents have been given by Briggs [17] and
by Longmire [15].

8.1 General Radiation Formula

Let Ib be the beam current as launched, and Ip be any plasma
conduction currents that may be produced in the ambient gas. The
applicable current for field production, that occurs in Maxwell’s Equa-
tions, is the net current IN = Ib+Ip , the rate of total charge transport
out of the accelerator. In practice IN is unknown apriori but can be
measured.

When IN is not constant, radiated fields are best obtained from
the radiated vector potential

�Arad(�R, t) =
1

cR

∫
d3R′�JN (�R′, t′), (74)

and �Erad = �Brad × n̂ = (∇ × �Arad) × n̂ . Here n̂ is the unit vector
toward the observer, �JN is the net current density, and t′ = t − |�R −
�R′|/c is retarded time. For a thin beam propagating along z the
integral reduces to

∫
dz′IN (z′, t′) ,where IN (z, t) =

∫
JNdx′dy′ is the

net current. The local retarded time reduces to t′ = T + z′ cos θ/c ,
where T = t − R/c is the observer’s retarded time defined before.

The distance ξ = υt − z behind beam tip is a more convenient
independent variable than t , and writing I = I(z, ξ) we have

Arad =
1

cR

∫
dz′IN (z′, ξ′ = υT − (1 − β cos θ)z′). (75)

Radiations originating from z′ at t′ come from a distance ξ′ = υt′ −
z′ = υT − (1− β cos θ)z′ behind beam tip. This permits switching the
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integration variable to ξ′ ,

Arad =
1

cR(1 − β cos θ)

∫ υT

0
dξ′IN (z′, ξ′), (76)

where, during the integration,

z′ = (υT − ξ′)/(1 − β cos θ). (77)

These formulae apply to a beam emerging from a point, not for a
beam emerging from a plane conductor. In either case, however, the
basic “physical mechanism” of radiation is the sudden appearance of a
current, i.e., the rapid charge separation and its newly exposed fields,
being loose terminology for the time rate of change of the volume inte-
gral of JN . As the beam emerges, the volume integral is proportional
to t (for constant IN ), and the radiated field ∼ ∂A/∂t is proportional
to IN .

Since JN and Arad have only a z component, the radiated E has
only a polar theta component

Eθ =
sin θ

c

∂Arad

∂T
=

β sin θ

(1 − β cos θ)cR[
IN (z = 0, ξ = υT ) +

1
(1 − β cos θ)

∫ υT

0
dξ′

∂IN (z′, ξ′)
∂z′

]
(78)

In the integrand here, after the ∂/∂z′ is taken, z′ is replaced by
Equation (77) and the integral on ξ′ performed.

Equation (78) is a general thin beam radiation formula. The first
term is the conventional radiation due to launch, being proportional to
IN (z = 0, ξ) , the net current at the launch point as a function of time
as the beam exits. It generalizes Eq. (49) to currents a function of ξ . A
similar generalization holds for Eq. (62) for a beam exiting a conducting
plane; in this case Eq. (78) is to be multiplied by 2/(1 + β cos θ) .

The second term in (78) contributes additional radiation whenever
the net current time history changes as the beam propagates down-
stream. Its angular dependence is not manifest from Eq. (78) as it
stands, for one of the factors 1/(1−β cos θ) disappears if one changes
integration variables by replacing dξ′ by −(1 − β cos θ)dz′ from Eq.
(77).
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8.2 Radiated Energy

Let the current neutralization fraction be fm , so that IN = (1 −
fm)Ib . For radiated energy calculations we again take the current to
be constant for a time τ .

If �S = (c/4π)�E × �H is the Poynting vector, the energy radiated is,
for fields Eq. (49), in the case that the opposite charge accumulates at
the origin,

W1 = R2

∫
dt

∫
dΩS =

τ

2c

∫ 1

−1

(
βIN sin θ

1 − β cos θ

)2

d cos θ

=
2�I2

N

c2β2
(ln[(1 + β)γ] − β) ,

(79)

and, for the case of a beam emerging from a conductor, Eq. (62),

W2 =
�I2

N

c2β2

[
(1 + β2) ln[(1 + β)γ] − β

]
, (80)

integrating in this case over only the forward hemisphere. β and γ
here are those appropriate to the mean forward velocity of the cur-
rent waveform, and, for a self-pinched beam in gas, can differ from
individual particle quantities, βp, γp , because of betatron oscillations.
However β is still near unity for relativistic beams, and γ enters only
logarithmically.

Comparing these with the kinetic energy K = (γp − 1)mc2�Ib/eβc
in an electron beam one obtains

W1

K
=

2(1 − fm)2Ib

mc3/e

ln[(1 + β)γ] − β

(γp − 1)β
, (81)

and
W2

K
=

2(1 − fm)2Ib

mc3/e

(1 + β2) ln[(1 + β)γ] − β

2(γp − 1)β
. (82)

Here mc3/e = 17 kA. The extreme relativistic limit of both is

W1,2

K
=

2(1 − fm)2Ib

mc3/e

ln(2γ)
γp

, (γ, γp � 1) (83)



Fields of particles and beams exiting a conductor 181

Figure 11. Contours of constant fraction of radiated energy, Eq(81).

and non-relativistic limits are

W2

K
=

2W1

K
=

8(1 − fm)2Ib

3mc3/e
, (β � 1). (84)

Equation (81), appropriate when −Q is left near the origin, is shown
in Figure 11 (γ = γp has been used in the figure). A beam with
energy less than a few MeV and current greater than a few kiloamperes
radiates an appreciable fraction of its energy. The calculation assumed
particle velocity υ constant, and is unreliable when radiated fractions
W1,2/K approach unity.

Calculation of total field energy and retarding force on the beam
requires treating a beam of finite radius.
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