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1. INTRODUCTION

Frequency Selective Surfaces (FSS) are periodic screens that act as
electromagnetic filters. They are typically used in dichroic reflectors
[1] and radomes [2]. Ideally, at some frequencies an FSS completely
reflects an incident plane wave, while at other frequencies the FSS
is completely transparent to the incident plane wave. When design-
ing an FSS to achieve a certain spectral response, many parameters
can be adjusted, such as the dimensions of periodicity, element shape,
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dielectric thickness and constant, and number of periodic screens. Due
to the vector nature of the electric and magnetic fields, the frequency
response depends on the angle of incidence as well as the polariza-
tion of the incident wave. For capacitive type FSS (surfaces composed
of scattering elements as opposed to scattering apertures [3]), 100%
reflection is possible only when the elements are resonating. One of
the figures of merit of a resonance is the Quality factor, Q, which is
defined as

Q =
f0

∆f
(dimensionless) (1)

where f0 is the center frequency, and ∆f is the 3 dB bandwidth.
The main goal of this paper is to give an in-depth understanding

of resonances in FSS which are very narrow band (extremely high Q)
by revisiting two different FSS which have been previously analyzed in
the literature [4, 5]. When the resonant bandwidth becomes extremely
small, numerical simulation becomes difficult. We detail in this paper
all the problems associated with modeling high Q resonances.

The FSS in [4] (shown in Fig. 1) exhibits an extremely high Q
resonance when the dipole length is approximately 1λ . This FSS is the
topic of Section 3. The FSS in [5] (see Fig. 8) also exhibits an extremely
high Q resonance, but its high Q resonance occurs when the width
of the element is about 0.5λ . This FSS is investigated in Section 4.
The high Q resonances in both FSS are extremely dependent on the
angle of incidence. The resonant bandwidth becomes identically 0 Hz
(infinite Q) when the incident angle is normal. In both cases, the
frequency sampling by the original authors was too course to properly
capture the high Q resonances for near normal incidence. In this
work, the frequency sampling rate is reduced to .01 Hz out of 14 GHz
(1 part in a trillion) near the high Q resonances, in order for the high
Q resonances to become apparent.

The reason why certain resonances are necessarily narrow band in
their nature is discussed in great depth. The analysis in Section 3 and
4 shows that the high Q resonances can only appear in infinite FSS
composed of perfect conductors. The effect of surface impedance on
the narrow band resonances is shown in Section 3.B.

The numerical consequences of the high Q resonances on the so-
lution accuracy is investigated in depth in Section 5. It is found that
near high Q resonances, the problem becomes less well posed in the
sense that the matrix condition number rises sharply. Higher resonant
Q results in higher condition numbers. Within the numerical analysis
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Figure 1. Section of a free standing infinite FSS of dipoles. Dimen-
sions are in cm.; shaded region is metallic.

section, we explain why the matrix condition number increases near
the high Q resonances. We also demonstrate that our results are still
valid in spite of the fact that high condition numbers usually result in
large numerical errors.

2. SOLUTION METHODOLOGY—REVISITED

The analysis of Frequency Selective Surfaces (FSS) is well documented
in the literature [6]. Here, we present the final results, in order to
emphasize certain numerical as well as physical aspects.

The solution involves a Method of Moments formulation [7] to solve
an integral equation which takes into account the periodic nature of
the problem. As usual in the Method of Moments, one solves a matrix
equation of the following form:

 z1,1 . . . z1,N
...

...
zN,1 . . . zN,N


 ·


 i1

...
iN


 =


 v1

...
vN


 (2)

The unknown vector, [i1, i2, . . . , iN ]Transpose, represent the current in-
duced on a periodic cell, and the vector on the right hand side of (2)
represents the integration of the incident field with the testing func-
tions. The elements of the matrix in (2) have the form

zi,j(θ, φ, f) =
2∑

m=1

∞∑
p=−∞

∞∑
q=−∞

ηmpq
2A∫∫ ({∫∫ (

k̂mpq · �Bj

(
�rT
′)) e+j�kTpq·�rT ′ds′

}
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(
k̂mpq · �Ti (�rT)

)
e−j�kTpq·�rT

)
ds (3)

where

• A is the area of the periodic cell

• �kTpq =
(

2πp
a

+ k0 sin θ cosφ
)

x̂

+
(

2πq
b

ŷ − 2πp
a

cot(Ω) + k0 sin θ sinφ

)
ŷ

with k0 = 2πf
√

µε, θ and φ are the spherical coordinate an-
gles of the direction of propagation of the incident field, a is the
periodicity along the x-axis (2.24 cm in Fig. 1), b is the period-
icity along the y-axis (0.78 cm in Fig. 1), and Ω is a measure of
obliqueness (34.854◦ in Fig. 1).

• η1pq = γpqη
k0

(Transverse Magnetic, or TM case for m=1), η2pq =
k0η
γpq

(Transverse Electric, or TE case for m=2), with η =
√

µ
ε

is the free space wave impedance, and γpq =

√
k2

0 −
∣∣∣�kTpq

∣∣∣2 if

k0 >
∣∣∣�kTpq

∣∣∣ or γpq = −j

√∣∣∣�kTpq

∣∣∣2 − k2
0 if k0 <

∣∣∣�kTpq

∣∣∣ .

• �rT = xx̂+yŷ is the observation tangential coordinate, and �rT
′ =

x′x̂ + y′ŷ is the source tangential coordinate.
• κ̂1pq =

�kTpq

|�kTpq| (TM case), and κ̂2pq = ẑ× κ̂1pq (TE case). How-

ever, if θ = 0◦ and p = q = 0, then κ̂1pq = cosφx̂ + sinφŷ
• �Bj(�rT

′) is the jth basis functions and �Ti(�rT) is the ith testing
function.

Note that unlike the case of the non-periodic scatterers, for FSS,
zi,j(θ, φ, f) in (3) is a function of the angles of incidence, {θ, φ} . The
exponentials, e−j�kTpq·�rT in (3) are called Floquet modes and they sat-
isfy the periodic boundary condition that the scattered field in each
cell be identical in magnitude, with a progressive phase shift due to
the incident wave. The expression for the matrix elements in (3) is
simplified for the case of no dielectrics.

Although numerical errors arise due to truncation of the infinite
series in (3), in most cases no numerical errors are introduced due to
the integration, since the integration can be performed analytically for
a large class of basis and testing functions. The integrals in (3) are
essentially Fourier transforms of the basis and testing functions. For
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roof-top basis and testing functions (used throughout in this paper) the

Fourier transform has the generic form of
(

sin(x)
x

)2
·
(

sin(y)
y

)
(assuming

the function is triangular along the x-axis and constant along the
y-axis) .

Once the induced currents are found by inverting the matrix and
dotting with the right hand vector in (2), the reflection coefficient can
be found by integrating the induced current as such

Γ =
ηm,0,0
2A

∫
One

∫
Cell

(
κ̂m,0,0 · �J

(
�r′T

))
e+j�kT00 ·�r′Tds′ (4)

where �J(�r′T) is the total induced current on the periodic element.
The value of the subscript m in (4) is m = 1 for TM incidence, and
m = 2 for TE incidence. Substitution of Euler’s Identity into (4)
(ejx = cos(x) + j sin(x) where j =

√
−1) yields

Γ =
ηm,0,0
2A

∫
One

∫
Cell

(
κ̂m,0,0 · �J

(
�rT
′))

·
(

symmetric anti-symmetric︷ ︸︸ ︷
cos(k0L sin θ) +j

︷ ︸︸ ︷
sin(k0L sin θ)

)
dx′ dy′

(5)

where
L = x′ cosφ + y′ sinφ (6)

By explicitly presenting Euler’s Identity in the equation for the re-
flection coefficient as in (5), the symmetry properties of the inte-
gral can be more easily distinguished 1 . Equation (5) shows that an
anti-symmetric (odd) current distribution, �J, cannot radiate (have a
non-zero reflection coefficient) at normal incidence (θ ≡ 0◦) . When
θ → 0◦, but not identically zero, an odd current distribution can ra-
diate, provided the magnitude of �J is sufficiently large.

A computer program to analyze FSS based on the Floquet mode
expansion [6] was developed and tested. In the remainder of this paper,

1 A symmetric (even) function is a function which satisfies f(x) =
f(−x), and anti-symmetric (odd) function is a function which satisfies
f(x) = −f(−x) .
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Figure 2. Field reflection coefficient of array in Fig. 1 illuminated by
a normally incident plane wave with the E field polarized along the
length of the dipoles.

we use this program to examine the physical and numerical properties
of resonances in which the current distribution, �J in (5), is odd.

3. 1− λ HIGH Q RESONANCE

3.A Perfect Electric Conductors

For the first example of high Q resonances, we revisit the FSS problem
analyzed and measured by Larson and Munk [4]. The geometry and
dimensions of this FSS are depicted in Fig. 1. The array is incident
upon by a Transverse Electro-Magnetic (TEM) plane wave with the
electric field polarized along the length of the dipoles. In Fig. 2 we
show the magnitude of the field reflection coefficient along the specular
direction. This result agrees with Figure 7 of [4]. Figure 2 shows two
resonances. The first resonance, at 8.55 GHz, corresponds to a dipole
length of .58λ, and the second resonance, at 20.65 GHz, corresponds
to a dipole length of 1.41λ . At a first glance of Fig. 2, it seems that
there is no resonance when the dipole length is approximately 1λ .
Further analysis will prove otherwise.

Fig. 2 shows the reflection coefficient for the array in Fig. 1 under
normal incidence. Fig. 3 shows what happens when the incident field
is scanned along the length of the dipoles (φ = 0◦) at frequencies for
which the dipole length is approximately 1λ . As the incident angle,
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Figure 3. Field reflection coefficient of array in Fig. 1 at frequencies
where dipole length near 1λ and the incident field is scanned along
the length of the dipoles. (a) θ = 20◦, 10◦, (b) θ = 1.0◦, 0.1◦, 0.0◦ .
Min → Max refers to the frequency separation between a reflection
coefficient of 0 and 1. Note the different frequency scales, due to the
different bandwidths.

Figure 4 Time evolution of a vector plot of the induced �e[ejωt�Js
(�rT

′)] at 1λ resonance. The magnitude of the current depends on the
angle of incidence, as shown in Table 1.

θ , approaches 0◦, the bandwidth of the resonance approaches 0 Hz.
In fact, for small angles of incidence, the bandwidth is proportional to
the square of the angle (reducing the angle by a factor of 10, reduces
the bandwidth by a factor of 100).

A time evolution vector plot of the induced current is shown in
Fig. 4. The advantage of presenting the currents in a time evolu-
tion vector plot is that in one graph (with eight sections) both the
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magnitude and phase of both Jx and Jy can be shown at once. The
plot of the induced currents in Fig. 4 helps explain why the bandwidth
approaches 0 Hz as the incident angle, θ, approaches 0◦ . The res-
onant current (for the dipoles ≈ 1λ) along the dipole length is an
odd function (see figures in appendix for plots showing odd and even
functions). For θ = 0◦, complete symmetry exists so the integral in
(5) vanishes. For θ �= 0◦, some radiation is possible, since there will
not be an exact cancellation of the currents in the radiation integral
(5). In order to obtain complete reflection though, the amplitude of
the current must be large. As shown in Table 1, the magnitude of
the current is approximately inversely proportional to θ for small θ .
This is due to the fact that in (5), sin θ ≈ θ for small θ . Since in-
finitesimally small θ results in infinitely large resonating currents, the
bandwidth of such resonances tends to 0, as infinitely large currents
are not physically possible.

Angle of Condition Max. Current
Incidence Number Magnitude (A/m)

20.0◦ 1.5× 104 0.107

10.0◦ 1.7× 104 0.171

1.0◦ 6.4× 105 1.536

0.1◦ 6.3× 107 15.224

Table 1. Numerical results for 1λ resonance.

The high Q resonances in the FSS of Fig. 1 can also be explained by
the reciprocal example of a radiating array. The total radiation pattern
of the array is equal to the product of the element pattern times the
array pattern. An odd current distribution gives an element pattern
with a null at boresight (a difference pattern). For an infinitely large
array, the array pattern is a delta function (or functions if grating lobes
exist) in spherical coordinates. Therefore, if the array is not scanned
(delta function at boresight), no radiation is possible (the product of a
delta function and zero is zero). All the energy from the source will be
returned as the input resistance of the array will be a perfect short. If
the array is scanned by a small angle, some radiation will be possible,
but only over a narrow bandwidth, as any match will be narrow band
in nature due to the fact that the input resistance will be very small.
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Figure 5. Reflection coefficient of array in Fig. 1 for different lattice
angles, Ω . The direction of the incident plane wave is θ = 1.0◦, φ =
0.0◦ . E field is polarized along the length of the dipoles.

Mode (p, q) Cutoff Frequency φ = tan−1
(
kx
ky

)
(0, 0) 0.0000 GHz —

(−1,−1) 23.4186 GHz 180◦ + 34.854◦

(−1, 0) 23.4186 GHz 180◦ − 34.854◦

(1, 1) 23.4186 GHz 34.854◦

(1, 0) 23.4186 GHz −34.854◦

(−2,−1) 26.7672 GHz 180.00◦

(2, 1) 26.7672 GHz 0.00◦

(0,−1) 38.4349 GHz −90.00◦

(0, 1) 38.4349 GHz 90.00◦

Table 2. Cutoff frequencies and directions of propagations of higher
order Floquet modes for FSS in Fig. 1 under normal incidence.

The dipoles in Fig. 1 can only resonate at 1λ if the lattice is not
orthogonal (Ω �= 90◦) . Figure 5 shows what happens to the 1λ reso-
nance, at θ = 1.0◦, as a function of the lattice angle Ω . As Ω→ 90◦,
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Figure 6. 1λ resonance for FSS in Fig. 1 composed of metals with
different surface impedance. (a) θinc = 1◦, (b) θinc = 10◦ . Note the
different frequency scales, due to the different bandwidths.

the resonance is pushed down in frequency and the bandwidth is nar-
rowed. For Ω = 90◦, the 1λ resonance completely vanishes. The
reason for that lies in the cutoff frequency of the higher order Floquet
modes. As the lattice angle, Ω, increases to 90◦, the cutoff frequency
for the {p = ±1, q = 0} Floquet mode (see Table 2) reduces from
23.42 GHz to 13.38 GHz. The frequency downshift of the grating lobe
suppresses the 1λ resonance as the propagating grating lobe takes
energy away from the dominant (or specular) mode (the resonance is
100% reflection of the dominant mode).

3.B Real Metals

With the FSS composed of PEC, it was shown that in the limit of
normal incidence (θ → 0.0◦) the current can be made arbitrarily large,
resulting in an arbitrarily narrow bandwidth resonance. The PEC can
support arbitrarily large currents, because there is no dissipation in
a perfect conductor. Real metals, having a finite non-zero resistivity,
cannot support arbitrarily large currents, as they dissipate power.

It is possible to model the response of an FSS composed of real
metallic scatterers, as opposed to PEC, by using the impedance bound-
ary condition

�Etangential

(
�rT
′) = Zs�J

(
�rT
′) (7)

rather than �Etangential (�rT
′) = 0 [5]. The term Zs is known as the

surface impedance, and it is given by
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Zs = (1 + j)

√
πµf

σ

(
Ω

square

)
(8)

At 14 GHz, the surface impedance of silver is Zs = .030(1 + j) Ω
square

and for aluminum it is Zs = .037(1 + j) Ω
square [9].

The effect of the surface impedance on the MoM solution is to give
an additional term to the left hand side of (3) such that

zi,j → zi,j + Zs

∫∫
�Basisi(x, y) · �Testingj(x, y) dx dy (9)

Because of the use of subdomain basis and testing functions, the inte-
gral in (9) vanishes for most combinations of i and j . The integral
is non-zero only when a basis function overlaps a testing function and
their vector dot product is not zero. The self element is the matrix
element most affected by the non-zero surface impedance.

The results for the FSS in Fig. 1 composed of metals with different
surface impedance is shown in Fig. 6. In Fig. 6a, the maximum current
amplitude (for the PEC FSS) is 1.54 A/m (see Table 1). This is why
the introduction of a surface impedance by silver and aluminum (small
as it may be) causes a large change in the reflection coefficient. On
the other hand, in Fig. 6b, the maximum current amplitude (for the
PEC FSS) is .17 A/m. Therefore, there is not much difference in
the reflection coefficient between the PEC FSS and the FSS made of
aluminum and silver when the incident angle, θ, is 10◦ .

Finally, Fig. 7 shows the result of the measurement of the transmis-
sion coefficient performed by Larson [10] on the FSS in Fig. 1 composed
of slots instead of patches. As stated in [10], the array was misaligned
by 3◦ and that gave rise to the resonance at 14 GHz (the misalign-
ment has the same effect as scanning the incident field). Because the
ground plane was not a PEC (or a superconductor), the resonance was
dampened and full transmission was not seen in the measurement.

4. 1/2− λ HIGH Q RESONANCE

We will now show another example of a high Q resonance. In this ex-
ample, the resonance occurs when the width of the periodic element,
as shown in Fig. 8, is approximately λ/2 . We use the term “width” to
refer to the direction perpendicular to the polarization of the incident
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Figure 7. Measured transmission coefficient of the complementary slot
type FSS in Fig. 1. Array was misaligned by 3◦ . Reprinted from [10].

Figure 8. Section of an infinite free standing square FSS. Shaded
region is metallic.

field, whereas in the previous section we used the term “length” to re-
fer to the direction aligned with the polarization of the incident field.
In Fig. 9, we plot the specular field reflection coefficients of the FSS in
Fig. 8 for four different w/A ratios under θ = 1◦, φ = 0◦ Transverse
Electric (TE) illumination (E field is y polarized). In the previous ex-
ample of section 3, we demonstrated the effect of the incident angle on
the high Q resonance. For this example, we would like to demonstrate
the effect of the resonant frequency on the high Q resonance.

Fig. 10 shows a closeup of Fig. 9 at the λ/2 resonance for each
w/A ratio. Increasing the size of the periodic element with respect to
the periodic cell causes a downshift in the resonant frequency. This
reduces the resonant wave number, k0, in (5). Since k0 inside the
sine term in (5) is smaller, the magnitude of the induced odd current
increases, and hence the bandwidth must decrease. This is shown in
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Figure 9. Reflection coefficient of FSS in Fig. 8 for different ratios of
w/A . The FSS is illuminated by a TE plane wave of incident angles
θ = 1.0◦, φ = 0.0◦ .

Fig. 10. When w/A = .6 (Fig. 10a), the separation between full reflec-
tion and full transmission is .001017A/λ (0.12% bandwidth). As the
resonance frequency is reduced to .617A/λ at w/A = .9 (Fig. 10d),
the separation between full reflection and full transmission reduces to
.000051A/λ (0.008% bandwidth).

The surface current induced on the FSS at the λ/2 resonance is
shown as a time evolution vector plot in Fig. 11. The scale in Fig. 11
is such that the largest arrow represents Js = .06 Amps/m. We have
specifically plottedw/A = 0.6 so the even mode can be seen at ωt = 0
as well as the odd mode at ωt = π/2 . More information about the
current modes can be found in the appendix.

Because the incident field is polarized along the y-axis, the Jx
component in this case is the cross-pol. Due to the symmetry about
the y = 0 line (the incident field is scanned along φ = 0◦), integration
of Jx is almost zero (100 dB less than the co-pol). In the 1λ resonance
of the previous example, the current was zero at the dipole ends (see
Fig. 4). In this example, Jy in Fig. 11 approaches ±∞ at x = ±w/2 .
By observing the current at ωt = π/8, π/4, 5π/8, 3π/4, one can see
that the phase of Jy is not exactly 180◦ between the left side and
the right side. The slight asymmetry in Jy can be supported by the
asymmetry (due to the 1◦ scan) about x = 0 .
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Figure 10. Close up of Fig. 9 at the λ/2 resonance. (a) w/A = .6,
(b) w/A = .7, (c) w/A = .8, (d) w/A = .9 .

ωt = 0 ωt = π/8 ωt = π/4 ωt = 3π/8

ωt = π/2 ωt = 5π/8 ωt = 3π/4 ωt = 7π/8

X’

Y’

Figure 11. Time evolution of a vector plot of the induced �e[ejωt�Js
(�rT

′)] at λ/2 resonance. The current shown is for w/A = 0.6 .
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Figure 12. Condition number for the matrix used to obtain the results
in Fig. 2. The size of the matrix is 54× 54 and it contains coefficients
for both Jx and Jy . The vertical scale is logarithmic.

5. NUMERICAL ASPECTS

A condition number [11] is a figure of merit for the singularity of a ma-
trix. Higher condition numbers indicate that the matrix, such as the
one in Eq. (2), is not well-posed. For singular matrices (det[Z̃] ≡ 0)
the condition number is infinite. It is a well known fact that the round-
off errors in the solution of the unknown variables are proportional to
the condition number.

Figure 12 shows the 1-Norm condition number [11] of the MoM ma-
trix used in calculating the results of Fig. 2. There are four frequencies
in Fig. 12 for which the condition number increases very rapidly. In
the scale of Fig. 12, the increases appear as sharp “spikes”, but on a
finer scale, as in Fig. 13, the increase is smooth. The first “spike” in
Fig. 12, near 14 GHz, is due to the zero bandwidth (infinite Q) 1λ
resonance discussed in Section 3. The three other “spikes” occur at
the cutoff frequencies of higher order Floquet modes (grating lobes).

Theoretically, the “spikes” in Fig. 12 should increase to infinity (i.e.,
singular matrix) for all four cases. The reason the condition number
is not infinite is that the matrix is singular only at discrete frequen-
cies which require infinite number of digits to specify (in some cases,
the dimensions of the periodicity of the FSS might allow the cutoff
frequency of higher order Floquet modes to be specified by a finite
number of digits; in such a case, numerical simulation is not possible
at the exact cutoff frequency). Therefore, due to the finiteness of a
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Figure 13. Matrix condition number for array in Fig. 1 where dipole
is length near 1λ for two different angles of incidence.

digital computer, the condition number cannot be infinite. The reason
the first “spike” appears to be higher than the other “spikes” is that it
approaches infinity faster. As a result, using equal frequency sampling
(.01 Hz near the “peak”) results in a higher condition number for the
first “spike”.

5.A Stability Considerations

In order for a physical problem to be well-posed (well conditioned),
it must satisfy three conditions. The three conditions, which together
are sufficient for well-posedness [12], are:

1. Existence.
2. Uniqueness.
3. Continuous dependence of the solution on the data.

The last condition is a condition of stability, i.e., a small change in the
data should causes only a small change in the solution.

For high Q resonances (such as the 1 − λ resonance shown in
Fig. 3b) a small frequency change results in a large change in the re-
flection coefficient (as well as the current induced on the FSS, but it
is not easy to plot the current distribution as a function of frequency).
The narrower the bandwidth, the larger the change in the response
for the same change in frequency. Therefore, as shown in Table 1, as
the incident angle, θ, approaches 0◦ (the resonance bandwidth ap-
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proaches 0 Hz), the condition number approaches infinity (see section
2 regarding the dependence of the Z̃ matrix on the incident angle). It
can also be seen in Table 1 that for small θ, the condition number is
inversely proportional to θ2 . Figure 13 shows that the condition num-
ber has an upper bound for θ = 1◦, but no such upper bound exists
for θ = 0◦ . The first maximum of the θ = 1◦ curve in Fig. 13 oc-
curs at the cross-over frequency where the condition number of θ = 1◦

equals the condition number of θ = 0◦ . The second maximum of the
θ = 1◦ curve occurs at the frequency where the matrix is singular in
the θ = 0◦ .

From a numerical standpoint, the ill-posedness can be explained by
considering the determinant of the matrix (the higher the condition
number, the smaller the determinant). The inverse matrix is inversely
proportional to the determinant. In general, as the magnitude of the
elements of the inverse matrix is increased, the magnitude of the cur-
rent also increases (the exact magnitude of the current depends on
the excitation vector on the right hand side of (2)). As mentioned in
Sections 3, 4, and the appendix, the magnitude of the induced current
approaches infinity as the resonant bandwidth approaches 0 Hz. The
only way for the current magnitude to rapidly change with frequency
while the elements of the matrix only gradually change with frequency
is for the matrix determinant to approach 0 rapidly.

5.B Grating Lobe Singularities

As previously mentioned, the three “spikes” at 23.4 GHz, 26.8 GHz,
and 38.4 GHz in Fig. 12 are due to higher order Floquet modes (grat-
ing lobes) starting to propagate (see Table 2). The question “why
is the matrix singular at the onset of grating lobe propagation?” can
be answered both physically and numerically. The numerical answer
is that all the elements of the matrix in (2) become infinite because
η2pq in (3), becomes infinite at the cutoff frequency of the {p, q}
mode (γpq is zero at the cutoff frequency). The physical answer re-
quires a close examination of Fig. 2. Figure 14 shows a close-up of
Fig. 2 at the onset frequencies for grating lobe propagation. At all
three frequencies, the derivative (with respect to frequency) of the
reflection coefficient is infinite (vertical) at the grating lobe cutoff fre-
quency. When the derivative of the solution with respect to frequency
is large, a small change in the frequency results in a large change in the
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Figure 14. Close up of Fig. 2 near the cutoff frequencies of higher order
Floquet modes (see Table 2 for mode indices and their corresponding
cutoff frequencies).

solution. Hence, the solution is not continuously dependent on the
data, resulting in an ill-conditioned matrix.

The reason the derivative of the solution with respect to frequency
is infinite near the onset of grating lobes can be found by looking at
the propagation constant, γ, of a given Floquet mode, defined as

γ = α + jβ =
2π
c

{ √
f2
c − f2 f ≤ fc

j
√

f2 − f2
c f ≥ fc

(10)

where fc is the cutoff frequency for the given mode. A plot of (10) is
shown in Fig. 15, which shows that

lim
f→f−c

∂γ

∂f
=∞ and lim

f→f+
c

∂γ

∂f
= j∞ (11)
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Figure 15. Plot of propagation constant, γ, for an arbitrary Floquet
mode. Below the cutoff frequency γ is real (evanescent waves), and
above the cutoff frequency γ is imaginary (propagating waves).

Due to the linearity of Maxwell’s equations, if the derivative with re-
spect to frequency of one Floquet mode, eγz, is infinite at some fre-
quency, then the solution (given in this paper as the reflection coef-
ficient) at that frequency must also have an infinite derivative with
respect to frequency.

It is worth mentioning here that under some circumstances, the FSS
problem will not be ill-conditioned at a grating lobe cutoff frequencies.
The plot of the condition number in Fig. 12 is for a matrix with co-
efficients for both unknown Jx and unknown Jy . It was found that
the condition number shows no appreciable rise at 26.7672 GHz (the
cutoff frequency for {p = ±2, q = ±1} Floquet modes) for a matrix of
only Jx coefficients (Jy is negligible for thin dipoles). The reason the
problem is well conditioned when only solving for the x component
of the current is that the grating lobes {p = ±2, q = ±1} propagate
in the direction of φ = 0◦, 180◦ (see Table 2), which is along the x

axis. This causes cancellation of vector dot product of
(
κ̂2pq · �Ti(�rT)

)
in (3), since the testing functions have only a x̂ component, while
κ̂2pq only has a ŷ component. Therefore, the matrix with only Jx
coefficients is oblivious to the {p = ±2, q = ±1} Floquet modes. In
general, though, the matrix is ill-conditioned at cutoff frequencies of
all higher order Floquet modes.
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Reflected Power Reflected Phase

Frequency (Hz) LU Inverse LU Inverse Condition Number

Matrix Matrix Matrix Matrix

14,000,000,000.00 39.94% 39.94% 129.199◦ 129.199◦ 85,502

14,010,000,000.00 39.84% 39.84% 129.140◦ 129.140◦ 143,341

14,020,000,000.00 39.74% 39.74% 129.081◦ 129.081◦ 459,096

14,024,485,227.63 39.70% 39.71% 129.054 ◦ 129.048 ◦ 1,268,288,115,110,644

14,030,000,000.00 39.64% 39.64% 129.022◦ 129.022◦ 374,314

Table 3. Results for Fig. 2 when dipole length is near 1λ .

Frequency (Hz) RMS Residue RMS Residue Condition Number

of LHS of (12) of LHS of (13)

14,000,000,000.00 6.484× 10−13 4.913× 10−13 85,502

14,010,000,000.00 9.915× 10−13 5.391× 10−13 143,341

14,020,000,000.00 3.500× 10−12 7.142× 10−13 459,096

14,024,485,227.63 7.755× 10−3 8.896× 10−4 1,268,288,115,110,644

14,030,000,000.00 2.570× 10−12 6.471× 10−13 374,314

Table 4. Residues of (12) and (13) near the first “spike” of Fig. 12.

5.C Consistency and Accuracy

When the condition number is high, the accuracy of the solution
comes into question. We will therefore pay attention to the accuracy
of the solution with the aid of Tables 3 and 4. Table 3 shows that
when the condition number exceeds 1015, the two solutions, using LU
(lower upper) matrix decomposition [11] or the inverse matrix directly,
differ in the third digit. While not shown explicitly in the table, when
the condition number is less than 106, the two solutions agree to at
least 12 digits.

Two methods that allow direct examination of the accuracy of the
inverse matrix are [13]:

1
zavg

(
Z̃−

((
Z̃

)−1
)−1

)
= 0̃ (12)

Z̃ · Z̃−1 − Ĩ = 0̃ (13)

where Z̃ is the matrix to be tested, Ĩ is the identity matrix, and zavg

is the average magnitude of the elements in the matrix. The reason for
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dividing by zavg in (12) is to make the left hand side unitless so that the
residue will not depend on the magnitude of the matrix elements. Table
4 shows the Root Mean Square (RMS) of the elements of the residue
matrices on the left hand side of (12) and (13). As expected, when the
condition number increases by 10 orders of magnitude, the accuracy of
the inverse matrix, as indicated by the size of the residues in Table 4,
decreases by 10 orders of magnitude. Finer sampling of the frequency
would yield even higher condition numbers, which would cause the
inverse matrix to be even less accurate. The reason the residues in
Table 4 are on the order of 10−13 for condition numbers less than
106 is the use of double precision arithmetics in calculating the matrix
elements. Had single precision arithmetics been used, the residues in
Table 4 would have been 9 orders of magnitude higher and the solution
at 14,024,485,227.63 Hz would have been highly inaccurate.

The exact frequency for which the condition number rises is very
sensitive to the truncation of the summation in (3). The data in Tables
3 and 4 are the results when both p and q are summed from −30 to
+30.

6. CONCLUSION

The goal of this work was to expose the existence of infinitely high Q
resonances in infinitely periodic screens. The narrow band resonances
occur when the induced current distribution on the elements of the
FSS has odd symmetry. An individual element with an odd current
distribution radiates a difference pattern with a deep null at boresight.
In the environment of an unscanned infinite array, which is the case of
an FSS under normal incidence, the array pattern is a delta function
(infinite gain) at boresight. The total radiation is the product of the
array pattern with the element pattern. Since the element with a dif-
ference pattern cannot radiate at boresight, there can be no resonance
(the resonance bandwidth becomes 0 Hz) when the incident plane wave
is normal to the FSS (no scan).

When the incident field is scanned, it is possible for the FSS elements
to radiate, and hence the FSS can resonate. However, the resonance is
not very efficient, hence it is narrow band. High frequency sampling in
numerical simulations is required in order to properly capture high Q
resonances. Otherwise, the resonance might not appear in the results.

The narrow band resonance is sustained by very large currents. This
is not a problem for perfect conductors, but real metals have finite



22 Barlevy and Rahmat-Samii

surface resistance and hence dissipate power. This was shown to
dampen high Q resonances to a point where they are not practical
with conductors such as silver and aluminum.

Numerically, when the resonance bandwidth is very small, find-
ing the response of the FSS becomes an ill-posed problem. The ill-
posedness comes about from the loss of stability, in the sense that a
small change in frequency results in a large change in the induced cur-
rent. The inverse of an ill-posed (ill-conditioned) matrix is usually not
numerically accurate, but the use of double precision arithmetic can
help mitigate numerical errors. Singularities due to loss of stability
were also shown to occur in the FSS problem at cutoff frequencies of
higher order Floquet modes.

While the high Q resonances can impact a numerical simulation,
they most likely have little practical implications unless the FSS is
composed of superconductors, since regular metals were shown in this
paper to dampen the high Q resonances. Superconducting FSS have
been investigated in [14]. While ohmic losses of real metals dampen
high Q resonances, the dampening might not be enough to completely
obliterate the high Q resonances in practice. A measurable ripple, as
shown by measurements in [10], might still exist.
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APPENDIX

In Section 3 and 4 we plots of the induced current (Fig. 4 and Fig. 11)
and note that the current has an odd (anti-symmetric) distribution.
A more rigorous analysis of the current distribution can be done by
decomposing the current into resonating modes. In this paper, rooftop
functions, which are subdomain, are used as the basis and testing func-
tions in the MoM to find the induced currents. We will now re-expand
the current in term of global resonating modes (entire domain func-
tions).
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Figure A1. Plots of the first four expansion modes in (A.1).

For the dipoles of Section 3, the x component of the current is re-
expanded along the length of the dipole such that the current is zero
at the edge (see Fig. A1). Specifically,

Jx(x′) =
∑

m=1,3,5,7,···
am cos

(
mπx′

2(l/2)

)

+
∑

m=2,4,6,8,···
am sin

(
mπx′

2(l/2)

)
.

(A.1)

where Jx(x′) is the induced current determined by the rooftop ex-
pansion in the MoM. The unknown coefficients, am , can found by
exploiting the orthogonality of the sine and cosine functions. Specif-
ically, this is achieved by integrating the product of Jx(x′) (which
is given as a sum of rooftop functions) with the particular mode of
interest.

Table A.1 shows the magnitude and phase of the first three coeffi-
cients of (A.1) for the 1λ resonance and anti-resonance under different
angles of incidence. There are a few interesting facts that are revealed
upon close examination of Table A.1.

• The even modes are in phase quadrature with the odd modes.
This is due to the j in (5).
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• The even modes are not as sensitive as the odd mode to frequency
(resonance as opposed to anti-resonance) and angle of incidence.

• The magnitude of the odd mode is approximately inversely pro-
portional to θ , and the frequency difference between resonance
(reflection) and anti-resonance (transmission) is approximately
proportional to θ2 . This was discussed in Section 3.

• There is no contradiction between Table A.1 and Table 1. The
former shows only the magnitude of the first three am coefficients
of (A.1) whereas the latter shows the magnitude of the total
current.

Angle of Frequency Mode m = 1 Mode m = 2 Mode m = 3

Incidence Status (Even) (A/m) (Odd) (A/m) (Even) (A/m)

θ (Deg) (GHz) Mag Phase Mag Phase Mag Phase

0.1◦ 14.02442 Transmission 0.040 −91.0◦ 13.080 −0.5◦ 0.013 −92.9◦

0.1◦ 14.02450 Reflection 0.039 0.4◦ 15.894 −90.2◦ 0.001 148.9◦

1.0◦ 14.01790 Transmission 0.040 −90.1◦ 1.297 −0.1◦ 0.013 −90.3◦

1.0◦ 14.02590 Reflection 0.038 0.4◦ 1.603 −89.6◦ 0.001 177.2◦

10.0◦ 13.48500 Transmission 0.042 −89.9◦ 0.143 0.6◦ 0.010 −90.0◦

10.0◦ 14.18500 Reflection 0.039 −1.8◦ 0.169 −91.8◦ 0.000 175.0◦

20.0◦ 12.54000 Transmission 0.043 −90.2◦ 0.085 −0.2◦ 0.004 −90.3◦

20.0◦ 14.54000 Reflection 0.035 0.1◦ 0.109 −89.9◦ 0.001 0.3◦

Table A.1. Current modes for 1λ resonance and anti-resonance of
FSS in Fig. 1. φinc = 0◦ .

Also note that anti-resonance (full transmission) is achieved when
the radiation from the even modes cancels the radiation from the odd
modes. At resonance, the odd and even modes add together to give
100% reflection.

For the wide patches of Section 4, the y component of the current is
re-expanded along the width of the patch ( x direction – perpendicular
to the polarization of the induced current electric field), such that the
current approaches infinity at the edge. (see Fig. A2). Specifically,

Jy(x′) =

√√√√√ 1

1−
(

x ′

w/2

)2


 ∑
m=1,3,5,7,···

am sin
(

mπx ′

2(w/2)

)

+
∑

m=0,2,4,6,···
am cos

(
mπx ′

2(w/2)

)
 .

(A.2)
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Figure A2. Plots of the first four expansion modes in (A.2).

Mode m = 0 Mode m = 1 Mode m = 2

w/A A/λ Status (Even) (A/m) (Odd) (A/m) (Even) (A/m)

Mag Phase Mag Phase Mag Phase

0.9 0.61699 Reflection 0.011 0.0◦ 0.255 90.0◦ 0.002 180.0◦

0.9 0.61705 Transmission 0.009 −89.8◦ 0.603 0.2◦ 0.010 90.2◦

0.8 0.68897 Reflection 0.012 0.0◦ 0.215 90.0◦ 0.002 180.0◦

0.8 0.68906 Transmission 0.006 −89.9◦ 0.441 0.1◦ 0.007 90.1◦

0.7 0.76706 Reflection 0.013 0.0◦ 0.148 90.0◦ 0.002 180.0◦

0.7 0.76728 Transmission 0.004 −90.0◦ 0.309 0.0◦ 0.006 90.0◦

0.6 0.85323 Reflection 0.015 0.0◦ 0.057 90.0◦ 0.002 180.0◦

0.6 0.85425 Transmission 0.002 −89.9◦ 0.184 0.1◦ 0.005 90.1◦

Table A.2. Current modes for 1
2λ resonance and anti-resonance of

FSS in Fig. 8. θinc = 1.0◦ .

Again, Jy(x′) is the current that was determined by the MoM. The
way to calculate the am coefficients in (A.2) is slightly different from
the method used for calculating the coefficients in (A.1). The difference
is that with (A.2), both sides of the equation must first be multiplied

by the factor

√
1−

(
x′

w/2

)2
. The rest is the same. The principal effect

of the extra multiplication is that the integration must be done numer-
ically, whereas the am coefficients in (A.1) can be found analytically.



26 Barlevy and Rahmat-Samii

Table A.2 shows the first three am expansion coefficients of (A.2)
for the high Q λ/2 resonance of Fig. 10. The coefficients are given for
different ratios of w/A . All the conclusions reached for Table A.1 can
be applied to Table A.2 except that Table A.2 emphasizes the behavior
of the odd modes for different resonant frequencies rather than different
angles of incidence.
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