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1. INTRODUCTION

The moment method [1–2] is the most important and well-established
numerical technique in computational electromagnetics. The two steps
in the moment method are to compute the impedance matrix and
to solve the dense matrix equation, which are very time-consuming,
particularly for large number of subsections. The major computational
difficulty in implementing Galerkin’s method is that virtually for all
practical cases the inner products need to be evaluated numerically. In
particular the task of evaluating the two double integrals (in 2D and a
sixfold integrals (in 3D) can be quite difficult and time-consuming for
non-smooth kernel functions.

To speed up the moment method, one path is to explore the fast
algorithms of solving the dense matrix equation, which include the
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wavelet moment method [3–5], the impedance matrix localization
(IML) method [Canning 1990, 1993][6–7], the fast multipole method
(FMM) (Coifman et al., 1993) [8–9], the matrix decomposition algo-
rithm (MDA) [Michielssen and Boag, 1994][10–12], adaptive multiscale
moment method (AMMM) [13–15]. Another path is to find a fast
method to compute the impedance matrix, which is the multiple inte-
gral involving the Green’s function. One possible method is the conju-
gate gradient-fast Fourier transform method (CG-FFT) [16–19], which
does not need to compute and save the impedance matrix. Another
method is the adaptive integral method [20]. In the AIM algorithm,
the impedance matrix is represented through a sum of near-field and
far-field zone components. The near-field component is computed by
using the conventional moment method with the Galerkin discretiza-
tion scheme, utilizing arbitrary local-support basis functions. The far-
field components are calculated by using the Galerkin method as well,
with a set of auxiliary basis functions which are constructed as su-
perpositions of pointlike current element located on uniformly spaced
Cartesian grid nodes. In fact, this method can only obtain an approx-
imate value of the impedance matrix. These two methods cannot deal
well with the singular integrals of the impedance matrix elements.

The purpose of this paper is to describe a new formula to compute
the impedance matrix. According to the properties of the Green’s
function, the basis function, and Fourier transform, the hexaple or
quadruple integral of the impedance matrix elements in three or two
dimension can be simplified to one triple or double integral. For the
two common types of basis functions, such as roof-top function and
the product of the two triangular functions, the computing formula
are presented. The singularity of the integral can easily be removed
through a suitable variable transform. The accuracy and efficiency of
computing the impedance matrix with this method is much better than
other methods. By use of these new formulas, numerical examples of
scattering problems of the conducting plates are studied.

2. COMPUTING FORMULA FOR IMPEDANCE MATRIX
ELEMENTS

When considering the scattering or radiation problems of electromag-
netic fields, we use the moment method. By the use of the Galerkin
discretization scheme, that is, choosing the same set of basis functions
as the trial and the testing functions φn(�r) , we need to compute the
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following the impedance matrix elements:

zn,m =
∫

φn(�r)d3�r

∫
K(�r,�r ′)φm(�r ′)d3�r ′

�r = (x1, x2, x3), �r ′ = (x′1, x′2, x′3)
(1)

z̃n,m =
∫

∂

∂xi
φn(�r)d3�r

∫
∂

∂x′j
φm(�r ′) ·K(�r,�r ′)d3�r ′

i = 1, 2, 3; j = 1, 2, 3
(2)

where K(�r,�r ′) is the kernel function.
For one dimensional case, the kernel function K(�r,�r ′) is the Han-

kel function H
(2)
0 (k |x− x′|) , where k is the wave number in the given

medium. The basis functions can be chosen as the sine or cosine func-
tions, triangular basis functions, B-spline basis functions, pulse or hat
basis functions.

For two or three dimensional case, the kernel function K(�r,�r ′) is
the Green function exp[jk |�r −�r ′|]/(4π |�r −�r ′|) , where k is the wave
number in the given medium. The basis functions always are chosen
as the pulse and rooftop basis functions in two dimension. The com-
putation of the impedance matrix is very time-consuming, especially
for the large object, because one need to compute hexaple integral for
three dimension or quadruple integral for two dimension.

For some cases, we can simplify these integrals into just one triplex
integral and one double integral for three dimension and two dimension,
respectively. Here we only consider the two dimensional case.

Defining the two-dimensional Fourier transform and inverse trans-
form as

F{a(�r)} =
∫
Ω

∫
a(�r) exp[−j�ω ·�r]d2�r = A(�ω)

�r = (x1, x2), �ω = (ω1, ω2)

F−1{A(�ω)} =
∫
Ω

∫
A(�ω) exp[j�ω ·�r]d2�ω = a(�r)

Ω = (−∞,∞)× (−∞,∞)

(3)

The following properties of the two-dimensional Fourier transform are
needed.

a(�r −�r0)↔ exp [−j�r0 · �ω] A(�ω) (4a)
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∂a(�r)
∂xi

↔ jωiA(�ω) (4b)

a(�r)b(�r)↔ 1
(2π)2

A(�ω) ∗B(�ω) (4c)

a(�r) ∗ b(�r)↔ A(�ω)B(�ω) (4d)

Suppose the basis function αn(�r) and the weighting function βn(�r)
should satisfy the following equation

φn(�r) = φ0(�r −�rn), �r0 = (0, 0) (5)
Φ0(�ω) = F [φ0(�r)] = Φ0(−�ω) (6)

Then, the Fourier transforms of the basis function, weighting function
and Green’s function have the following formula

Φn(�ω) = F [φn(�r)] = F [φ0(�r −�rn)] = Φ0(�ω) exp [−j�ω ·�rn] (7)

Ĝ(�ω) = F [G(�r)] = F

exp
[
−jk

√
x2 + y2

]
4π

√
x2 + y2

 = Ĝ(−�ω) (8)

From the above formulas (4)–(8), we can derive∫
Ω

αn(�r)d2�r

∫
Ω

βm(�r ′)G(�r −�r ′)d2�r ′

=
∫

Ω
αn(�r)G(�r) ∗ βm(�r)d2�r

= F [αn(�r)G(�r) ∗ βm(�r)]
∣∣∣
�ω=0

= (2π)−2F [αn(�r)] ∗ F [G(�r) ∗ βm(�r)]
∣∣∣
�ω=0

= (2π)−2F [αn(�r)] ∗ [F [G(�r)] · F [βm(�r)]]
∣∣∣
�ω=0

= (2π)−2 [An(�ω)] ∗
[
Ĝ(�ω)Bm(�ω)

] ∣∣∣
�ω=0

= (2π)−2

∫
Ω

An(�θ)Ĝ(�ω −�θ)Bm(�ω −�θ)d2�θ
∣∣∣
�ω=0

= (2π)−2

∫
Ω

An(�θ)Ĝ(−�θ)Bm(−�θ)d2�θ

= (2π)−2

∫
Ω

A0(�θ) exp
[
−j�θ ·�rn

]
Ĝ(−�θ)B0(−�θ) exp

[
+j�θ ·�rm

]
d2�θ
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= (2π)−2

∫
Ω

A0(�θ)Ĝ(−�θ)B0(−�θ) exp
[
+j�θ · (�rm −�rn)

]
d2�θ

= F−1
[
A0(�θ)Ĝ(−�θ)B0(−�θ)

] ∣∣∣
�r=�rm−�rn

= F−1
[
A0(�θ)B0(�θ)Ĝ(�θ)

] ∣∣∣
�r=�rm−�rn

= F−1
[
A0(�θ)B0(�θ)

]
∗ F−1

[
Ĝ(�ω)

] ∣∣∣
�r=�rm−�rn

= G(�r) ∗ ψ(�r)
∣∣∣
�r=�rm−�rn

=
∫

Ω
G(�rm −�rn −�r)ψ(�r)d2�r =

∫
Ω

G(�r +�rn −�rm)ψ(�r)d2�r (9)

∫
Ω

∂αn(�r)
∂xi

d2�r

∫
Ω

∂βm(�r ′)
αx′j

G(�r −�r ′)d2�r ′

= (2π)−2F

[
∂αn(�r)

∂xi

]
∗

[
F [G(�r)] · F

[
∂βm(�r)

∂xj

]]∣∣∣∣
�ω=0

= (2π)−2 [jωiAn(�ω)] ∗
[
jωj

[
Ĝ(�ω)Bm(�ω)

]]∣∣∣
�ω=0

= −(2π)−2

∫
Ω

θiAn(�θ)(ωj − θj)Ĝ(�ω −�θ)Bm(�ω −�θ)d2�θ
∣∣∣
�ω=0

= (2π)−2

∫
Ω

θiθjAn(�θ)Ĝ(−�θ)Bm(−�θ)d2�θ

= F−1
[
θiθjA0(�θ)B0(−�θ)Ĝ(�θ)

] ∣∣∣
�r=�rm−�rn

= F−1
[
θiθjA0(�θ)B0(�θ)

]
∗ F−1

[
Ĝ(�ω)

] ∣∣∣
�r=�rm−�rn

= −G(�r) ∗
[

∂α0(�r)
∂xi

∗ ∂β0(�r)
∂xj

]∣∣∣∣
�r=�rm−�rn

= −
∫

Ω
G(�r +�rn −�rm)Ψi,j(�r)d2�r (10)

where ψ(�r) = α0(�r) ∗ β0(�r) , Ψi,j(�r) = ∂α0(�r)
αxi

∗ ∂β0(�r)
∂xj

.
From the formula (9) and (10), if the basis function and weighting

function are of a finite support, the original quadruple integral can be
simplified to one double integral in that region.

The formula (9) and (10) are also valid for the three dimensional
case. The only difference is that the double integral become the one
triple integral.
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Now, we discuss the computing formula for specific basis and weight-
ing functions.

(A) For the basis function and the weighting function constructed by
product of the two triangular functions. Suppose

α0(�r) = β0(�r) = φ(�r) = φ0(x)φ0(y),

φ0(x) =

{(
1− |x|

T

)
|x| ≤ T

0 other
,

then

Φ(�ω) = F [φ(�r)] = T 2 sin c2 [ωxT/2] sin c2 [ωyT/2] = Φ(−�ω)

f(x) ≡ φ′0(x) ∗ φ′0(x) =
1
T

{
2− |x/T | T ≤ |x| ≤ 2T
−2 + 3 |x/T | 0 ≤ |x| ≤ T
0 other

F (x) ≡ φ0(x) ∗ φ0(x) =



(2T + x)3

6T 2
[−2T,−T ]

2T

3
− x2

T
− x3

2T 2
[−T, 0]

2T

3
− x2

T
− x3

2T 2
[0, T ]

(2T − x)3

6T 2
[T, 2T ]

0 |x| ≥ 2T

H(x) ≡ φ0(x) ∗ φ′0(x) =



(2 + x/T )2

2
[−2T,−T ]

−2
x

T
− 3x2

2T 2
[−T, 0]

−2
x

T
+

3x2

2T 2
[0, T ]

−(−2 + x/T )2

2
[T, 2T ]

0 |x| ≥ 2T

∫
Ω

αn(�r)d�r

∫
Ω

βm(�r ′)G(�r −�r ′)d�r ′

=
∫
D

G(�r + (�rn −�rm))F (x)F (y)d�r ≡ A(�rn −�rm)
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Figure 1. The curve of 1
T φ0(x) ∗ φ0(x) (×), φ0(x) ∗ φ′0(x) (),

Tφ′0(x) ∗ φ′0(x) (◦) .∫
Ω

∂

∂x
αn(�r)d�r

∫
Ω

∂

∂x′
βm(�r ′)G(�r −�r ′)d�r ′

= −
∫
D

G(�r + (�rn −�rm))f(x)F (y)d�r ≡ −Axx(�rn −�rm)∫
Ω

∂

∂y
αn(�r)d�r

∫
Ω

∂

∂y′
βm(�r ′)G(�r −�r ′)d�r ′

= −
∫
D

G(�r + (�rn −�rm))F (x)f(y)d�r ≡ −Ayy(�rn −�rm)∫
Ω

∂

∂y
αn(�r)d�r

∫
Ω

∂

∂x′
βm(�r ′)G(�r −�r ′)d�r ′

= −
∫
D

G(�r + (�rn −�rm))H(x)H(y)d�r ≡ −Ayx(�rn −�rm)∫
Ω

∂

∂x
αn(�r)d�r

∫
Ω

∂

∂y′
βm(�r ′)G(�r −�r ′)d�r ′

= −
∫
D

G(�r + (�rn −�rm))H(y)H(x)d�r ≡ −Axy(�rn −�rm)

where D = {(x, y); |x| ≤ 2T, |y| ≤ 2T} .
The curves of F (x), f(x), H(x) are plotted in following figure

(Fig. 1).
If �rn = (iT, jT ) , then A(�r), Axx(�r), Ayy(�r), Ayx(�r), Axy(�r) have

the following representation:

(1) Axx(x, y) = Ayy(y, x), Ayx(x, y) = Axy(y, x)
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(2) A(iT, jT ) = A(±iT,±jT ), Axx(iT, jT ) = Axx(±iT,±jT )
Axy(iT, jT ) = Axy(−iT,−jT ) = −Axy(−iT, jT ) = −Axy(iT,−jT )

When �rn = (iT, jT )(i, j = 0,±1,±2) is in the region D , the sin-
gular point of Green’s function in the integrals can be removed easily
through a suitable variable transform. For example, A(0, 0) can be
determined by

A(0, 0) =
1
π

[∫ π/4

0
dθ

∫ 2T/ cos θ

0
exp[−jkr]F (r cos θ)F (r sin θ)dr

+
∫ π/2

π/4
dθ

∫ 2T/ cos θ

0
exp[−jkr]F (r cos θ)F (r sin θ)dr

]

The real and imaginary part of A(x, y), Axx(y, x), Axy(x, y) with
T = 0.061 are plotted in Figure 2, 3, 4.

For the three dimensional case, A(�rn), Axx(�rn) and Axy(�rn) , can
be computed by

A(�rn) =
∫
D3

G(�r +�rn)F (x)F (y)F (z)d�r

Axx(�rn) =
∫
D3

G(�r +�rn)f(x)F (y)F (z)d�r

Axy(�rn) =
∫
D3

G(�r +�rn)H(x)H(y)F (z)d�r

where D3 = {(x, y, z); |x| ≤ 2T, |y| ≤ 2T, |z| ≤ 2T} .

(B) for the roof-top basis function
If

α0(�r) = φ0(x)ψ0(y), β0(�r) = φ0(y)ψ0(x),

φ0(t) =

{(
1− |t|

T

)
|t| ≤ T

0 other
, ψ0(t) =

{
1 |t| ≤ T/2
0 other

then

A0(�ω) = F [α0(�r)] = T 2 sin c2 [ωxT/2] sin c [ωyT/2] = A0(−�ω)
B0(�ω) = F [β0(�r)] = T 2 sin c [ωxT/2] sin c2 [ωyT/2] = B0(−�ω)
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(a) real part of A(x, y) · T−4, A(0, 0)T−4 = 2.68, A(0, 1)T−4 =
A(1, 0)T−4 = 1.43, A(0, 2)T−4 = A(2, 0)T−4 = 0.50, A(1, 1)T−4 =
0.91, A(2, 1)T−4 = A(1, 2)T−4 = 0.40, A(2, 2)T−4 = 0.23 .

(b) imaginary part of A(x, y) · T−4 .

Figure 2. The real and imaginary part of A(x, y) .
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(a) real part of Axx(x, y) · T−4, Axx(0, 0)T−4 = −1044.96, Axx(0, 1)
· T−4 = −404.23, Axx(1, 0)T−4 = −314.80, Axx(0, 1)T−4 = 74.41,
Axx(0, 2)T−4 = −59.53, Axx(2, 0)T−4 = 129.94, Axx(1, 2)T−4 =
−19.89, Axx(2, 1)T−4 = 64.25, Axx(2, 2)T−4 = 8.75 .

(b) imaginary part of Axx(x, y) · T−4 .

Figure 3. The real and imaginary part of Axx(x, y) .
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(a) real part of Axy(x, y) · T−4, Axy(0, 0) = Axy(1, 0) = Axy(0, 1) =
Axy(2, 0) = Axy(0, 2) = 0 , Axy(1, 1)T−4 = 277.76, Axy(2, 1)T−4 =
Axy(1, 2)T−4 = 51.69, Axy(2, 2)T−4 = 31.96, Axy(3, 1)T−4 =
Axy(1, 3)T−4 = 13.81, Axy(3, 2)T−4 = Axy(2, 3)T−4 = 15.34,
Axy(3, 3)T−4 = 11.34 .

(b) imaginary part of Axy(x, y) · T−4 .

Figure 4. The real and imaginary part of Axy(x, y) .
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F (x) ≡ φ0(x) ∗ φ0(x) =



(2T + x)3

6T 2
[−2T,−T ]

2T

3
− x2

T
− x3

2T 2
[−T, 0]

2T

3
− x2

T
+

x3

2T 2
[0, T ]

(2T − x)3

6T 2
[T, 2T ]

0 |x| ≥ 2T

f(x) ≡ φ′0(x) ∗ φ′0(x) =
1
T

{−2 + |x/T | T ≤ |x| ≤ 2T
2− 3 |x/T | 0 ≤ |x| ≤ T
0 other

g(x) ≡ ψ0(x) ∗ ψ0(x) =

{
T + x −T ≤ x ≤ 0
T − x 0 ≤ x ≤ T
0 other

H(x) ≡ φ′0(x) ∗ ψ0(x) =



3
2

+
x

T

[
−3

2
T,−1

2
T

]
−2

x

T

[
−1

2
T,

1
2

T

]
−3

2
+

x

T

[
1
2

T,
3
2

T

]
0 other

∫
Ω

αn(�r)d�r

∫
Ω

αm(�r ′)G(�r −�r ′)d�r ′

=
∫
C

G(�r + (�rxn −�rxm))F (x)g(y)d�r = Aα(�rxn −�rxm)∫
Ω

∂

∂x
αn(�r)d�r

∫
Ω

∂

∂x′
αm(�r ′)G(�r −�r ′)d�r ′

= −
∫
C

G(�r + (�rxn −�rxm))f(x)g(y)d�r = Aα
xx(�r

x
n −�rxm)∫

Ω
βn(�r)d�r

∫
Ω

βm(�r ′)G(�r −�r ′)d�r ′

=
∫
D

G(�r + (�ryn −�rym))F (y)g(x)d�r = Aβ(�ryn −�rym)∫
Ω

∂

∂y
βn(�r)d�r

∫
Ω

∂

∂y′
βm(�r ′)G(�r −�r ′)d�r ′

= −
∫
D

G(�r + (�ryn −�rym))g(x)f(y)d�r = Aβ
yy(�r

y
n −�rym)



Evaluation of impedance matrix in the method of moments 97∫
Ω

∂

∂x
αn(�r)d�r

∫
Ω

∂

∂y′
βm(�r ′)G(�r −�r ′)d�r ′

= −
∫
E

G(�r + (�rxn −�rym))H(x)H(y)d�r = Axy(�rxn −�rym)∫
Ω

∂

∂y
βn(�r)d�r

∫
Ω

∂

∂x′
αm(�r ′)G(�r −�r ′)d�r ′

= −
∫
E

G(�r + (�ryn −�rxm))H(y)H(x)d�r = Ayx(�ryn −�rxm)

where
C = {(x, y); |x| ≤ 2T, |y| ≤ T},
D = {(x, y); |x| ≤ T, |y| ≤ 2T},

E = {(x, y); |x| ≤ 3
2

T, |y| ≤ 3
2

T}.
If

�rxn = (iT, jT ), �ryn = ((i +
1
2
)T, (j +

1
2
)T ),

then Aα(�r), Aβ(�r), Aα
xx(�r), Aβ

yy(�r), Ayx(�r), Axy(�r) have the following
formula:

(1) Aα(x, y) = Aβ(y, x), Aα
xx(x, y) = Aβ

yy(y, x), Ayx(x, y) =
Axy(y, x)

(2) Aα(iT, jT ) = Aα(±iT,±jT ), Aα
xx(iT, jT ) = Aα

xx(±iT,±jT ),
Axy((i + 1

2)T, (j + 1
2)T ) = Axy(−(i + 1

2)T, −(j + 1
2)T ) = −Axy(−(i +

1
2)T, (j + 1

2)T ) = −Axy((i + 1
2)T, −(j + 1

2)T )

The real and imaginary part of Aα(x, y), Aα
xx(y, x), Axy(x, y) with

T = 0.061 are plotted in Figures 5, 6, 7.
For the three dimensional case, Aα(�rn), Aα

xx(�rn) and Axy(�rn) can
be computed by

Aα(�rn) =
∫
D3

G(�r +�rn)F (x)g(y)g(z)d�r

Aα
xx(�rn) =

∫
D3

G(�r +�rn)f(x)g(y)g(z)d�r

Axy(�rn) =
∫
E3

G(�r +�rn)H(x)H(y)g(z)d�r

where

D3 = {(x, y, z); |x| ≤ 2T, |y| ≤ T, |z| ≤ T},

E3 = {(x, y, z); |x| ≤ 3
2

T, |y| ≤ 3
2

T, |z| ≤ T}.
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(a) real part of Aα(x, y) · T−4, Aα(0, 0)T−4 = 3.18, Aα(0, 1)T−4 =
1.24, Aα(1, 0)T−4 = 1.61, Aα(1, 1)T−4 = 0.86, Aα(0, 2)T−4 = 0.47,
Aα(1, 2)T−4 = 0.38, Aα(2, 0)T−4 = 0.52, Aα(2, 1)T−4 = 0.41,
Aα(2, 2)T−4 = 0.22 .

(b) imaginary part of Aα(x, y)/T 4 .

Figure 5. The real and imaginary part of Aα(x, y) .
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(a) real part of Aα
xx(x, y) ·T−3, Aα

xx(0, 0)T−3 = −81.32, Aα
xx(0, 1)T−3

= −16.66, Aα
xx(1, 0)T−3 = 26.45, Aα

xx(1, 1)T−3 = 0.96, Aα
xx(0, 2)T−3

= −2.97, Aα
xx(1, 2)T−3 = −1.31, Aα

xx(2, 0)T−3 = 9.30, Aα
xx(2, 1)T−3

= 3.40, Aα
xx(2, 2)T−3 = 0.34 .

(b) imaginary part of Aα
xx(x, y) · T−3 .

Figure 6. The real and imaginary part of Aα
xx(x, y) .
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(a) real part of Axy(x, y)·T−3, Axy(1
2 , 1

2)T−3 = 32.33, Axy(3
2 , 1

2)T−3 =
Axy(1

2 , 3
2)T−3 = 6.85, Axy(3

2 , 3
2)T−3 = 4.56 .

(b) imaginary part of Axy(x, y) · T−3 .

Figure 7. The real and imaginary part of Axy(x, y) .
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Although the above formulas are obtained through a uniform subdivi-
sion, one can obtain the similar formulas in a straightforward fashion
through a non-uniform subdivision.

3. NUMERICAL EXAMPLES

In this section, we give some results of electromagnetic scattering ob-
tained for the perfectly conducting plates.

Example one: Consider the bistatic radar cross section of a circular
plate of diameter 3.18λ at normal incidence. Mesh sizes of T = 0.061λ
were used on the plate, giving 2145 nodes. The triangular basis is
chosen for the expansion and weighting functions. The bistatic RCS
curves for the E- and H-plane variations via the scattering angle are
plotted in Figure 8.

Comparing with the analytical results in [21], we find that our re-
sults are very good.

Figure 8. Bistatic scattering cross section on normal incidence ( ◦ :
H-plane ;  : E-plane) .

Example two: Consider the scattering from a 2λ × 2λ perfectly
conducting plate. The plate is discretized into 33 × 33 cells. The
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mesh size is T = 0.061λ . The roof-top basis functions are chosen
for the expansion and weighting functions. The number of unknowns
{Jx, Jy} are 1089 and 1024 respectively. The total unknowns of the
linear equation is 2113.

The monostatic RCS of the plate versus the angle of incidence with
E-polarized and H-polarized plane wave on the xoz plane are plotted
in Fig. 9.

Figure 9. Monostatic scattering cross section on the xoz plane ( ◦ :
H-polarization ;  : E-polarization) .

Example three: Consider the scattering from an equilateral tri-
angular perfectly conducting plate ( 2λ per side). The mesh size is
T = 0.061λ . The roof-top basis functions are chosen for the expan-
sion and weighting functions. The number of unknowns {Jx, Jy} are
477 and 458 respectively. Total number of unknowns {Jx, Jy} for the
linear equation is 935.

The monostatic RCS of the plate versus the angle of incidence with
E-polarized and H-polarized plane wave on the xoz plane are plot-
ted in Fig. 10. Comparing the measured data and results of other
researchers in [17, 18, 22], we find that our results are excellent.
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Figure 10. Monostatic scattering cross section on the xoz plane ( ◦ :
H-polarization ;  : E-polarization) .

4. CONCLUSION

The purpose of this paper was to present the new formula for comput-
ing the impedance matrix in the moment method. For the two kind
of common basis functions, such as roof-top function and the product
of the two triangular functions, the formula used to compute the ele-
ments of the impedance matrix were presented. Because the formula
for a Galerkin’s method in two dimension is a double integral, not a
quadruple integral, it can save much more CPU time. The singular-
ity of the integral can easily be removed through a suitable variable
transform. Hence, the new method is more efficient and also quite ac-
curate. By use of these new formulas, numerical examples of scattering
problems of the conducting plates have been studied.
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