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1. INTRODUCTION

It is well-known that there are various kinds of random fluctuations
of non-Gaussian type, in the field of man-made and natural EM in-
terferences, due to diversified space and/or time causes of the fluctua-
tion. Accordingly, it is essential to find some unified statistical analysis
method for general EM environment which can evaluate and predict
EM interference caused by these non-Gaussian type noises. Nowadays,
many studies on such a man-made and natural noise can be found
from various viewpoints (e.g., see [1, 2]). In particular, D. Middle-
ton reported systematically series of valuable fundamental researches
(e.g., [3]) which should still now be referred to. However, in his theory,
the basic assumptions postulated mutually independent type Poisson
distributions of source location in space and emissions in time. Fur-
thermore, since a narrow band receiver with a mathematically defined
envelope of sinusoidal type has been employed, D. Middleton’s stochas-
tic envelope model is established only in a two-dimensional space.

However, he intuitively indicated, “No restriction on the specific
character of the statistics of the source parameters are as yet intro-
duced.” It seems natural that he got some restricted result, because
he started his research based on the physical structure or the physical
specialty (e.g., Poisson distribution, the statistical independency and
the envelope definition of sinusoidal type), only from a forward way
of view point in one way communication from source side to detector
side.

As we reported previously [4], the essential problem was focused on
how to analyze systematically an arbitrary EM fluctuation noise with
a finite arbitrary frequency bandwidth through the receiver with mean
square operation of analog memory type, especially not from the view-
point of ‘forward direction’ (i.e., from source to detector) but from the
viewpoint of ‘backward direction’ (i.e., from detector to source). This
is because of the fact that every type EM interferences are in reality
observed at the final stage of detection. So, the corresponding math-
ematical framework of unified analysis had to be first established, by
the detector characteristic without losing the generality of stochastic
EM input, based on the above forward way of viewpoint. It is notewor-
thy that the functional elements to dominantly generalize the above
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mathematical framework of pdf form were a non-linear part and a fre-
quency bandwidth of detector input. More concretely, in our previous
paper, some model of statistical interference fluctuating arbitrarily in
a time domain was theoretically constructed (in close connection with
D. Middleton’s great research) by considering a random walk problem
in an N-dimensional signal space related to Shannon’s sampling theo-
rem in a time domain. Specifically, a Hankel transform type charac-
teristic function of arbitrary order was newly introduced, because it is
suitable for consideration on the probability problem of N-dimensional
random walks in the analysis of stochastic EM environment. Finally,
the unified expression of probability distribution was explicitly derived
for the EM interference fluctuation of a power scaled variable (or an ef-
fective value) measured by a receiver with mean square operation, and
its validity is partly verified by showing the agreement with D. Mid-
dleton’s canonical formula of lower order Hankel transform type as a
special case. However, as a whole study style, the generality of analysis
in the previous paper was introduced as how to meet the arbitrariness
of input EM interference fluctuation in a time domain.

In this paper, for the purpose of finding a more unified research
method on the stochastic evaluation of EM environment, the arbitrari-
ness of correlative random fluctuations at many observation points in
a space domain is taken into consideration in addition to the arbitrari-
ness of random fluctuation in a time domain as reported in the previ-
ous paper. More concretely, a multivariate Hankel transform type joint
characteristic function of arbitrary order is first introduced, because it
is suitable for consideration in the stochastic analysis of correlative EM
fluctuation waves observed at many measuring points, once after newly
establishing the joint probability model for many series of correlative
multi-dimensional random walks in a space domain. Hereupon, each
time constant of mean squaring type detectors and each arbitrary fre-
quency bandwidth of EM input waves are reflected in the dimension
number of corresponding signal space. Furthermore, the space location
and time emission of many EM interference sources are reflected in the
form of stochastic property only in a time domain as the probability
distribution parameters.

Finally, the validity and effectiveness of the proposed theory are
experimentally confirmed through first an acoustic type simulation ex-
periment (taken as the same wave motion type environment as EM
interference) and then an actual application to an EM environment
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Figure 1. A functional sketch of K kinds of EM interference receivers.

leaked from a VDT of a personal computer and a television in the
actual working situation.

2. A CORRELATIVE SERIES MODEL OF RANDOM
WALKS IN MULTI-DIMENSIONAL SIGNAL SPACE FOR
EM INTERFERENCE

Let us first consider a more generalized case with correlative many EM
noises or interferences environment than that in the previous study.
That is, we consider a general case when K kinds of EM noise waves
fh(t) (h = 1, 2, · · · ,K) with each arbitrary frequency bandwidth Wh

are observed on a power scale, after passing through K kinds of square
law detectors with each averaging time Th (see Fig. 1).

Here, the above incident EM noise wave fh(t) can be expressed es-
pecially based on the time sampling, following to the Shannon’s sam-
pling theorem [5] in an information theory as follows:

fh(t) =
2ThWh∑
i=0

fi

(
i

2Wh

)
sin(2πWht− iπ)

2πWht− iπ
(h = 1, 2, · · · ,K). (1)

Accordingly, the observed power fluctuation after passing through each
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Figure 2. K series of random walks in N -dimensional signal space
(max [N1, N2, · · · , NK ] ≤ N ≤ N1 + N2 + · · ·+ NK).

square law detector can be explicitly expressed as follows:

1
Th

Th∫
0

f2
h(t) dt

(
= Eh

)
=

2ThWh∑
i=0

(
1√

2ThWh
f

(
i

2Wh

))2

=
2ThWh∑
i=0

X2
hi

(2)
with Xhi = 1√

2ThWh
f

(
i

2Wh

)
.

In the problem of multi-dimensional random walks, as shown in

Fig. 2, from the fundamental relationship rhj =
Nh∑
i=1

eixhji (where ei

is a unit vector of xi axis in the Nh -dimensional vector space), a
composition of Sh random vectors:

Rh =
Sh∑
j=1

rhj (3)

can be reduced to a spherical sum in an N-dimensional vector space
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with N1 = N2 = · · · = NK(≡ N) as:

R2
h =

N∑
i=1

x2
hi (with xhi =

Sh∑
j=1

xhji). (4)

Therefore, in a special case when all of Th and Wh have equal val-
ues of T and W, (2) corresponds to (4) with N = 2TW + 1 (for
the large number of T and/or W, N ∼= 2TW ). In (1), since the
randomness of fh(t) is reflected in each f(i/2Wh) of time sampling,
our present problem can be also recognized as a problem to derive the
probability distribution of the composition Rh (≡ |Rh|, or Eh ≡ R2

h :
non-negative random variable) by use of the statistical property of each
xhi (or f(i/2Wh) ), in the Shannon’s multi-dimensional signal space.

3. DERIVATION OF HANKEL TRANSFORM TYPE
JOINT CHARACTERISTIC FUNCTION IN A
MULTI-DIMENSIONAL SIGNAL SPACE

The present problem is: what is the postern for the probability calcu-
lation in an Nh-dimensional vector space?

[I] First, with no use of detailed information on the internal mechanism
of (2) and/or (4) in each Nh-dimensional signal space, let us introduce
a joint characteristic function F (λ1, λ2, · · · , λK) in the form of Han-
kel transform of arbitrary order applicable to respective probability
problem of K correlative physical quantities Rh ’s (h = 1, 2, · · · ,K)
fluctuating only in a non-negative region, and derive the joint pdf
P (R1, R2, · · ·Rk).

In general, the joint K variates cumulative distribution function
(abbr., cdf):

Q(R1, R2, · · · , RK)

=
∫ R1

0

∫ R2

0
· · ·

∫ RK

0
P (R1, R2, · · · , RK) dR1dR2 · · · dRK

(5)

can be expressed by

Q(R10, R20, · · · , RK0)

=
∫ ∞

0

∫ ∞
0
· · ·

∫ ∞
0

P (R1, R2, · · · , RK)
K∏
h=1

Dh(Rh) dRh,
(6)
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Dh(Rh) =
{

1 (Rh < Rh0),
0 (Rh > Rh0),

(7)

By using, instead of Dh(Rh), the discontinuous integral due to Weber-
Schafheitlin [6]:

Rmh
h0

∫ ∞
0

Jmh(Rh0λh)
Jmh−1(Rhλh)

Rmh−1
h0

dλh =
{

1 (Rh < Rh0),
0 (Rh > Rh0),

(8)

we can directly obtain:

Q(R1, R2, · · · , RK) =
(

1
2

) K∑
mh−K K∏

h=1

Rmh
h

Γ(mh)

×
∫ ∞

0

∫ ∞
0
· · ·

∫ ∞
0

{
K∏
h=1

λmh−1
h Jmh(λhRh)

}

F (λ1, λ2, · · · , λK) dλ1dλ2 · · · dλK , (9)

P (R1, R2, · · · , RK) =
(

1
2

) K∑
mh−K K∏

h=1

Rmh
h

Γ(mh)

×
∫ ∞

0

∫ ∞
0
· · ·

∫ ∞
0

{
K∏
h=1

λmhh Jmh−1(λhRh)

}

F (λ1, λ2, · · · , λK) dλ1dλ2 · · · dλK , (10)

with

F (λ1, λ2, · · · , λK) =

〈
K∏
h=1

2mh−1Γ(mh)
Jmh−1(λhRh)
(λhRh)mh−1

〉
(11)

and mh ≥ 1/2(h = 1, 2, · · · ,K) or more explicitly:

Q(R1, R2, · · · , RK) =

(
K∏
h=1

Rmh
h

)∫ ∞
0

∫ ∞
0
· · ·

∫ ∞
0

{
K∏
h=1

Jmh(λhRh)

}
〈

K∏
h=1

R1−mh
h Jmh−1(λhRh)

〉
dλ1dλ2 · · · dλK ,

(12)
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P (R1, R2, · · · , RK) =

(
K∏
h=1

Rmh
h

)∫ ∞
0

∫ ∞
0
· · ·

∫ ∞
0

{
K∏
h=1

λhJmh−1(λhRh)

}
〈

K∏
h=1

R1−mh
h Jmh−1(λhRh)

〉
dλ1dλ2 · · · dλK .

(13)

However, F (λ1, λ2, · · · , λK) =
K∏
h=1

F (λh) when P (R1, R2, · · · , RK) =

K∏
h=1

P (Rh), i.e., R1, R2, · · · , RK are statistically independent of each

other.

[II] On the contrary, especially by use of detailed information on the
internal mechanism of (2) and/or (4) in each Nh-dimensional signal
space, let us derive a joint characteristic function F (λ1, λ2, · · · , λK)
in the form of Hankel transform applicable to respective probability
problems of K correlative physical quantities Rh ’s (h = 1, 2, · · · ,K),
and express the joint pdf P (R1, R2, · · · , RK).

Through the same complicated calculation process based on the
transformation to Nh-dimensional polar coordinates as in the previous
paper, as the result, we can derive the following expression:

F (λ1, λ2, · · · , λK) =
1

K∏
h=1

S(Nh)

∫
S(N1)

· · ·
∫
S(N2)

· · ·
∫
S(NK)

∫ K∏
h=1

dS(Nh)

×
[
F

(
µ11,µ12, · · · , µ1N1; · · · ;

µK1 , µK2 , · · · , µKNK
)]∣∣∣∣(

µh1 ,µh2 ,···,µhNh
)
→

(
λh,ϕh1 ,···,ϕhNh−1

)
(∀h)

,

(14)

F
(
µ11,µ12, · · · , µ1N1 ; · · · ;µK1 , µK2 , · · · , µKNK

)
=

=

〈
exp


i


 K∑
h=1

Nh∑
j=1

µhjxhj





〉

,
(15)
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where

S(Nh) =
(
√
π)Nh Nh

Γ
(
Nh
2 + 1

) and dS(Nh) =
Nh−1∏
j=1

(sinϕhj)
Nh−1−j dϕhi

(h = 1, 2, · · · ,K)
(16)

mean respectively a surface area and a surface element of an Nh-dimen-
sional unit hypersphere, and

(
µh1 , µh2 , · · · , µhNh

)
→

(
λh, ϕh1 , · · · ,

ϕhNh−1

)
denotes the transformation to Nh-dimensional polar coor-

dinates. After a further troublesome calculation, we can find that
(14) agrees with F (λ1, λ2, · · · , λK) in (11), by use of an inversion for-
mula of Hankel transformation, and also P (R1, R2, · · · , RK) in (10)
can be derived from (14) by application of the transformation to Nh -
dimensional polar coordinates,

(
xh1, xh2, · · · , xhNh

)
→

(
Rh, θh1, θh2,

· · · , θhNh−1

)
with mh = Nh/2.

In a special case with K = 1, we easily have:

P (R) =
Rm

2m−1 Γ(m)

∞∫
0

F (λ)λmJm−1(λR) dλ, (17)

F (λ) =
〈

2m−1 Γ(m)
Jm−1(λR)
(λR)m−1

〉
(18)

= 1 +
∞∑
n=1

(−1)n Γ(m)Ωn

22nn! Γ(m + n)
λ2n

(
Ωn =

〈
R2n

〉)
,

F (λ) =
1

S(N)

∫
S(N)

∫
· · · (19)

· · ·
∫

[F (µ1, µ2, · · · , µN)]
∣∣∣
(µ1,µ2,···,µN )→(λ,φ1,···,φN−1)

ds(N)

with

F (µ1, µ2, · · · , µN) =

〈
exp

(
i

N∑
K=1

xKµK

)〉
. (20)

Here, the above expressions agree completely with the result reported
in the previous study for a simplified special case with h = 1, N1 = N
and m1 = N/2.
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Figure 3. Two correlative series of random walks in the same N-
dimensional signal space.

4. EXPLICIT EXPRESSIONS OF JOINT PDF FOR
CORRELATIVE SERIES OF EM FLUCTUATION WAVE

Let use consider a special case with very large value of Sh in two

correlative series of such random walks: Rh =
Sh∑
j=1

rhj (h = 1, 2) in the

same N-dimensional signal space as shown in Fig. 3. As a result, under

the particular conditions: Ω′h0 = 1
mΩh0 = 2

N

Sh∑
j=1

〈
r2
hj

〉
(h = 1, 2)

and N1 = N2 = N = 2m, we can asymptotically derive an explicit
expression of joint pdf as follows:

P (R1, R2) =
4(R1R2)N/2

Γ
(
N
2

)
Ω′10Ω

′
20(1− ρE)

{
1

Ω′10Ω
′
20ρE

}(N/2)−1

e
− 1

1−ρE

{
R2

1
Ω′

10
+
R2

2
Ω′

20

}
I(N/2)−1

(
2
√
ρE R1R2

(1− ρE)
√

Ω′10Ω
′
20

)

(21-A)

= P (R1)P (R2)

{
1 +

∞∑
n=1

ρEnB

(
N

2
, n

)

L(N/2)−1
n

(
R2

1

Ω′10

)
L(N/2)−1
n

(
R2

2

Ω′20

)}
(R1, R2 > 0),
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= 0 (R1, R2 ≤ 0) (21-B)

with a Beta function: B(m,n) = Γ(m)Γ(n)/Γ(m + n) and

F (λ1, λ2) =
Γ

(
N
2

)
2N−2(λ1λ2)1−N/2(√

ρEΩ′10Ω
′
20

)(N/2)−1
e−

1
4 [Ω′10λ2

1+Ω′20λ
2
2]

I(N/2)−1

(
1
2

√
ρEΩ′10Ω

′
20 λ1λ2

)
, (22)

after employing the same troublesome calculation process based on
the well-known saddle point method as in the previous paper. Here,
P (•) ’s express respectively:

P (Rh) =
2

(
N
2

)N/2
Γ

(
N
2

)
ΩN/2
h0

RN−1
h e−(NR2

h/2Ωh0) (h = 1, 2), (23)

P (Eh) =
1

Γ
(
N
2

)
ΩN/2
h0

E
N/2−1
h e−(NEh/2Ωh0) (Eh = R2

h) (24)

and ρE denotes the correlation coefficient between R2
1 and R2

2. In
the above derivation, we have used the following integrals [6]:∫ ∞

0
λ1e
−(Ω/4)λ2

1Im−1

(
C

2
λ1λ2

)
Jm−1(λR1) dλ1

=
2
Ω

exp

{
1
Ω

[(
C

2
λ2

)2

−R2
1

]}
Jm−1

(
C

Ω
λ2R1

) (25)

and ∫ ∞
0

xe−Ax
2
Jν(Bx)Jν(Rx) dx

=
1

2A
exp

{
− 1

4A
(B2 + R2)

}
Iν

(
1

2A
BR

)
.

(26)

Thus, we can directly obtain the joint pdf P (E1, E1) of two series of
detector output fluctuations on a power scale, as follows:

P (E1, E2) =
1

Γ(m)S1S2(1− ρE)

(√
E1E2

S1S2ρE

)m−1
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exp
{
− 1

1− ρE

(
E1

S1
+

E2

S2

)}
Im−1

(
2

1− ρE

√
ρEE1E2

S1S2

)

(27-A)

= P (E1)P (E2)

{
1 +

∞∑
n=1

nρnEB(m,n)L(m−1)
n

(
E1

S1

)
L(m−1)
n

(
E2

S2

)}

(27-B)

with
P (Eh) =

1
Γ(m)Sh

Em−1
h e−Eh/Sh (h = 1, 2), (27-C)

Eh = R2
h, σ2

Eh
=

〈
(Eh − 〈Eh〉)2

〉
, Sh = m/Ωh0 = Ωh0/σ

2
Eh

,

m = N/2(= TW ), Ωh0 = 〈Eh〉 (h = 1, 2).
(28)

Thus, we can easily have:

P (E1|E2) =
1

S1(1− ρE)

(√
S2E1

ρES1E2

)m−1

exp
{
− 1

1− ρE

(
E1

S1
+ ρE

E2

E1

)}
Im−1

(
2

1− ρE

√
ρEE1E2

S1S2

)
.

(29)
In the parameters of this conditional pdf expression, the equivalent
bandwidth W of the input noise and the time constant T of receiver
(or detector) with mean squaring operation are reflected in m with
the spatial correlation ρE between two observation points. As a result,
regardless of the engineering implications of each parameter, its repre-
sentation form coincides with the Bessel distribution already found in
the other areas of interest.

With a view to study hierarchically the mutual spatial correlation
effect in the form of linear, second, third, . . . , orders instead of a total
viewpoint, the statistical Laguerre series expansion expressions of the
Bessel distribution can be found:

P (E1|E2) =
Em−1

1

Γ(m)Sm1
e−E1/m

{
1 +

∞∑
n=1

nρnEB(m,n)L(m−1)
n (E2/S2)L(m−1)

n (E1/S1)

}
.

(30)
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This expression can also be written in the following form:

P (E1|E2) =
Em−1

1

Γ(m)Sm1
e−E1/m

∞∑
n1=0

∞∑
n2=0

An1n2L
(m−1)
n1

(
E1

S1

)
L(m−1)
n2

(
E2

S2

) (31)

with

An1n2 =

〈
2∏
i=1

ni! Γ(m)
Γ(m + ni)

L(m−1)
ni

(
Ei
Si

)〉

=
2∏
i=1

ni! Γ(m)
Γ(m + ni)∫ ∞
0

∫ ∞
0

L(m−1)
n1

(
E1

S1

)
L(m−1)
n2

(
E2

S2

)
P (E1, E2) dE1dE2

(32-A)
= nρnEB(m,n) , (32-B)

where some complicated calculation on a modified Bessel function of
the 1st order has been employed by using (27-A) as P (E1, E2) in (32-
A).

Another conditional pdf expression identical to the Bessel distribu-
tion in (30) but with a different representation is the following well-
known noncentral χ2 distribution:

P (E1|E2) = e−ε
∞∑
n=0

εn

n!
En+m−1

1 e−E1/S1(1−ρE)

Γ(n + m) {S1(1− ρE)}n+m , (33)

where ε (≡ ρEE2/S2(1− ρE)) is the noncentrality parameter. Hence,
the convergence of this expansion is extremely good and only an em-
ployment of the first few expansion terms are sufficient in practice.

These three types of probability distribution expressions are mathe-
matically equivalent although their representation styles are different.
Hence, depending on the research object or engineering requirement,
an appropriate one can be chosen among these three type expressions
on P (E1|E2) – a closed explicit representation, an orthogonal repre-
sentation without hierarchical redundancy and a non-orthogonal but
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quickly converging expansion representation. As a specialized limiting
case with ρE → 0, the above three expressions, (29), (30), and (33),
on pdf tend to:

P (E1|E2) = P (E1) =
Em−1

1

Γ(m)Sm1
e−E1/S1 . (34)

This implies that if the fluctuations at two observation points are
mutually uncorrelated, this ensures independence property of fluctu-
ations, and the corresponding distribution representation is a well-
known Gamma pdf at only one observation point. As another special-
ized limiting case with ρE → 1, (two observation points approach),
(29), (30), and (33) become

P (E1|E2) = δ(E1 − E2) (35)

and express a delta function type pdf which has a value only when the
intensity is equal to the conditioned level.

5. EXPERIMENTAL CONSIDERATION

5.1 Acoustic Type Simulation Experiment

In this paper, owing to the page limitation, we have placed emphasis
on a new methodological trial of systematic EM evaluation mainly from
the theoretical research viewpoint. Accordingly, in the corresponding
experimental consideration, we have made only an abstract of principle
statement for partly confirming first the validity and then the actual
effectiveness of the proposed theory.

First, for the purpose of partly confirming the validity of (Bessel or
related types) three conditional pdfs in (29), (30), and (33) by using
a simulation technique, the proposed method is applied to the ac-
tual acoustic wave experiment with joint space-time non-Poisson type
arbitrary interference process in the same field of wave motion type
environment as EM interference, since the usual computer simulation
is nothing but an artificial confirmation of consistency of the theory.
The white noise of 1/3 octave band at the center frequency 200 Hz
has been excited in a reverberation room having many image sources
(simulating a joint space-time non-Poisson type arbitrary location of
many image sources) as shown in Fig. 4. So, the noise data after a
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Figure 4. A block diagram of the experimental arrangement in an
acoustic reverberation room.

large number of sound reflections with many image sources have been
measured by a sound level meter with an averaging time T = 0.125
sec of standard type (i.e., Fast). This is quite similar to the measuring
situation of EM environment under consideration (notice T = 6 min-
utes or 1 sec in EM interference detector measurement). Then, as a
trial, the nominal bandwidth of 1/3 octave band has been employed as
an equivalent bandwidth W. The microphones have been placed at a
height of 1.2 m (according to Japanese Industrial Standard) from the
floor with a separation of 0.2 m each at five locations. The noise level
was sampled at every 0.2 sec in consideration of time constant of 0.125
sec of the sound level meter.

The conditioned level has been varied and the experimental results
are shown in Fig. 5. Here, the measured E data at five measuring
points, a, b, c, d and e are defined respectively as Ea, Eb, Ec, Ed, and
Ee. Although a number of conditioned levels are arbitrarily employed,
the theoretically estimated cdf Q(E1|E2) explains the measured re-
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(a)

(b)

Figure 5. A comparison between the experimentally sampled points
and the theoretically predicted curves for the conditional cdf of sound
intensity fluctuation. Distance between observation: points: (a) 0.2 m
and (b) 0.8 m.
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Figure 6. A schematic drawing of the EM experiment.

sults well. In this case, the correlation is strong as the distance be-
tween two microphones is very small. Hence, the pdf approaches the
delta distribution which has a sharp rise cdf as shown in Fig. 5(a).

Next, to study the effect of the distance between observation points,
the experiment for the distances, 0.4, 0.6 and 0.8 m between micro-
phones is employed. As the distance increases, the theoretical prob-
ability distribution exhibits a smaller correlation. Hence, the mutual
correlation of the fluctuations between two points decreases. In line
with the theoretical representation in (34), the results in Fig. 5(b)
approach that of the one (i.e., Gamma pdf) measured with only one
microphone regardless of the conditioned level. At any rate, it must
be noticed that regardless of the distance between microphones, the
theoretical curves always explain the measured data.

5.2 Actual Application to EM Environment

Next, for the purpose of partly confirming the actual effectiveness
of three conditional pdfs in (29), (30) and (33), the proposed method
is applied to an evaluation problem of a probability distribution of
electric and magnetic fields leaked from a VDT and a television under
the actual situation of playing television games in the room. Figure 6
shows a schematic drawing of this EM experiment carried out in our
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laboratory. The rms values of electric and magnetic field fluctuation ra-
diated have been measured coincidentally by use of a Holaday’s electric
field survey meter and a Narda’s gaussmeter. The slowly fluctuating
720 data of nonstationary type for each stochastic variable have been
sampled with a sampling interval of 5 sec. The measured data up to
500 has been first used for finding the conditional pdf P (E1|E2) after
regarding respectively the magnetic field on a power scale as E1 and
the electric field on a power scale as E2. Then, the remaining non-
stationary new data of E2 have been used for predicting the response
frequency distribution of P (E1) by theoretically finding many sample
data of E1 after substituting these E2 data into the above-learned
conditional expression 〈E1|E2〉 , as follows:

〈E1|E2〉
(

=
∫ ∞

0
E1P (E1|E2) dE1

)

=
∞∑
m=0

1∑
n=0

CnAmn

√
m!Γ(m2)

Γ(m2 + m)
L(m2−1)
m

(
E2

S2

) (36)

with

Amn =

〈√
Γ(m2)m!

Γ(m2 + m)
L(m2−1)
m

(
E2

S2

) √
Γ(m1)n!

Γ(m1 + n)
L(m1−1)
n

(
E1

S1

)〉
.

(37)
In (36), each coefficient Cn (i.e., C0 and C1 ) is in advance given by
the orthogonal expansion of arbitrary functions of E1 based on the
associated Laguerre polynomial L

(m1−1)
n

(
E1
S1

)
, as follows:

C0 = m1S1, C1 = −
√

m1S1 (38)

with mi = µ2
i /σ

2
Ei

and Si = σ2
E/µEi (i = 1, 2). Here, µEi and σ2

Ei

denote respectively the mean value and the variance with respect to
each stochastic variable Ei(i = 1, 2).
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Figure 7. A comparison between the experimentally sampled points
and the theoretically predicted curve for the cdf of magnetic field on a
power scale.

Figure 8. A comparison between the experimentally sampled points
and the theoretically predicted curve for the cdf of electric field on a
power scale.
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Figure 9. A comparison between the experimentally sampled points
and the theoretically predicted curve for the cdf of magnetic field on a
power scale.

Figure 7 shows a comparison between the theoretically predicted
curve (i.e., the second approximation of the expansion series) by use
of the proposed method and the experimentally sampled points for the
cdf of magnetic field strength on a power scale. It is obvious that the
theoretical curve is in good agreement with the experimental values.

On the other hand, as mentioned in the theoretical consideration,
the theoretical result for one dimensional expression agrees completely
with the result reported in the previous paper. In this case, the esti-
mated results (i.e., the first term of the expansion series) for the cdfs
of electric and magnetic field strengths on a power scale are respec-
tively shown in Figs. 8 and 9. From these figures, it is obvious that the
theoretical curves are also in good agreement with the experimental
values.

6. CONCLUSION

For the purpose of finding a more unified research method on the
stochastic evaluation of EM environment, in this paper, the arbitrari-
ness of correlative random fluctuations at many observation points in
a space domain has been taken into consideration in addition to the
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arbitrariness of random fluctuation in a time domain as reported in the
previous paper. First, a multivariate Hankel transform type joint char-
acteristic function of arbitrary order has been first introduced, because
it is suitable for consideration in the stochastic analysis of correlative
EM fluctuation waves observed at many measuring points, once after
newly establishing the join probability model for many series of correl-
ative multi-dimensional random walks. Hereupon, each time constant
of mean squaring type detectors and each arbitrary frequency band-
width of EM input waves have been reflected in the dimension number
of corresponding signal space related to Shannon’s information theory.
Furthermore, the space location and time emission of many EM inter-
ference sources have been reflected in the form of stochastic property
as the probability distribution parameters.

Finally, the validity and effectiveness of the proposed theory have
been experimentally confirmed through first an acoustic type (stimu-
lation) experiment (which is the same wave motion type environment
as EM interference) and then an actual application to an EM environ-
ment leaked from a VDT of a personal computer and a television in
the actual working situation.

This research is obviously at an early stage of development. There
still remain many future problems to be solved, such as:

1) applying this unified fundamental theory to many other actual EM
environments,

2) finding some simplified expression through the approximation of this
theory,

3) finding an appropriate way to determine the optimal order of the
proposed series expansion.
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