
Progress In Electromagnetics Research, PIER 25, 111–129, 2000

RECTANGULAR CONDUCTING WAVEGUIDE FILLED

WITH UNIAXIAL ANISOTROPIC MEDIA: A MODAL

ANALYSIS AND DYADIC GREEN’S FUNCTION

S. Liu, L. W. Li, M. S. Leong, and T. S. Yeo

Communications and Microwave Division
Department of Electrical Engineering
The National University of Singapore
Singapore 119260

1. Introduction
2. Basic Formulation of the Problem
3. Fields in Source-free Rectangular Waveguides
4. Dyadic Green’s Functions
5. Applications of Dyadic Green’s Functions
6. Conclusion
References

1. INTRODUCTION

A general anisotropic medium is charaterized by permittivity tensor
ε and permeability tensor µ [1–3], whose form depends on the kind
of anisotropy. At present, different anisotropic materials are widely
used in integrated optics and microwave engineering [4–8]. The tech-
nology advances are making the production of substrates, dielectric
anisotropic films and anisotropic material filling more and more con-
venient. It shows the necessity of better charaterizing the anisotropic
media and producing more realistic models for the components that
use them.

Due to the complexity caused by the parameter tensors, the plane
wave expansion is often used in the analysis of anisotropic media. And
consequently, the Fourier transform is widely applied [1–3, 6, 9, 10] and
will also be employed in this study. Using these methods, Uzunoglu et
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al. [9] found the solution of the vector wave equation in cylindrical
coordinates for a gyroelectric medium. Ren [10] furthered the work
under spherical coordinates in a similar procedure and obtained spher-
ical wave functions and dyadic Green’s functions in gyroelectric media.
Recently, the theory of TE- and TM-decomposition attracts the inter-
ests of some researchers [11–13]. The TE- and TM-field decomposition
is a method for solving electromagnetic problems involving certain class
of boundaries and media that separate the field into reversely-handed
circularly polarized waves. It is now extended to the problems of gen-
eral uniaxially anisotropic media [11] and bi-anisotropic media [12, 13]
from that of isotropic media.

In this paper, the fields in a rectangular conducting waveguide filled
with a uniaxially anisotropic material are studied. The characteristic
feature of the uniaxial media is the existence of a distinguished axis.
If one of the coordinate axes is chosen to be parallel to this distin-
guished direction, it turns out that the parameter tensor is diagonal
but the element referring to the distinguished axis is different from
the remaining two diagonal ones. Some features of the waveguides
of uniaxial anisotropic material have been analyzed and their appli-
cations made by some authors [4, 7, 8]. It’s found in our study that
the fields in a rectangular conducting waveguide filled with uniaxially
anisotropic material are split into TE and TM modes after solving
the eigenvalue equation. The calculated dispersion curves are then
depicted. There exist considerable effects of the material parameters
on the cutoff frequencies of the propagating waves, especially the TM
modes. The dyadic Green’s functions for various kinds of anisotropic
media with different structures have been studied by many authors
[14–20]. The problems, however, are mostly analyzed in spectral do-
main in terms of Fourier transform, due to the difficulty of finding
the expansion of the dyadic Green’s functions in terms of vector wave
functions for anisotropic media. So far as we know, the dyadic Green’s
functions for anisotropic media-filled waveguides with perfectly con-
ducting walls have not been shown in any literature. In our study,
the suitable vector wave functions can be selected separately for the
TE modes and TM modes by applying the boundary conditions. The
dyadic Green’s functions are then derived using Ohm-Rayleigh method
[21]. It’s shown that the expression obtained here is reducible to the
isotropic case which has been obtained by Tai [21]. The magnetic type
dyadic Green’s function due to electric source can be obtained from the
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Figure 1. Geometry of a rectangular waveguide.

electric type one. As the application of the dyadic Green’s function,
numerical results of the the modes excited by an infinitesimal electric
dipole are also given.

Throughout this paper, the harmonic e−iωt time dependence is as-
sumed and suppressed. Bold prints indicate vectors and an overhead
bold face indicates a dyad(ic). Caps with bold face represent unit
vectors.

2. BASIC FORMULATION OF THE PROBLEM

Consider a rectangular waveguide (Fig. 1) of which coordinates axis
system is represented by (x, y, z) . ẑ is the direction of propagation.

The waveguide is filled with homogeneous electrically uniaxial aniso-
tropic medium that is characterized by the following set of constitutive
relations:

D = ε0εr · E, (1a)
B = µ0H, (1b)

where ε0 and µ0 are the free space permittivity and permeability,
respectively.

We assume that the optics axis of the uniaxial media is oriented
along the z-axis, and the other two principal axes are oriented along
the two remaining coordinate axes. So the permitivity tensors εr is
given by

εr =





εt 0 0
0 εt 0
0 0 εz



 . (2)
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It can be proved that εr takes the same form in both Cartesian and
cylindrical coordinates systems. For this kind of media, the source-
incorporated Maxwell’s equations are written as

∇ × E = iωµ0H, (3b)
∇ × H = −iωε0εr · E + J. (3b)

Substituting (3a) into (3b) yields

∇ × ∇ × E − k2
0εr · E = iωµ0 · J, (4)

where k0 = ω
√

ε0µ0 , which is the free space wavenumber.

3. FIELDS IN SOURCE-FREE RECTANGULAR
WAVEGUIDE

Now we study the eigenvalues and eigenvectors of the source-free vector
wave equation in an infinite uniaxial anisotropic medium. Let J = 0 ,
(4) reduces to

∇ × ∇ × E − k2
0εr · E = 0. (5)

The characteristic waves corresponding to (5) can be examined in the
spectral domain using Fourier transform

E(r) =
∫∫∫ +∞

−∞
E(k)eik·rdk (6)

where k = kxx̂ + kyŷ + kzẑ . Substituting (6) to (5), we have
∫∫∫ +∞

−∞
(k2I − kk − k2

0εr) · E(k)eik·rdk = 0 (7)

where I = x̂x̂ + ŷŷ + ẑẑ is the unit dyadic. For nontrivial solutions
of (7), it is required that the determinant of matrix (k2I− kk− k2

0εr)
must be equal to zero. Performing the algebraic operations, we obtain
the characteristic equation finally as

εtk
4
c + (εt + εz)

(
k2

z − k2
0εt

)
k2

c + εz

(
k2

z − k2
0εt

)2 = 0 (8)

where k2
c = k2

x + k2
y . Solving the characteristic equation, we have the

eigenvalues given by

k2
c1 = k2

0εt − k2
z , (9a)

k2
c2 = k2

0εz − k2
z

εz

εt
. (9b)
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It can be seen that kc1 is independent upon εz while kc2 is a function
of εz , which lead to the ordinary and extraordinary waves [1], respec-
tively. To find the corresponding eigenvectors, we substitute these
eigenvalues back to (7). Finally we have

E1z = 0,

E1x cos(φk) + E1y sin(φk) = 0,

E1(φk, kz) = E1xx̂ + E1yŷ, (10a)

for kc1 ; and

E2x = A(kz) cos(φk)E2z,

E2y = A(kz) sin(φk)E2z,

E2(φk, kz) = E2xx̂ + E2yŷ + E2zẑ, (10b)

for kc2 ; where

A(kz) =
εzkz

εt

√
εz(k2

0 − k2
z/εt)

(10c)

and
φk = tan−1(ky/kx). (10d)

Obviously E1 takes TE modes, which can be expressed using the
vector wave function M with ẑ as the piloting vector [21]. In the
Cartesian coordinate system, E2z takes the form of ej(kx2x+ky2y+kzz) .
From (3a) we have

H2z =
1

iωµ0

[
∂(E2 · ŷ)

∂x
− ∂(E2 · x̂)

∂y

]

= 0, (11)

which means E2 takes TM modes. So E2 can be expanded using
vector wave function N , and L with ẑ as the piloting vector as well.
For rectangular waveguides bounded at x = 0 and a and at y = 0
and b by conducting walls, these vector wave functions can be written
as [21]

M
1
e
o
(h) = ∇ ×

(cos
sin

kx1x
cos
sin

ky1yejkzzẑ
)

, (12a)

N
2
e
o
(h) =

1
k2

∇ × ∇ ×
(cos

sin
kx2x

cos
sin

ky2yejkzzẑ
)

, (12b)

L
2
e
o
(h) = ∇

(cos
sin

kx2x
cos
sin

ky2yejkzz
)

. (12c)
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Figure 2. Dispersion curves for the lowest 10 modes.

It has been shown that fields can be decomposed into TE and TM
modes. The observation is in agreement with Lindell’s analysis [11]
that decomposition method is applicable to such problems with perfect
electric or magnetic conducting surfaces parallel to the z-axis.

To match the boundary condition,

ẑ · E2(r)|boundary = 0 (13)

must be satisfied, because E1z is zero everywhere. (13) straightfor-
wardly leads to that we should choose N2o and L2o as eigenfunctions
of E2(r) , and that

kx2 = m2π/a, m2 = 1, 2, · · · ; (14a)
ky2 = n2π/b, n2 = 0, 1, 2, · · · . (14b)

In this case, x̂ · E2(r)|boundary = 0 is automatically satisfied. So on
the boundary, E1(r) must satisfy

x̂ · E1(r)|boundary = 0, (15)

which leads to that only M1e can be chosen to represent E1(r) , and

kx1 = m1π/a, m1 = 1, 2, · · · ; (16a)
ky1 = n1π/b, n1 = 0, 1, 2, · · · . (16b)
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Equations (14) and (16), together with (9), make the dispersion re-
lations for a rectangular conducting waveguide filled with a uniaxial
anisotropic material. The calculated dispersion curves for εz/εt = 2.5
are depicted in Fig. 2 where a/b = 2 . Only the modes corresponding
to the lowest 10 modes (which are listed in sequence in the legend of
Fig. 2) of an isotropic rectangular waveguide are shown. It is found that
due to the existence of the optics axis, the order of these modes changes
for the uniaxial material parameters. For example, TM11 is the fifth
lowest mode in isotropic rectangular waveguide with the dimension of
a/b = 2 , but it becomes the 2nd lowest one in uniaxial rectangular
waveguide with the same dimension. This phenomenon suggests that
we can select the propagating mode we want by changing the material
parameters. Since the optics axis of the uniaxial media only affects the
TM modes in the present case, in Fig. 3 the cutoff frequencies of some
TM modes are shown as εz increases from 1.0 to 10.0 (εt = 2.0) . It
can be seen that the cutoff frequencies monotonically decrease as εz

increases.
In Fig. 4–6, some lowest TM modes are plotted for a uniaxial (εz/εt

= 2.5) rectangular waveguide and an isotropic (εz/εt = 1.0) rectan-
gular waveguide. The dimensions of the waveguide are selected so that
a/b = 2 . It can be seen that due to the existence of the optics axis, the
distributions of the field intensity in the uniaxial waveguide are differ-
ent from the isotropic ones. A greater εz produces more significant
variation of the intensity distribution.

4. DYADIC GREEN’S FUNCTIONS

In this section, we perform the eigenfunction expansion of dyadic
Green’s functions for a rectangular waveguide filled with uniaxial ma-
terial making use of the Ohm-Rayleigh method.

Consider an electric source J expressed in terms of the Dirac-delta
function δ(r − r′) and the unit dyadic I as follow:

J(r) =
∫

V ′
δ(r − r′)I · J(r′)dV ′. (17)

Due to the linearity of (4), the electric field can be related directly to
the source [21] through

E(r) = iωµ0

∫

V ′
GEJ(r, r′) · J(r′)dV ′, (18)
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Figure 3. The cutoff frequencies for the lowest 6 TM-modes versus
εz .

a. TM11 uniaxial
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b. TM11 isotropic
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Figure 4. Electrical field intensities of TM11 mode.

a. TM21 uniaxial
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Figure 5. Electrical field intensities of TM 21 mode.
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a. TM31 uniaxial
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b. TM31 isotropic
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Figure 6. Electrical field intensities of TM31 mode.

where GEJ denotes electric dyadic Green function due to electric
source, which is required to satisfy the dyadic Dirichlet condition n̂×
GEJ = 0 on the conducting boundaries, and V ′ stands for the vol-
ume occupied by the exciting current source. Substituting (17) and
(18) into (4), we have

∇ × ∇ × GEJ(r, r′) − k2
0εr · GEJ(r, r′) = Iδ(r − r′). (19)

By inspection from the results of the previous section, GEJ can also
be expanded using M1emn , N2omn and L2omn as

GEJ(r, r′) =
∫ +∞

−∞
dkz

∑

n,m

[M1emn(kz)a1emn(kz)

+N2omn(kz)b2omn(kz) + L2omn(kz)c2omn(kz)] (20)

where a, b and c are unknown coefficient matrices to be determined.
(16) and (14) must be met to satisfy the boundary conditions. For
convenience, we have used the notation mn to stand for m1, n1 and
m2, n2 as well. Subsequently, we adopt the simplified notations M1e ,
N2o and L2o instead of M1emn, N2omn and L2omn , respectively.

According to the Ohm-Rayleigh method we also expand the source
function Iδ(r − r′) , similarly, into

Iδ(r − r′) =
∫ +∞

−∞
dkz

∑

n,m

[M1e(kz)P1e(kz)

+N2o(kz)Q2o(kz) + L2o(kz)V2o(kz)] . (21)

Taking the anterior scalar product of (21) with M1e′(−k′
z),

N2o′(−k′
z) , and L2o′(−k′

z) in turn and integrating the resultant equa-
tions through the entire volume of the rectangular waveguide, we can
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determine the coefficient matrices P, Q and V given by

P1e(kz) =
2 − δ0

πabk2
c1

M ′
1e(−kz), (22a)

Q2o(kz) =
2 − δ0

πabk2
c2

N ′
2o(−kz), (22b)

V2o(kz) =
2 − δ0

πabk2
2

L′
2o(−kz). (22c)

To obtain (22), the following orthogonality relations among the vector
wave functions have been used, i.e.,

< M1e(kz), M1e′(−k′
z) > =

πabk2
c1

2
(1 + δ0)δmm′δnn′δ(kz − k′

z), (23a)

< N2o(kz),N2o′(−k′
z) > =

πabk2
c2

2
(1 − δ0)δmm′δnn′δ(kz − k′

z), (23b)

< L2o(kz),L2o′(−k′
z) > =

πabk2
2

2
(1 − δ0)δmm′δnn′δ(kz − k′

z), (23c)

< M1e(kz),N2o′(−k′
z) > = 0, (23d)

< M1e(kz),L2o′(−k′
z) > = 0, (23e)

< N2o(kz),L2o′(−k′
z) > = 0, (23f)

where

δ0 =
{

1, m = 0 or n = 0
0, otherwise ,

δmm′ =
{

1, m = m′

0, m �= m′ ,

δnn′ =
{

1, n = n′

0, n �= n′ .

In (23), we’ve taken the operator < •, • > [22] which defines

< a, b >=
∫∫∫

a · bdV. (24)

Substituting (20) and (21) into (19), and taking the anterior scalar
product of (20) with M1e′(−k′

z), N2o′(−k′
z) , and L2o′(−k′

z) in the
same way, we finally arrive at the following equation in matrix form:

[Ω][X] = [Θ], (25)
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where [Ω] is a 3 × 3 matrix given by

[Ω] =





Ω11 0 0
0 Ω22 Ω23

0 Ω32 Ω33



 , (26a)

with

Ω11 =
πab

2
(1 + δ0)k2

c1

(
k2

1 − k2
0εt

)
,

Ω22 =
πab

2
(1 − δ0)k2

c2

[

k2
2 −

k2
0

k2
2

(
εtk

2
z + εzk

2
c2

)
]

,

Ω23 = −Ω32 = i
πab

2
(1 − δ0)

kz

k2
k2

c2k
2
0(εt − εz),

Ω33 = −πab

2
(1 − δ0)k2

0

(
εtk

2
c2 + εzk

2
z

)
.

In (26a), [X] and [Θ] are two column vectors given by

[X] =





a1e(kz)
b2o(kz)
c2o(kz)



 , and [Θ] =





M ′
1e(−kz)

N ′
2o(−kz)

L′
2o(−kz)



 .

Solving (25), we have the solutions for a1e(kz), b2o(kz) and c2o(kz)
as follows

a1ekz)=
2 − δ0

πabk2
c1

1
k2

1−k2
10

M1e(−kz), (27a)

b2o(kz)=
2 − δ0

πabk2
c2

1
εzk2

2

(
k2

2−k2
20

) [βNNN2o(−kz) + βNLL2o(−kz)], (27b)

c2o(kz)=
2 − δ0

πabk2
c2

1
εzk2

2

(
k2

2−k2
20

) [βLNN2o(−kz) + βLLL2o(−kz)], (27c)

where the ordinary and extraordinary wave numbers are defined as

k2
10 = k2

0εt, (28a)

k2
20 = k2

0εt +
(

1 − εt

εz

)

k2
c2; (28b)
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and the coupling coefficients are given by

βNN = εtk
2
c2 + εzk

2
z , (28c)

βNL =
ikz

k2
k2

c2(εt − εz), (28d)

βLN = − ikz

k2
k2

c2(εt − εz), (28e)

βLL = − k2
c2

k2
0k

2
2

[
k4

2 − k2
0(εtk

2
z + εzk

2
c2)

]
. (28f)

Hence, (20) can be rewritten as

GEJ(r, r′) =
∫ +∞

−∞
dkz

∑

m,n

{
2 − δ0

πabk2
c1

1
k2

1 − k2
10

M1e(kz)M ′
1e(−kz)

+
2 − δ0

πabk2
c2

1
εzk2

2

(
k2

2 − k2
20

)

[

βNNN2o(kz)N ′
2o(−kz)

+ βNLN2o(kz)L′
2o(−kz) + βLNL2o(−kz)N ′

2o(−kz)

+ βLLL2o(kz)L′
2o(−kz)

]}

. (29)

In this way, the dyadic Green’s functions for rectangular waveguides
filled with uniaxial anisotropic media are explicitly represented in the
form of the eigenfunction expansion in terms of the rectangular vec-
tor wave functions, as given in (29). However, for ease of practical
applications and physical interpretation of possible novel phenomena,
mathematical simplification to (29) is necessary. In order to apply the
residue theorem to (20), we must first extract the irrotational term in
(20) which does not satisfy the Jordan lemma as pointed out in [21].
To do so, we write

N2o(kz) = N2ot(kz) + N2oz(kz), (30a)
L2o(kz) = L2ot(kz) + L2oz(kz), (30b)

and so are N ′ and L′ . The subscripts t and z denote their trans-
verse vector components and their z-vector components respectively.
In terms of these functions, (29) can be rewritten in the form

GEJ(r, r′) =
∫ +∞

−∞
dkz

∑

m,n

{
2 − δ0

πabk2
c1

1
k2

1 − k2
10

M1e(kz)M ′
1e(−kz)
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+
2 − δ0

πabk2
c2

1
εzk2

2

(
k2

2 − k2
20

)

[
k2

0εz − k2
c2

k2
z

N2ot(kz)N ′
2ot(−kz)

+ N2ot(kz)N ′
2oz(kz) + N2oz(kz)N ′

2ot(−kz)

+
k2

0εt − k2
z

k2
c2

N2oz(kz)N ′
2oz(kz)

]}

, (31)

where we have expressed L2ot(kz) and L2oz(kz) in terms of N2ot(kz)
and N2oz(n, kz) , namely,

L2ot(kz) = − ik2

kz
N2ot(kz), (32a)

L2oz(kz) =
ikzk2

k2
c2

N2oz(kz), (32b)

and similarly for the primed functions.
The singular term in (31) is contained in the component N2oz(kz)

N ′
2oz(−kz) [21]. From (21), we note that

ẑẑδ(r − r′) =
∫ ∞

−∞
dkz

∑

m,n

2 − δ0

πab

[
1

k2
c2

N2oz(kz)N ′
2oz(−kz)

+
1
k2

2

L2oz(kz)L′
2oz(−kz)

]

=
∫ ∞

−∞
dkz

∑

m,n

2 − δ0

πabk2
c2

k2
2

k2
c2

N2oz(kz)N ′
2oz(−kz). (33)

Making use of the identity

k2
2

k2
0εz

(
k2

2 − k2
20

)
k2

0εt − k2
z

k2
c2

= − k2
2

k2
0εzk2

c2

+
εtk

2
2

k2
0ε

2
z

(
k2

2 − k2
20

) , (34)

we can split (31) into

GEJ(r, r′) = −
∫ ∞

−∞
dkz

∑

m,n

2 − δ0

πabk2
c2

k2
2

k2
0εzk2

c2

N2oz(kz)N ′
2oz(−kz)

+
∫ +∞

−∞
dkz

∑

m,n

{
2 − δ0

πabk2
c1

1
k2

1 − k2
10

M1e(kz)M ′
1e(−kz)

+
2 − δ0

πabk2
c2

k2
2

k2
0εz

(
k2

2 − k2
20

)

[
k2

0εz − k2
c2

k2
z

N2ot(kz)N ′
2ot(−kz)

+ N2ot(kz)N ′
2oz(−kz) + N2oz(kz)N ′

2ot(−kz)

+
εt

εz
N2oz(kz)N ′

2oz(−kz)
]}

. (35)
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In view of (33), the first integral in (35) is equal to

− 1
k2

0εz
ẑẑδ(r − r′), (36)

and the second integral can be evaluated by making use of the residue
theorem in the kz-plane. The final result is given after some mathe-
matical manipulations by

GEJ(r, r′) = − 1
k2

0εz
ẑẑδ(r − r′) +

i

ab

∑

m,n

{
1

k2
c1kz1

M1e(±kz1)M ′
1e(∓kz1)

+
k2

20

k2
0εtk2

c2kz2

[

N2ot(±kz2) +
εt

εz
N2oz(∓kz2)

]

×
[

N ′
2ot(∓kz2) +

εt

εz
N ′

2oz(∓kz2)
]}

, z >
< z′ (37)

where z and z′ are the positions of the observation point and the
source point, respectively, measured along the ẑ-direction, and

k2
z1 = k2

10 − k2
c1, (38a)

k2
z2 = k2

20 − k2
c2, (38b)

with k10 and k20 having been defined in (28).
It can be observed that (37) is reducible to the isotropic case by

assuming that εt = εz = ε . In this case, k2
10 = k2

20 = k2
0ε and (37)

shall be simplified as:

GEJ(r, r′) = − 1
k2

0ε
ẑẑδ(r − r′) +

i

ab

∑

m,n

2 − δ0

k2
ckz

[

Me(±kz)M ′
e(∓kz)

+ No(±kz)N ′
o(∓kz)

]

, z >
< z′ (39)

which is exactly the same as that obtained by Tai [21].
So far, we have obtained the electric dyadic Green’s function as given

in (37). With this electric DGF, the electric field can be obtained di-
rectly from (18). To obtain the magnetic field due to an electric current
distribution, we need to utilize the following Maxwell’s equation

∇ × E = iωµ0H, (40a)
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Figure 7. Excitation of an electric dipole.

or that in dyadics form

∇ × GEJ = GHJ . (40b)

If we express the magnetic field in terms of the magnetic dyadic Green’s
function, we have the following integral:

H =
∫∫∫

V ′
GHJ(r, r′) · J(r′)dV ′. (41)

5. APPLICATION OF DYADIC GREEN’S FUNCTIONS

In this section, an infinitesimal dipole in ŷ-direction is assumed as
the electric current source in the rectangular waveguide filled with
uniaxial material. In a three-dimensional expression form, this source
distribution is expressed by

J(r′) = I0ŷδ(x′ − x0)δ(y′ − y0)δ(z′ − z0) (42)

where the point (x′, y′, z′) is located at the center of the rectangular
waveguide cross section as shown in Fig. 7, i.e.,

x0 =
a

2
, y0 =

b

2
, z0 = 0. (43)

Substituting the above current distribution and (37) into (18), we have
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E(r) = − I0ωµ0

ab

∑

m,n

{
kx1

k2
c1kz1

[

sin
(

kx1
a

2

)

cos
(

ky1
b

2

)]

M1e(±kz1)

± ik2
20ky2

k2
0εtk2k2

c2

[

sin
(

kx2
a

2

)

cos
(

ky2
b

2

)][

N2ot(±kz2)

+
εt

εz
N2oz(∓kz2)

]}

, z >
< z′. (44)

From (44), it is easy to find out that only the modes with odd m and
even n are excited. Since for TE waves, a uniaxial medium with the
optics axis in z-direction looks like an isotropic medium, the fields of
TE modes in the uniaxial anisotropic medium should have the same
representations as the well-known ones in the isotropic medium. There-
fore, we should discuss the features of the TM-mode fields only. In our
subsequent numerical computation, the dimensions of the waveguide
and the parameters of the material are selected as the same as those
in the previous section (i.e., a/b = 2, εt = 2.0 , and εz = 2.5) , for
ease and meaningfulness of comparison. Fig. 8 and Fig. 9 show the
electric field intensity and Ez distributions of TM12 mode and TM32

mode in the transverse cross-section. It is seen that the distribution of
the guided TM modes in a uniaxial anisotropic medium has changed
as compared with those guided ones in an isotropic medium.

6. CONCLUSION

The electromagnetic fields in rectangular conducting waveguides filled
with uniaxial anisotropic media are characterized in this paper. With
the optics axis of the uniaxial media oriented along the z-axis of the
waveguide, the fields can be decomposed into TE and TM modes with
different propagation wave numbers. The ordinary wave takes the
form of TE modes while the extraordinary wave takes the form of TM
modes. The calculated dispersion curves are depicted and the effects of
the material parameters on the cutoff frequencies are shown. The cut-
off frequencies change considerably, especially for TM modes. The field
distributions are drawn and compared with those in the isotropic rect-
angular waveguide. The electric type dyadic Green’s function due to
an electric source is derived by using eigenfunctions expansion and the
Ohm-Rayleigh method. The irrotational term is properly extracted.
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a. Intensity Distribution
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Figure 8. The distribution of TM12 mode in the transverse cross-
section: (a) Electric field intensity and (b) Ez distribution.
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Figure 9. The distribution of TM32 mode in the transverse cross-
section: (a) Electric field intensity and (b) Ez distribution.

It shows that the expression obtained can be readily reduced to that
in the case of filled isotropic media. The magnetic type dyadic Green’s
function due to an electric source is also obtained from the electric one
through Maxwell equations. As an application of the dyadic Green’s
function, numerical results of the the modes excited by an infinitesimal
electric dipole are presented and discussed.
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