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1. INTRODUCTION

A number of recent artificial constructs have indicated the possibility
of designing the electric or magnetic properties of a medium. Several
examples of these artificial materials have been shown in the past few
years [1–6]. Most of them present a behavior that can be recovered
using two basic material models: the Debye and Lorentz models.

We presented in some previous papers a new way to realize artifi-
cial dielectric, magnetic or bianisotropic materials, and how to derive
their electromagnetic properties [7–10]. These materials are made of
so called molecules (one or more small antennas connected to an elec-
tronic load circuit) embedded in a host medium. They can be linear
or non linear, depending on the properties of the load circuit. The
interaction of an EM wave with this kind of material has been studied,
both theoretically and numerically. In this last case, the FDTD algo-
rithm is very well suited. It has been used extensively for modeling
effects in complex media including, for example dispersive dielectrics
[11–18], ferrites [13, 16, 18–21] and nonlinear dielectrics [16, 22, 23].
It has been coupled very successfully with both linear and nonlinear
circuit simulators [7–10, 16, 18, 24–32].

We recall in section 2 the main formulas and properties of these ma-
terials, in the case of linear molecules. Depending on the complexity of
the load circuit, we recover the well known Debye and Lorentz models
but also generalize them to more complicated models, such as the Time
Derivative Debye model (TDD), One and Two Time Derivative Lorentz
models (TDLM, 2TDLM). But if the load gets more complicated, the
implementation of the differential equation describing the behavior of
the molecule can become very hard. To overcome this problem, we de-
rived a new matrix formulation method [33], based on a state variables
approach developed in [34, 35] which for linear molecules maintains the
explicit nature of the usual FDTD scheme. This method is explained
in section 2, and the implementation is shown in section 3. Section 4
presents some validation cases, compared with results obtained by the
usual FDTD scheme. We present in section 5 the generalization of our
formulation to non linear molecules. Several numerical examples are
given to illustrate the efficacy of the matrix formulation for both linear
and nonlinear molecules.

All the computations use a 1D FDTD program. Because the circuit
elements are assumed to be contained within one FDTD cell and result
in a system of ordinary differential equations which simply augment the
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(a) dipole (b) loop

Figure 1. Description of the antennas.

usual Maxwell’s equations, this approach can easily be extended to 3D.
We chose to work in 1D even though it neglects interesting polarization
and directionality issues in order to simplify the presentation of our
approach and the associated results.

A −jωt convention is understood and omitted throughout this
paper.

2. LINEARLY LOADED MOLECULES

2.1 Previous Method

We consider here some electric or magnetic molecules, made of elec-
trically small dipole or loop antennas (Fig. 1, i.e., kl0 , kr0 � 1 , where
2l0 is the total length of the dipole, r0 is the radius of the loop, and k
is the wavenumber in free space) connected to a linear electronic load
circuit.

We derived in some earlier articles [7, 8] the following formulas for
the equivalent susceptibility of the molecules

χe =
Ke

−jω(Zdin + ZdL)
Ke =

l20
ε0V
| cosψe| sin θ

χm =
KhZ

l
L

Z lin + Z lL
Kh =

µ0S
2

LlV
| cosψh| sin θ

where ψe and ψh are the angles between the axis of the antenna and
the incoming field, θ is the spherical angle of radiation, S = πr2

0 is
the surface of the loop, V is the small volume around the molecule
where the EM properties can be considered as constant, Z∗in and Z∗L
are respectively the input and load impedances of the molecules and
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the superscripts are ‘ d ’ for the dipole and ‘ l ’ for the loop:

Zdin =
1

−jωCd
Z lin = −jωLl

Cd is the equivalent capacitance for the small dipole and Ll is the
equivalent inductance for the small loop. ε0 and µ0 are the permit-
tivity and permeability of free space.

This approach enabled us to show that the EM properties of those
molecules recover some previously known behaviors (such as Debye
and Lorentz) and generalize them to more complex behaviors (Multiple
Time Derivative Debye and Lorentz) [9].

However when the load circuit becomes complex, the differential
equation describing the interaction of the EM wave with the molecule
can become very complicated to derive and implement. For example,
if the load is a series LC parallel to a series LR circuit, we have to deal
with a fourth order model, characterized by a differential equation of
the following type:

4∑
i=0

αi
∂iP

∂ti
=

4∑
j=0

βj
∂jE

∂tj
.

The method usually used for the FDTD implementation is the Auxil-
iary Differential Equation method (ADE) [16] which breaks this differ-
ential equation into an equivalent system of simultaneous differential
equations of the first and second order. This implies that one needs
to find a set of new local unknowns that do not appear in the final
results. This can be very complicated.

The aim of our new approach is to overcome this difficulty, by the use
of the state variables, which are the natural variables of the problem.

2.2 New Matrix Formulation

Our new method was developed in similarity to [34]. It is based on
the decomposition of the problem in two separate problems:

• describe the molecule by its equivalent Thevenin’s or Norton’s
circuit, analyze it and extract the corresponding linear matrix
differential equation that most appropriately describes its behav-
ior,

• consider the interaction of the wave and the molecule by adding
Maxwell’s equations.
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Figure 2. Dielectric molecule and equivalent Thevenin’s circuit.

We will examine this approach in the case of molecules consisting of
a single antenna: a dipole and a loop. Using network theory, one can
write a set of first order differential equations describing the behavior
of the electronic circuit equivalent to the molecule (normal form) [36].
The unknowns of this set of equations are the so called state variables
of the circuit. We will show that these natural variables can be related
to the intermediate variables one would use to simplify the ADE.

In the following, we will assume ψe = ψm = 0 and θ = π/2 for
simplicity.

2.2.1 Dipole antenna

In the case of the dipole antenna, we consider the unknown vector
x , which is the vector (of dimension n , the total number of non resistor
devices of the circuit) of the inductor currents and capacitance voltages
of the molecule

x =




...
vC
...
iL
...



,

where the very first unknown x1 is the voltage vCd at the equivalent
capacitance of the antenna. From the equivalent Thevenin’s circuit
(Fig. 2), the set of Kirchhoff’s voltage and current equations can then
be written in a matrix form as

∂x

∂t
+ ax = bxi, (1)
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where a is a square matrix, b = [b∗,1 b∗,2] , b∗,1 and b∗,2 represent the
elements of the first and second columns of b , and xi is the excitation
vector defined by:

xi =

[
∂vi
∂t
vi

]
,

where vi is the source voltage.
We now need to describe the interaction of the equivalent circuit

with the EM wave. For our one dimensional analysis, we can write
Maxwell’s electric curl equation (Faraday’s law) as

∂Ex
∂t

= − 1
ε0

∂Hy

∂z
− 1

ε0

∂Px
∂t

. (2)

We know from basic antenna theory that the polarizability can be
related to the current iCd on the dipole with

− 1
ε0

∂Px
∂t

=
l0
ε0V

iCd =
Ke

l0
iCd ,

and that vi = −l0Ex [37]. Equations (2) and (1) lead to the following
system 


∂Ex
∂t
− Ke

l0
iCd = − 1

ε0

∂Hy

∂z
,

∂x

∂t
+ ax + l0b∗,1

∂Ex
∂t

+ l0b∗,2Ex = 0,
(3)

which, using iCd = Cd
∂vCd
∂t = Cd

∂x1
∂t , can be written as


∂Ex
∂t
− Ke

l0
Cd

∂x1

∂t
= − 1

ε0

∂Hy

∂z
,

∂x

∂t
+ ax + KeCdb∗,1

∂x1

∂t
+ l0b∗,2Ex =

l0b∗,1
ε0

∂Hy

∂z
.

From the second relation of this system we can extract an explicit
equation giving ∂x1/∂t that we can plug into the first relation to
obtain the final system of first order differential equations:



∂Ex
∂t

+
KeCdb1,2

1 + KeCdb1,1
Ex + a1,∗

KeCd/l0
1 + KeCdb1,1

x

= − 1
ε0(1 + KeCdb1,1)

∂Hy

∂z
,

∂x

∂t
+ ax + KeCdb∗,1

∂x1

∂t
+ l0b∗,2Ex =

l0b∗,1
ε0

∂Hy

∂z
.

(4)
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Considering these equations, we see that we can define a new un-
known vector X as

X =
[
Ex
x

]
,

and rewrite system (4) as a new differential matrix equation of the
following form

∂X

∂t
+ AX = B (5)

where A is a square matrix, and B a one column matrix.

In many practical cases, we have b∗,1 ≡ 0 . The system (4) can then
be simplified as following:




∂Ex
∂t

+
Ke

l0
Cd (a1,∗x + b1,2l0Ex) = − 1

ε0

∂Hy

∂z
,

∂x

∂t
+ ax + b∗,2l0Ex = 0.

The matrix A can then be written in simple form, where a appears
as a submatrix.

A =

[
b1,2CdKe a1,∗

CdKe

l0
b∗,2l0 a

]
,

where a1,∗ is the first line of a , b∗,2 is the second column of b and
b1,2 its first element. The vector B is given by

B =

[
− 1
ε0

∂Hy

∂z
O

]
,

where O is the null vector of dimension n . It is interesting to see
that B is only related to the EM wave, and not to the molecule.

On the other hand, if b∗,1 �≡ 0 , we can have the following property:
every time derivative in ∂x

∂t is independent of x1 ≡ vCd . In this case,
we can extract ∂x1

∂t from the first equation of the system (3) to obtain

∂x1

∂t
= −a1,∗x− l0b1,2Ex − l0b1,1

∂Ex
∂t

,
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which can be plugged into the second equation of the system (3). This
process leads to the relation

α
∂Ex
∂t

+ KeCdb1,2Ex +
KeCd
l0

a1,2:∗x
∗ = − 1

ε0

∂Hy

∂z
, (6)

where α = 1 + KeCdb1,1 and x∗ is x from which x1 is removed.
Inserting this equality in the second equation of the system (3), we
obtain the relation between ∂x∗

∂t and (x∗, Ex)

∂x∗

∂t
+

(
a∗ − KeCd

α
b∗,1a1,∗

)
x∗ +

(
l0b∗,2 −

KeCdl0
α

b1,2b∗,1

)
Ex

=
l0
αε0

b∗,1
∂Hy

∂z
,

where, a∗ is the matrix a without its first line and first row. Equation
(6) and this last equation give us system (5) where we use

X =
[
Ex
x∗

]
.

We thus reduced the size of our system. Solving the system (5) directly
gives the new value of the electric field in the medium. Furthermore,
this method leads to a fully explicit solution in the case of a linear
molecule.

2.2.2 Loop antenna

Similar results can be derived for the loop case, by considering again
the equivalent circuit of the magnetic molecule and deriving the matrix
differential equations system. In this case the unknown state variable
vector becomes

X ′ =
[
Hy

x′

]
,

where the vector x′ is made of the inductor currents and capacitance
voltages of the molecule. In a manne similar to the dipole case, we
assume that the first unknown x′1 is the current at the inductor equiv-
alent to the loop antenna.

3. IMPLEMENTATION

We can solve matrix differential systems in the form of equation (5)
using two different techniques : standard or exponential discretization.
We present the matrix expression of both cases in this section.
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3.1 Standard Discretization

We consider the matrix equation ∂X
∂t +AX = B , and write the time

derivative in the usual finite difference expression

∂X

∂t
=

Xn+1 −Xn

∆t
,

where we wrote Xk = X(k∆t) for simplicity. Then equation (5)
becomes (

Id + A
∆t

2

)
Xn+1 =

(
Id−A

∆t

2

)
Xn + ∆tBn+1/2

where Id is the identity matrix. This can be solved as

Xn+1 =
(
Id + A

∆t

2

)−1

·
(

(Id−A
∆t

2
)Xn + ∆tBn+1/2

)
. (7)

This is the solution of our matrix differential equation, using a matrix
version of the classic Yee algorithm.

In some cases, the elements of the matrix A∆t/2 are very small
compared to one, since ∆t is very small. We can then use the approx-
imation (

Id + A
∆t

2

)−1

= Id−A
∆t

2
+O(∆t2)

and simplify the update equation to obtain a simplified matrix relation

Xn+1 = (Id−A∆t)Xn + ∆tBn+1/2 +O(∆t2). (8)

3.2 Exponential Discretization

If we set X = FY with the condition that F satisfies the differen-
tial equation

∂F

∂t
+ AF = 0, (9)

we obtain, from the original ODE

F
∂Y

∂t
= B. (10)
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The solution of equation (9) can be written as F = e−At where we
define the exponential of a matrix as

e−At = Id +
n=∞∑
n=1

(−A)ntn

n!
.

We can then show that (e−At)−1 = eAt which implies that the solution
of equation (10) is

∂Y

∂t
= F−1B = eAtB.

Therefore, integrating between n∆t and (n+1)∆t and assuming the
right hand side term is constant, we obtain

Y n+1 = Y n + ∆t eA(n+1/2)∆tBn+1/2,

leading to the following update equation

Xn+1 = e−A(n+1)∆teAn∆t Xn + ∆t e−A(n+1) ∆teA(n+1/2)∆t Bn+1/2.

To compute eAn∆t one needs to know the eigenvalues and eigenvectors
of A . If these eigenvalues are known, we can use the following formula
:

eAn∆t = Ψ−1E(n∆t)Ψ

where Ψ is the matrix of the eigenvectors and E(n∆t) is

E(n∆t) =




. . . 0
eλin∆t

0
. . .




where the λi are the eigenvalues of A .
This last method leads to a more complicated result, but both meth-

ods are consistent. The advantage of the matrix formulation is that all
the matrices involved in the update equations can be computed only
once, at the beginning of the computation.

In order to guarantee convergence of the numerical approach, the
matrix differential equation, hence, the resulting matrix A must be
constructed so that A will have no eigenvalues that lead to growing
solutions. Through experimentation we have found that in practice it
is always feasible to find such a matrix A .
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4. FDTD RESULTS

4.1 Dielectric Lorentz Material

The dielectric Lorentz material can be obtained by connecting a
simple series RLC load to the dipole antenna [7]. We combine the two
capacitors as a single series capacitance C = CLCd/(CL + Cd) ; our
circuit unknown then takes the form

x =
[
vC
iL

]
.

Applying Kirchhoff’s voltage and current relations to the Thevenin’s
equivalent circuit of the molecule, we obtain the matrix differential
equation

∂x

∂t
+


 0

−1
C

1
L

R

L


x =

[
0 0
0

1
L

]
xi.

Then, using vi = −l0Ex and Maxwell’s curl equation (2), we obtain
the following differential equation

∂X

∂t
+




0 0 −Ke

l0

0 0
−1
C

l0
L

1
L

R

L


X =


−

1
ε0

∂Hy

∂z
0
0


 , where X =


Ex
vC
iL


 .

We then use the scheme described in equation (7) to find the following
update matrix equation :

Xn+1 =
1
D
U Xn − ∆t

D ε0

∂Hy

∂z


 4LC + 2RC∆t + ∆t2

−l0∆t2

−2l0C∆t


 (11)

where D = 4LC +2RC∆t+(1+KeC)∆t2 and the matrix U is given
by
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U=


4LC + 2RC∆t + (1−KeC)∆t2 −2KeC∆t2/l0

−2l0∆t2 4LC + 2RC∆t + (−1 + KeC)∆t2

−4l0C∆t −4C∆t

4KeLC∆t/l0
4L∆t

4LC − 2RC∆t− (1 + KeC)∆t2


 .

If the elements of A∆t are negligible, we can use the simplified update
equation (8), leading to

Xn+1 =




1 0
Ke∆t

l0

0 1
∆t

C
−l0∆t

L

−∆t

L
1− R∆t

L


Xn +


−

∆t

ε0

∂Hy

∂z
0
0


 . (12)

We implemented both of these schemes into a standard staggered grid
FDTD method. This example uses a one dimensional TE mode Yee
algorithm, where the Ex field component is located at integer values
of the space discretization step and the Hy field component at half
integer values. Therefore, we put the capacitor voltage vC at the same
location as the electric field, and the inductor current iL at the same
location as the magnetic field. A similar leapfrog scheme is arranged
in time, where Ex and vC are at integer time steps, and Hy and iL
are taken at half integer time steps. Of course, this approach can be
easily extended to 3D.

In order to test the matrix approach, we have run comparisons
among several methods for a canonical problem dealing with the scat-
tering of a pulsed plane wave from a Lorentz dispersive, dielectric slab.
Figure 3 shows the values of the reflected and transmitted fields for
a dielectric Lorentz material slab, for an incoming field described by
a bipolar pulse which has the form Ei ∼ (1 − t2)3 over a finite time
period. The figure compares a reference case computed with the usual
FDTD scheme, the normal matrix formulation from equation (11),
and the simplified formulation using equation (12). All space and
time discretization are the same; they have values ∆z = 1 mm and
∆T = 0.33×10−11 s. The slab is 0.4 m thick. The total field/scattered
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Figure 3. Dielectric Lorentz material : Electric field (V/m) vs. dis-
tance (m) for l0 = 1.8 cm, R = 100Ω , L = 470 nH, Cd = 0.17 pF,
C = Cd/2 .

field source is located 5.0 m from the slab. The three curves seem to
be perfectly superimposed.

Figure 4 displays a closer look at the electric fields at the free space
- medium interface. Even if the standard scheme is more precise, the
error in the matrix formulation is less than 0.02% of the amplitude of
the input field.

For the dielectric Lorentz material, one can easily show that the in-
ductor current is related to the current density Jx and the capacitance
voltage to the polarization Px with :

Jx = −ε0Ke

l0
iL and Px = −ε0Ke

l0
C vC .

The term ε0Ke
l0

has the units of inverse area.



152 Auzanneau and Ziolkowski

Figure 4. Dielectric Lorentz material : difference between the 3 for-
mulations.

4.2 Dielectric Two Time Derivative Lorentz Material

The two time derivative Lorentz material (2TDLM) model is ob-
tained with a parallel RLC load connected to the dipole antenna. This
2TDLM case is slightly more difficult because we have a different x
vector in addition to some new terms that appear in the expression of
∂vi
∂t :

∂x

∂t
+




0
−1

R(CL + Cd)
−1

CL + Cd

0
1

R(CL + Cd)
1

CL + Cd

0
−1
L

0


x =




CL
CL + Cd

0

Cd
CL + Cd

0

0 0


xi

where x =


 vCd
vCL
iL


 .

The voltage vCd is measured across the capacitance equivalent to the
antenna, vCL is the voltage across the capacitance of the load and
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iL is the current through the inductor of the load. We have non zero
terms in the first row of the b matrix, so we can remove vCd and set

X =


 Ex
vCL
iL




to obtain, using the simplified update equation (8) :

∂X

∂t
+




0 − β

R
−β

0
γ

R
γ

0 − 1
L 0


X =




− l0
ε0α

∂Hy

∂z
l20Cd

ε0α(CL + Cd)
∂Hy

∂z
0


 ,

where

α = 1 + Ke
CLCd

CL + Cd
, β =

Ke

l0α

Cd
CL + Cd

and γ =
1 + βl0Cd
CL + Cd

.

This can be solved using equations (7) or (8).

5. NON LINEARLY LOADED MOLECULES

Nonlinear materials result from the introduction of active circuit ele-
ments into the circuit which loads the antennas. The actual usefulness
of the resulting active materials as “smart skins” (i.e., a surface that
could actively respond to variations in the incident field) can also be
assessed using FDTD calculations. As was done before [38], the gener-
alized polarization field equation is coupled with Maxwell’s equations
in a natural way and solved numerically with the FDTD approach.
We still use a method derived from [34]; but in the case of a nonlinear
load, we can not decompose our problem into independent circuit and
field components. We now have to consider as a whole the circuit and
the antenna illuminated by the incoming field.

5.1 Dipole Antenna

We again introduce an unknown vector X defined as the vector of
the electric field, the capacitor voltages, including the antenna, and the
inductor currents. However we must take into account a new vector
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Figure 5. Equivalent circuit to the clamping molecule.

W for the nonlinear devices, composed of their driving voltages and
currents. Consequently, our matrix differential system becomes more
complicated, and can be written as

{
Ẋ + AX = BW + C

f(W ) = DTX + ETW,

where the multidimensional function f describes the behavior of the
nonlinear components. The time derivative of the second equation
gives (

∂f

∂W
− ET

)
∂W

∂t
= DT (BW + C −AX)

which can be solved with a differential equation solver for W ( 4th

order Runge Kutta for example). On the other hand, the first part of
the system can be solved, using equation (7) as usual in the FDTD
scheme

Xn+1 =
(
Id + A

∆t

2

)−1

·
((

Id−A
∆t

2

)
Xn + ∆t(BW + C)n+1/2

)

leading to X and the electric field using the value of W previously
calculated.

5.1.1 Application: Clamping circuit

A load composed of a resistor R and a diode is connected to the
dipole antenna (Figure 5). The diode’s behavior is modeled using the
nonlinear equation i = Is(eαvd−1) where vd is the diode voltage. Us-
ing Kirchhoff’s laws and equation (2) we have the following differential
system
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∂X

∂t
+




Ke

R

Ke

l0R
l0

RCd

1
RCd


X =



−Ke

l0R−1
RCd


W +

[ −1
ε0

∂Hy

∂z
0

]

where X =
[
Ex
vCd

]
and W = [ vd ] ,

(13)

and the nonlinear equation

i = f(vd) = Is(eαvd − 1) =
−1
R

(l0Ex + vCd)−
vd
R
. (14)

The time derivative of equation (14) gives us our nonlinear differential
equation, solved with a 4th order Runge Kutta algorithm

∂vd
∂t

(1 + α(RIs − l0Ex − vCd − vd))

=
l0
ε0

∂Hy

∂z
+ (l0Ex + vCd + vd)

(
Ke + 1/Cd

R

)
.

Using relation (7) to solve equation (13) we obtain

Xn+1 =
1
D
U Xn +

∆t

D


−

∆t + 2RCd
ε0

∂H

∂z
− 2

KeCd
l0

vd

l0∆t

ε0

∂H

∂z
− 2vd


 . (15)

where

U =

[
2RCd + ∆t(1−KeCd) −2

KeCd
l0

∆t

−2l0∆t 2RCd −∆t(1−KeCd)

]
,

D = 2RCd + ∆t(1 + KeCd).

After finding vd we use equation (15) to compute and update the
electric field Ex .

This approach actually leads to unstable (infinite) results. The E
field coefficient of the U matrix is usually close to −1 because the
term KeCd∆t is greater than the other terms. If we increase the
resistor value, in order to change the sign of the field term, the clamping
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effect disappears, as the molecule becomes closer to a resistive Debye
molecule.

Another choice for W is more appropriate. Setting W = [i] leads
to

∂X

∂t
+

[
0 0
0 0

]
X =

[ Ke
l0
1
Cd

]
W +

[ −1
ε0

∂Hy
∂z

0

]

Differentiating the equation of the diode with respect to time gives us

∂i

∂t
= α(i + Is)

∂vd
∂t

where we can plug the time derivative of the voltage relation vd =
vi − vCd −Ri to obtain our nonlinear differential equation

∂i

∂t
=

α(i + Is)
1 + Rα(i + Is)

[
l0
ε0

∂Hy

∂z
−

(
Ke +

1
Cd

)
i

]
.

Solving this equation will allow us to find the current i which can be
plugged into the update equation, obtained with (8) :

Xn+1 =
[

1 0
0 1

]
Xn +



Ke∆t

l0
∆t

Cd


Wn+1/2 +

[ −∆t

ε0

∂Hy

∂z
0

]n+1/2

This approach is simpler, and shows that the results are greatly de-
pendent of the choice of the unknowns.

Figure 6 shows the value of the reflected and transmitted electric
fields, in the case of a clamping molecule with : l0 = 5 cm , V =
3.10−8 m3 , the diode coefficients α = 40 V −1 and Is = 2.10−9 A ,
and a 10 Ω resistor. The incident field is a sinusoidal pulse of 1 GHz
frequency. The results are identical to [38].

5.2 Loop antenna

We have shown in an earlier work [38] that, due to the fact that
most of the nonlinear devices available today are voltage driven, no
application for a loop antenna. Consequently, we will not detail the
matrix formulation for a loop-based load. Nonetheless, it would be
straightforward to derive it from the discussions given above.
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Figure 6. Clamping material : Electric field (V/m) vs. distance (m)
for α = 40 V −1 , R = 10 Ω , l0 = 5 cm.

6. CONCLUSION

We presented a new matrix method for the computation, with an
FDTD method, of the field diffracted by a slab of artificial material.
This approach uses a state variable method and is fully explicit in the
case of linear materials. The ADE method [16], for example, would
lead to a high order differential equation, that would have to be de-
composed into a set of simultaneous first and second order differential
equations which would then require determining some new and ade-
quate intermediate set of variables to solve the problem. This process
is naturally handled in our method. The intermediate variables are
immediately found by writing the normal form of the network Kirch-
hoff’s equations. A matrix formulation was introduced that enables
us to solve this system in a direct way. A simplification is possible,
in many cases, that leads to a fully explicit solution, i.e., without any
matrix inversion.

Considering the decomposition of the physical permittivity and/or
permeability functions presented in [39], it appears possible to ap-
ply our artificial material models and matrix method formulation to
any kind of linear dielectric and/or magnetic material. In particular,
a method was given in [39] to model any kind of linear material as
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an electronic circuit composed of several RLC stages in parallel. We
could use our matrix method to find the proper state variables and
easily decompose the associated set of differential equations. The ex-
plicit matrix formulation would then enable us to simulate quickly the
interaction of an electromagnetic wave with such a material.

It was shown that the matrix method can be generalized to nonlin-
ear loads and leads to the resolution of a system of linear differential
equations describing the wave propagation effects coupled with the
nonlinear equations describing the nonlinear load elements. We pre-
sented an example, a diode clamped material, which shows that the
choice of the intermediate variables is very important and that the
choice of the natural state variables leads to a stable system of equa-
tions. Previously predicted results for scattering from this material
were recovered efficiently and accurately with the matrix method.
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matériaux bianisotropes contrôlables,” Journal de Physique III,
Vol. 7, 2405–2418, Dec. 1997.

10. Auzanneau, F., and R. W. Ziolkowski, “Theoretical study of syn-
thetic bianisotropic smart materials,” J. EM Waves and Appl.,
Vol. 12, No. 3, 353–370, Oct. 1997.

11. Kashiwa, T., and I. Fukal, “A treatment by the FDTD method of
the dispersive characteristics associated with electronic polariza-
tion,” Microwave and Optical Technology Letters, Vol. 3, No. 6,
1326–1328, 1990.

12. Joseph, R. M., and A. Taflove, “Direct time integration of Max-
well’s equations in linear dispersive media with absorption for
scattering and propagation of femtosecond electromagnetic
pulse,” Opt. Letter., Vol. 16, No. 18, 1412–1414, 1991.

13. Kunz, K. S., and R. J. Luebbers, The Finite Difference Time
Domain Method for Electromagnetics, CRC Press, Boca Raton,
Floria, 1993.

14. Young, J. L., “Propagation in linear dispersive media: Finite
difference time domain methodologies,” IEEE Trans. Antennas
and Propagat., Vol. AP-43, 422–426, Apr. 1995.

15. Judkins, J. B., and R. W. Ziolkowski, “Finite difference time do-
main modeling of nonperfectly codnducting thin-film gratings,”
J. Opt. Soc. Am. A, Vol. 12, No. 9, 1974–1983, Sept. 1995.

16. Taflove, A., Computational Electrodynamics. The Finite Differ-
ence Time Domain Method, Artech House, 1995.

17. Okoniewski, M., and M. A. Stuchly, “Simple treatment of multi-
term dispersion in FDTD,” IEEE Microwave and Guided Wave
Lett., Vol. 7, 121–123, 1997.



160 Auzanneau and Ziolkowski

18. Taflove, A., Advances in Computational Electrodynamics, Artech
House, 1998.

19. Okoniewski, M., and E. Okoniewska, “FDTD analysis of magne-
tized ferrites: A more efficient algorithm,” IEEE Microwave and
Guided Wave Lett., 169–171, 1994.

20. Melon, C., Ph. Leveque, T. Monediere, A. Reineix, and F. Jecko,
“Frequency dependent finite difference time domain formulation
applied to ferrite material,” IEEE Microwave and Opt. Tech.
Lett., Vol. 7, 577–579, 1994.

21. Pereda, J. A., L. A. Vielva, M. A. Solano, A. Vegas, and A. Pri-
eto, “FDTD analysis of magnetized ferrites: Application to the
calculation of dispersion characteristics of ferrite loaded waveg-
uides,” IEEE Trans. Microwave Theory and Techniques, Vol. 43,
350–357, 1995.

22. Ziokowski, R. W., and J. B. Judkins, “NI-FDTD modeling of
linear and nonlinear corrugated waveguides,” J. Opt. Soc. Am.
B, Vol. 11, No. 9, 1565–1575, 1994.

23. Ziokowski, R. W., and D. M. Gogny, “Ultrafast pulse interaction
with two-level atoms,” Phys. Rev. A, Vol. 52, No. 4, 3082–3094,
Oct. 1995.

24. Toland, B., J. Lin, B. Houshmand, and T. Itoh, “FDTD analy-
sis of an active antenna,” IEEE Microwave Guided Wave Lett.,
Vol. 3, 423–425, Nov. 1993.

25. Toland, B., and T. Itoh, “Modeling od nonlinear active region s
with the FDTD method,” IEEE Microwave Guided Wave Lett.,
Vol. 3, 333–335, Sept. 1993.

26. Kuo, C. N., V. A. Thomas, S. T. Chew, B. Houshmand, and
T. Itoh, “Small signal analysis of active circuit using FDTD al-
gorithm,” IEEE Microwave Guided Wave Lett., Vol. 5, 216–218,
July 1995.

27. Kuo, C. N., R. B. Wu, B. Houshmand, and T. Itoh, “Modeling of
microwave active devices using the FDTD analysis based on the
voltage-source approach,” IEEE Microwave Guided Wave Lett.,
Vol. 6, 199–201, May 1996.

28. Kuo, C. N., B. Houshmand, and T. Itoh, “Full wave analysis of
packaged microwave circuits with active and nonlinear devices:
An FDTD approach,” IEEE Trans. Microwave Theory Tech.,
Vol. 45, No. 3, 819–826, May 1997.

29. Picket-May, M., A. Taflove, and J. Baron, “FDTD modeling of
digital signal propagation in 3-D circuits with passive and active
loads,” IEEE Trans. Microwave Theory Tech., Vol. 42, No. 8,
1514–1523, Aug. 1994.



Matrix FDTD formulation for synthetic materials 161

30. Thomas, V. A., M. E. Jones, M. Picket-May, A. Taflove, and
E. Harrigan, “The use of spice lumped circuits as sub-grid models
for FDTD analysis,” IEEE Microwave Guided Wave Lett., Vol. 4,
141-143, May 1994.

31. Alsunaidi, M. A., S. M. Sohel-Imtiaz, and S. M. El-Ghazaly,
“Electromagnetic wave effects on microwave transistors using a
full-wave time domain model,” IEEE Microwave Guided Wave
Lett., Vol. 44, No. 6, 799–808, June 1996.

32. Sui, W., D. A. Christensen, and C. H. Durney, “Extending the
two-dimensional FDTD method to hybrid electromagnetic sys-
tems with active and passive lomped elements,” IEEE Trans.
Microwave Theory Tech., Vol. 40, 724–730, Apr. 1992.

33. Auzanneau, F., and R. W. Ziolkowski, “Matrix formulation for
the analysis and design of synthetic linear and nonlinear materi-
als,” PIERS 98, 1170, Nantes, 13–17, July 1998,.

34. Auzereau, L., Prise en compte de circuits complexes non linéaires
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