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F-77305 Fontainebleau Cedex, France

1. Introduction
2. The Effective Field Method in the Problem of

Electromagnetic Wave Propagation through a Medium
with Isolated Inclusions

3. An Approximate Solution of the One Particle Problem
4. Integral GΦ for Random Sets and Regular Lattices of

Inclusions
5. Effective Static Dielectric Properties of Composites
6. The Solution of the Dispersion Equations
7. Conclusion
References



52 Kanaun and Jeulin

1. INTRODUCTION

This work is a continuation of the previous work [1] of the authors de-
voted to the application of the effective field method to the problem of
electromagnetic wave propagation through dielectric composites con-
sisting of a homogeneous background medium (matrix) and a set of iso-
lated inclusions. In this paper the attention is focused on studying the
influence of spatial distributions of inclusions on the mean wave (elec-
tric) field in composites and therefore on the effective electrodynamic
properties of such materials. As in [1] we consider the propagation
of monochromatic electromagnetic waves through a matrix composite
with a random set of spherical homogeneous inclusions.

The effective field method allows us to take into account spatial dis-
tributions of inclusions via a special two point correlation function of
random field of inhomogeneities (see [1]). Such a function is present
in the final equation for the mean wave field as well as in the disper-
sion equations that describe various types of waves that can propagate
through inhomogeneous media. This function may be built for random
sets of inhomogeneities as well as for regular lattices of inclusions. In
the last case the corresponding correlation function is obtained by av-
eraging the original regular lattice over all possible spatial translations
of the latter. The resulting mean wave field may be interpreted as
averaging of the detailed field over such translations.

The class of random distributions of inhomogeneities considered in
the work is described by a generalized Boolean statistical model of
inclusions. The simplest type of such distributions (one scale models)
was studied in [2, 3] and used [1, 4] in application to the problem
of electromagnetic wave propagation through inhomogeneous media.
The one scale Boolean models are characterized by two independent
parameters: the size of inclusions and the intensity of the Poisson
process of generation of the inclusions centers. A generalization of
the one scale Boolean statistical model was proposed in [5] and was
called the two scale Boolean model. Such a model is a superposition
of two one scale models with different values of the parameters. It is
worth to note that there is an additional order in spatial distributions
of inclusions corresponding to the two scale models. Thus one may
expect some distinctions in behavior of the composites with the one
scale and two scale Boolean distributions of inclusions in dynamics.

Another class of composite materials considered in the work is the
composites with a regular lattice of identical spherical homogeneous



Effective field approach for composite materials 53

inclusions in the matrix. In recent years, such composites are in fo-
cus of interests of many authors because of an important area of their
engineering applications. The existence of so called “photonic band-
gaps” in the composites with regular microstructure allows to create
new types of wave filters on the basis of such artificial materials (see,
e.g., [6, 7] where some other areas of applications of these materials
are mentioned). In distinction to the case of random fields of inho-
mogeneities, one can obtain in principle an exact solution of the plane
wave propagation problem for such a medium. But computational dif-
ficulties are essential even for the problem of construction of dispersion
curves for such composites (see [8, 9]). The effective field method al-
lows us to build an approximate solution of the considered problem
in a wide region of the frequencies of the exiting field and parameters
of the composites. The difficulties of the numerical realization of the
methods are much less than by using known numerical methods of the
exact solution of the problem. But this advantage is connected with
some simplifying hypotheses concerning the wave field structure in the
composite that are accepted in the effective field method. It is difficult
to estimate adhoc the precision and area of application of these hy-
potheses. The application of the effective field method to the analysis
of wave propagation through composites with periodic sets of isolated
inclusions has two important aims. On the one hand one may exam-
ine the ability of the method to describe qualitatively right the main
physical effects of wave propagation through such composites. On the
other hand a possibility appear here to estimate the precision of the
method by the comparison of its predictions with exact or numerical
solutions when the latter are available.

The plan of the article is the following. In Section II the review of
the results of application of the effective field method to the problem of
electromagnetic wave propagation through the medium with isolated
inclusions is presented. In section III we propose an approximate solu-
tion of the one particle problem that is used farther for the analysis of
the mean wave field in the composites. In this approximation, the wave
field inside an arbitrary inclusion is assumed to be a plane wave with
the wave vector that coincides with the wave vector of the mean wave
field in the composite. The unknown amplitude of this field is found
on the basis of a variational formulation of the diffraction problem for
an isolated inclusion (the plane wave approximation).

Section IV is devoted to the construction of the two point special



54 Kanaun and Jeulin

correlation functions for regular structures and for two scale Boolean
models of random sets of inhomogeneities.

In Section V we study the application of the effective field method to
the calculation of static dielectric properties of composites with regular
and random microstructures.

In Section VI the wave propagation through the medium with reg-
ular cubic lattice of spherical inclusions is considered. In this case
the solution of the corresponding dispersion equation has an infinite
set of different branches. It is shown that physically correct results in
the framework of the effective field method (with the existence of non
attenuating waves and narrow bands of attenuation in the vicinity of
Bragg’s frequencies) may be obtained if the plane wave approximation
for the solution of the one particle problem is used.

Section VII is devoted to the analysis of the one and two scale
Boolean models. We show that for these models one can point out
a main (“acoustic”) branch of the solution of the dispersion equation
and a finite number of additional branches. The main branch corre-
sponds to the wave with a minimal attenuation factor at least in the
long wave region. The wave numbers and attenuation factors of the
waves corresponding to the additional branches are very sensitive to
the details of the behavior of correlation functions. In particular the
attenuation of these waves is much less for two scale Boolean models
than for the one scale ones. We consider also some family of model two
points correlation functions with an increasing correlation radius. The
analysis of the solutions of the dispersion equation for such functions
allows us to predict what happens in the system if the order in the
positions of inclusions increases. On the one hand there appear new
branches of the solution of the dispersion equation; on the other hand
the attenuation of the corresponding waves decreases as the order in
the system increases.

The discussion of the obtained results and some details of the ap-
plication of the effective field method to the composites with the con-
sidered microstructures are presented in the Conclusion.

2. THE EFFECTIVE FIELD METHOD IN THE PROBLEM
OF ELECTROMAGNETIC WAVE PROPAGATION
THROUGH A MEDIUM WITH ISOLATED INCLUSIONS

Let a plane electromagnetic wave of frequency ω propagate through
a homogeneous medium with a random array of isolated inclusions
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that occupy region V with the characteristic function V (x) ( V (x) =
1, x ∈ V ; V (x) = 0, x /∈ V ), x(x1, x2, x3) is a point of the 3D-
space. The medium and the inclusions are dielectrics with tensors of
dielectric properties ε0 and ε , respectively. The amplitude E(x) of
the electric field E(x, t) = E(x)eiωt in the inhomogeneous medium
satisfies the following integral equation [1, 10]

E(x)−
∫

G(x− x′) · ε1 ·E(x′)V (x′)dx′ = E0(x), ε1 = ε− ε0, (1)

where the integration is spread over all 3D-space, E0(x) is an exciting
field that would have existed in the medium with given sources of the
field and ε1 = 0 . A dot is a scalar product of vectors and tensors. For
monochromatic plane waves of a unit amplitude the field E0(x) takes
the form

E0(x) = e0e
−ik0·x, k0 = k0m, |m| = 1, |e0| = 1, (2)

where k0 is the wave vector and e0 is the polarization vector of the
electric field E0(x) propagating through the homogeneous background
medium.

For an isotropic medium ( ε0 = ε01 and ε0 is a scalar) the tensor
G(x) in Eq. (1) takes the form

G(x) = k2
0g(x)1 +�⊗�g(x), g(x) =

e−ik0|x|

4πε0|x|
, k2

0 = ω2ε0 (3)

and vectors e0 and k0 in Eq. (2) are orthogonal. G(x) is a gen-
eralized function which regularization is considered in [10, 11]. The
Fourier transform G̃(k) of this function has the form

G̃(k) =
k2

0

ε0(k2 − k2
0)

[
1− k⊗ k

k2
0

]
, (4)

where k is the vector parameter of the Fourier transform, k = |k| .
In order to calculate effective dielectric properties of composite ma-

terials one has to estimate the mean wave field in the composite <
E(x) > . This mean is the solution of Eq. (1) averaged over ensemble
realizations of a random set of inclusions. For a general random set
of inclusions this problem cannot be solved exactly and only some ap-
proximations are available. Here we use the effective field method in
order to build such an approximate solution.
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The main hypotheses of the effective field method concern the local
external field (effective field) E∗(x) that acts on every inclusion in
the composite material. In the version of the method developed in
[1], this field is assumed to be in essence a plane wave with unknown
wave vector k∗ and amplitude e∗ . The mean wave field < E(x) > is
expressed via the effective field E∗(x) and therefore the latter is the
main unknown of the problem.

The hypotheses of the method formulated in [1] allow us to construct
a closed integral equation for the effective field and for the mean elec-
tric field in an inhomogeneous medium. These equations turn to be
convolution equations. As a result the Fourier transforms of the effec-
tive field E∗(k) and the mean electric field < E(k) > are connected
by the relation

E∗(k) = Π(k)· < E(k) >

and the field < E(k) > satisfies the following algebraic equation

< E(k) >= E0(k) + pG̃(k) · ε1 ·Λ0(k∗) ·Π(k)· < E(k) > . (5)

Here p is the volume concentration of inclusions, E0(k) is the Fourier
transform of the exciting field E0(x), G̃(k) has the form (4).

The tensor Λ0(k∗) is defined from the solution of the one particle
problem (diffraction of the plane effective field E∗(x) = e∗e−ik∗·x on
an isolated inclusion that occupies the volume v with the center at
point x = 0 in a homogeneous matrix). The solution of the latter
problem gives us the expression of the electric field E(x) inside the
inclusion in the form

E(x) = λ(x,k∗) ·E∗(x), x ⊂ v,

where λ(x,k∗) is a second rank tensor function. For spherical inclu-
sions this function has the form of the series which terms are expressed
via spherical vector harmonics that present in the Mie solution of the
diffraction problem for a sphere (see [1, 12]). The tensor Λ0(k∗) is
connected with the function λ(x,k∗) by the relation

Λ0(k∗) =
1
v0

∫
v
λ(x,k∗)dx, (6)

where v0 is the volume of the inclusion.
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The function Π(k) in Eq. (5) has the form

Π(k) = [1 + pGΦ(k) · ε1 ·Λ0(k∗)]−1, GΦ(k) =
∫

G(x)Φ(x)eik·xdx.

(7)
Here G(x) is the Green function (3) and Φ(x) is a pair correlation
function of the random set of inhomogeneities. This function is the
following conditional mean

Φ(x′ − x) = 1− 1
p
< V (x′;x)|x >, (8)

where V (x′;x) is the characteristic function (with argument x′ ) of
the region Vx defined by the relation

Vx =
⋃
i�=k
vi, when x ∈ vk. (9)

and vk(x) is the characteristic function of the region vk occupied by
the inclusion with number k , < V (x′;x)|x > is the averaging over the
ensemble realizations of the random function V (x′;x) by the condition
x ⊂ V, (V = ∪kvk). It is assumed that the random set of inclusions
is homogeneous in space and therefore the mean < V (x′;x)|x >=
1− pΦ(x′ − x) depends only on the difference x′ − x .

The function Φ(x) has an evident property that is the consequence
of its definition (8), (9)

Φ(0) = 1. (10)

If the correlation in the inclusions positions disappears when | x |→ ∞
one has Φ(x)→ 0 in this limit.

In the framework of the considered version of the effective field
method, the information about a spatial distribution of inclusions is
present in Eq. (5) via the correlation function Φ(x) or to be exact via
the integral GΦ(k) in Eq. (7).

After multiplying Eq. (5) by the tensor

L(k) = G̃(k)
−1

= ε0

[
k − k2

0

k2
0

(1−k⊗ k
k2

)− k⊗ k
k2

]
, k = |k|, k =km

and taking into account the fact that L(k) · E0(k) = 0 (here E0(k)
has the form (2)) we get the equation for the mean wave field in the
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form ( ε1 = 1
ε0
ε1)[

(k2 − k2
0)

k2
0

(1−m⊗m)−m⊗m− pε1 ·Λ0(k∗) ·Π(k)
]

· < E(k) >= 0. (11)

The dispersion equation for the wave vectors of the mean wave field k∗
is the consequence of this equation and takes the form ( k = k∗=k∗m)

det
[
(k2
∗ − k2

0)
k2

0

(1−m⊗m)−m⊗m− pε1 ·Λ0(k∗) ·Π(k∗)
]

= 0.

(12)
where det is the determinant of a two rank tensor.

The mean wave field from a point source (the mean Green function
< G(x) > ) may be also constructed from Eq. (5). If one accepts that
E0(x) = G(x), where G(x) has the form (3) the mean wave field
coincides with the mean Green function and for the Fourier transform
of this function < G̃(k) > we obtain the following equation

< G̃(k) >= [L(k)− pε1 ·Λ0(k∗) ·Π(k)]−1 . (13)

In order to apply these results to the construction of the mean wave
fields in specific composite materials it is necessary to build the corre-
lation function Φ(x) for the given microstructure and to calculate the
integral GΦ in Eq. (7). After that we can go to the analysis of the
solutions of the dispersion equation (12).

3. AN APPROXIMATE SOLUTION OF THE ONE
PARTICLE PROBLEM

The one particle problem in the framework of the effective field method
is the solution of the integral equation similar to Eq. (1)

E(x)−
∫

G(x− x′) · ε1 ·E(x′)v(x′)dx′ = E∗(x), (14)

where v(x) is a characteristic function of the spherical region with the
center at x = 0 and radius a, E∗(x) is the effective field that acts
on every inclusion in the composite. This field is a plane wave with
unknown amplitude e∗ and wave vector k∗ (k∗ �= k0)

E∗(x) = e∗e−ik∗·x, k∗ = k∗m.
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For an isotropic spherical inclusion the tensor Λ0(k∗) has the following
structure

Λ0(k∗) = Λt(k∗)(1−m⊗m) + Λl(k∗)(m⊗m), (15)

where Λt(k∗),Λl(k∗) are the transversal and longitudinal parts of Λ0 .
Using the technique of the solution of Mie’s problem it is possible

to obtain the exact expression for the coefficient Λt(k∗) in the form
[1]

Λt =
3
2

∞∑
n=1

(2n+ 1)

·
{
Cng0n(k∗, k) +Dn[(n+ 1)

jn(k∗)jn(k)
k∗k

− g1n(k∗, k)]
}

+
k2

0 − k2
∗

k2 − k2∗
,

g0n(k∗, k) =
1

k2∗ − k2
[k∗jn+1(k∗)jn(k)− kjn+1(k)jn(k∗)],

g1n(k∗, k) =
1

k2∗ − k2
[k∗jn(k∗)jn+1(k)− kjn(k)jn+1(k∗)].

Cn =
k(k2

0 − k2)
k∗(k2∗ − k2)

[k0ξ′n(k0)ψn(k∗)− k∗ψ′n(k∗)ξn(k0)]
[k0ξ′n(k0)ψn(k)− kψ′n(k)ξn(k0)]

, (16)

Dn =
k(k2

0 − k2)
k∗(k2∗ − k2)

[k∗ξ′n(k0)ψn(k∗)− k0ψ′n(k∗)ξn(k0)]
[kξ′n(k0)ψn(k)− k0ψ′n(k)ξn(k0)]

,

ψn(k) = kjn(k), ξn(k) = kh(2)(k), f ′(k) = df/dk.

Here jn(k) and h(2)
n (k) are the spherical Bessel and Hankel functions

of order n, k is the wave number of the material of the inclusions.
(The radius of inclusions is assumed to be equal to one (a = 1) and
here k, k0, k∗ are non dimensional wave numbers ka, k0a, k∗a ). It
is known that this series converge very slowly in the regions of middle
and short waves where their lengths is comparable with the sizes of
inclusions [12].

Note that if E∗(x) = E0(x), (k∗ = k0, e∗ = e0) Eq. (14) coincides
with the classical Mie problem. For this case the function Q

Q = −4
3
k0ε1Λt (17)
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is proportional to the forward amplitude F(m) of the field scattered on
the inclusion and the imaginary part of this function coincides with the
total normalized extinction scattering cross-section of the considered
inclusion (see [1, 12, 13])

Q = − 4
k0

e0·F(m).

Here e0 is the amplitude of the exciting field scattered on the inclusion
(see Eq. 2).

Let us consider approximate solutions of the one particle problem.
It is possible to demonstrate [13] that the wave field inside inclusion
(the solution of the integral equation (14)) is a stationary point of the
following functional

JQ(E) =
vk0
πε0

[
(E, ε1 ·E)− (Gε1E, ε1 ·E)

−(E∗, ε1 ·E)− (E∗, ε1 ·E)
]
, (18)

where
(f, φ) =

1
v

∫
v
f(x) · φ(x)dx,

(Gε1E)(x) =
∫
v
G(x− x′) · ε1 ·E(x′)dx′

and the line over functions in Eq. (18) is the complex conjugation.
Note that if E∗(x) = E0(x) the value of the functional JQ on the
exact solution of the Eq. (14) coincides with the function Q in Eq. (17)

JQ(E) = Q. (19)

Thus for the exact solution of the diffraction problem the functional
JQ is proportional to the forward amplitude of the scattering field
and the imaginary part of JQ is the total normalized extinction cross-
section of the inclusion.

Let us consider the diffraction of a monochromatic plane effective
wave E∗(x) = e∗e−ik∗·x on an isolated spherical inclusion with the
center at point x = 0 in an infinite homogeneous medium. In order
to build an approximate solution of the Eq. (14) we assume that the
electric field E(x) inside the inclusion is a plane wave with the wave
vector of the effective field k∗

E(x) = Ee−ik∗·x, k∗ = k∗m, (20)
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and with an unknown vector amplitude E.
After substituting this approximation for E(x) into the functional

JQ and using the Ritz scheme we get the following equation for the
constant vector E

E− IG · ε1 ·E = e∗, (21)

IG = IG(k0,k∗) =
∫

G(x)eik∗·xf(x)dx,

f(x) =
1
v

∫
v(x+ x′)v(x′)dx′,

where v(x) is the characteristic function of the region occupied by
the inclusion with the center at point x = 0 , v is the volume of the
inclusion.

The same equation for E may be obtained in the framework of
Galerkin’s scheme if we substitute Eq. (20) into Eq. (14), multiply its
both parts on eik∗·x and then average the result over the volume of
the inclusion.

For a spherical isotropic inclusion with a the unit radius a = 1 and
an isotropic background medium we have ( | x |= r )

f(x) = f(r) = 1− 4
3
r +

1
16
r3, r < 2; f(r) = 0, r ≥ 2, (22)

IG(k0,k∗) =
1
ε0

{
[k2

0q(k0, k∗) +K1(k0, k∗)]1 +K2(k0, k∗)m⊗m
}
,

q(k0, k∗) =
∫ ∞

0
e−ik0rf(r)j0(k∗r)rdr,

K1(k0, k∗) =
∫ ∞

0
e−ik0r

{
f ′(r)j0(k∗r) +

[
rf ′′(r)− f ′(r)

] j1(k∗r)
k∗r

}
dr,

K2(k0, k∗) = −
∫ ∞

0
e−ik0r{[rf ′′(r)− f(r)]j2(k∗r) + 2rf ′(r)kj1(k∗r)

+ rf(r)k2
∗j0(k∗r)}dr.

Here ji(k) (i = 0, 1, 2) are spherical Bessel functions, f ′ = d
drf.

Note that q,K1 and K2 are some integrals that may be calculated
in explicit analytical forms and are some combinations of polynomials,
exponential functions and exponential integrals (see [1]).
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Thus the electric field inside the inclusion takes the form

E(x) = Λ0 ·E∗(x), Λ0 = [1− IG(k0,k∗) · ε1]
−1 . (23)

Note that a similar approximation was used in [14] for the solution of
the elastic wave propagation problem through polycrystalline materi-
als.

In order to understand the quality of this approximation let us con-
sider an isolated spherical inclusion of a unit radius in a infinite dielec-
tric medium. For this problem the plane wave approximation is the
assumption that the wave field inside the inclusion takes the form

E(x) = Λ0 · ee−ik0·x, Λ0 = [1− IG(k0,k0) · ε1]
−1 .

The results of the calculations of the real and imaginary parts of the
function Q(k0) or functional JQ(k0) for the inclusion with the di-
electric permittivity ε = 5 ( ε0 = 1 ) are presented in Fig. 1. Here the
solid lines are the exact dependences of Re[JQ(k0)] and Im[JQ(k0)]
(the results of Mie’s theory), the lines with dots were obtained by sub-
stituting the plane wave approximation (23) into functional JQ in
Eq. (18) ( E∗(x) = E0(x) ). Note that Im[JQ(k0)] coincides with the
total scattering cross-section of the considered inclusion. As it can be
seen the plane wave approximation describes only a general trend of
the function JQ(k0) but it cannot describe small scale oscillations of
this function in the middle and short wave regions.

4. INTEGRAL GΦ FOR RANDOM SETS AND REGULAR
LATTICES OF INCLUSIONS

Let us consider the construction of the function Φ(x) for one scale and
two scale Boolean random fields of inclusions. The Boolean model V
is obtained by implantation of random grains V ′k on the points xk of
a Poisson point process [2]:

V = ∪kV ′k,xk

In the present case, a one scale model of spheres is obtained by selecting
for V ′k = vk the sphere of radius a = 1 with the center at point xk .
Since overlaps are allowed in this model, the resulting structure is
not strictly speaking made of isolated spheres. However, for medium
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Figure 1. The dependences of the real and imaginary parts of the
functional JQ on k0 . Solid lines correspond to the exact solution
of the diffraction problem (Mie’s solution) for an inclusion of a unit
radius ( ε0 = 1, ε = 5 ), the lines with dots correspond to the plane
wave approximation.

volume fractions, the volume fraction of overlaps can be neglected.
This is illustrated in Fig. 2 where one can see a simulation of a section
of a Boolean model of spheres with p = 0.3 .

For the one scale model, the function Φ(r) has the form [1–4]:

Φ(r) = Φ(r) =
1
p2

{
pf(r) + (1− p)2

[
1− (1− p)−f(r)

]}
, |r| =r

(24)
We consider now a random set V made of the intersection of two
independent random sets V1 and V2 , with volume fractions p1 and
p2 and covariances C1(r) and C2(r) :

V = V1 ∩ V2

Cj(r) = P{x ∈ Vj , x+ r ∈ Vj}, j = 1, 2;

where P{x ∈ Vj , x + r ∈ Vj} is the probability for the points x and
x+ r to be inside the random set Vj .

We have for this model

p = p1p2,
C(r) = P{x ∈ V, x+ r ∈ V } = C1(r)C2(r).
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Figure 2. Simulation of a section of a Boolean model of spheres with
p = 0.3 .

Figure 3. Simulation of a two scale model obtained in 2D by the
intersection of two Boolean models of discs ( p1 = p2 = 0.5 ; p = 0.25 ).

An interesting example is obtained by the intersection of two Boolean
models with spherical primary grains (with radii R2 � R1 = 1 ). This
situation is illustrated in Fig. 3 in the case of discs in two dimensions.
This model presents two separate scale:
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• on a microscopic scale (corresponding to V1 ), we have a standard
Boolean model of spheres (with few overlaps at a low volume
fraction)

• on a larger scale (corresponding to V2 ), we observe fluctuations
of volume fraction, with particles inside V2 and matrix inside
V c2 = V ∩V2 . This larger scale appears in C(r) , and consequently
in Φ(r) .

For two scale Boolean models we get [5]

Φ(r) = 1− 1
p2

[C(r)− pf(r)f(r/R2)] , p = p1p2, (25)

C(r) =
[
2p1 − 1 + (1− p1)(2−f(r))

] [
2p2 − 1 + (1− p2)(2−f(r/R2))

]
The functions Φ(x) for the two models are spherically symmetrical.
The integral GΦ (7) for such functions after applying the Gauss the-
orem takes the form

GΦ(k) =
1
ε0

[Gt(k0, k)(1−m⊗m) +Gl(k0, k)(m⊗m)] , k = km,

(26)
Gt(k0, k) = k2

0qt(k0, k) + Jt(k0, k),

qt(k0, k) =
∫ ∞

0
e−ik0rΦ(r)j0(kr)rdr,

Jt(k0, k) =
∫ ∞

0
e−ik0r

{
Φ′(r)j0(kr) + [rΦ′′(r)− Φ′(r)]

j1(kr)
kr

}
dr,

Gl(k0, k) = −
∫ ∞

0
e−ik0r{[rΦ′′(r)− Φ(r)]j2(kr) + 2rΦ′(r)kj1(kr)

+ rΦ(r)k2j0(kr)}dr.
For numerical calculations of the integrals Gt and Gl in Eq. (26) we
have to use some approximations of the functions Φ(r) . Here we use
piecewise exponential approximations in the form

Φ(r) = (1 + ρ0)e−ρ1r cos(b1r)− ρ0, r ≤ r0, (27)

Φ(r) =
[
(1 + ρ0)e−ρ1r0 cos(b1r0)− ρ0

]
e−ρ2(r−r0) cos[b2(r−r0)], r > r0.

This function is continuous together with the first derivative if

ρ2 =
(1 + ρ0)(ρ1 cos(b1r0) + b1 sin(b1r0)) exp(−ρ1r0)

(1 + ρ0) exp(−ρ1r0) cos(b1r0)− ρ0
.
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Figure 4. The function Φ(r) for Boolean random sets of inclusions;
line 1 corresponds to the one scale model for p = 0.2 , line 2 corre-
sponds to the two scale model with the parameters p1 = 0.25, R1 =
1, p2 = 0.8, R2 = 5. The dashed lines are approximations (27) of
these functions. For the one scale model ( ρ0 = 0, ρ1 = 0.3717, b1 =
0.9264, ρ2 = 3.233, b2 = 2.2025 , r0 = 1.3577) , for the two scale
model ( ρ0 = −0.3, ρ01 = 0.2136, b1 = 1.4382, ρ2 = 0.4379, b2 =
0.1331, r0 = 2.1491) .

The other parameters ( ρ0, ρ1, b1, b2 and r0 ) are chosen from mini-
mizing the square mean error in comparison with the exact functions
(24), (25).

The integrals (26) for approximations (27) of Boolean correlation
functions may by calculated in an explicit analytical forms and are
some finite combinations of power functions and exponential integrals
[1].

The comparison of the correlation function Φ(x) for the one scale
(line 1) and two scale (line 2) Boolean models is presented in Fig. 4 for
the same total volume concentration of inclusions p = 0.2. For the two
scale model (line 2) we chose p1 = 0.25, R1 = 1, p2 = 0.8, R2 = 5.
The dashed lines in Fig. 4 are the approximations (27) of this functions.

Let us go to regular lattices of identical inclusions in a homogeneous
matrix. In this case V (x) is a characteristic function of the region
occupied by a set of identical spherical inclusions of a unit radius which
centers compose an infinite regular lattice in 3D space. If q is the
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vector of this lattice the function V (x) takes the form

V (x) =
∑
q

v(x+ q), q = ja1 + sa2 + ta3, j, s, t = 0,±1,±2, . . . ,

(28)
where a1, a2, a3 are vectors of an elementary cell of the lattice, v(x)
is a characteristic function of the region occupied by a sphere of a unit
radius with the center at point x = 0.

If r is a stochastic vector with a homogeneous distribution in space
the realizations of the random function V (x+ r) are various transla-
tions of the original regular lattice. The second moment of V (x + r)
(< V (r)V (x + r) > ) is a periodic function. After averaging over the
vector r we get

< V (r)V (x+ r) >= v0
∑
q

f(x+ q), f(x) =
1
v0

∫
v(x+ x′)v(x′)dx′,

(29)
where v0 is the volume of a unit sphere, the function f(x) has the
explicit form (22).

Using the definition (8) of the function Φ(x) we obtain for regular
structures the following result

Φ(x) = 1− 1
p

′∑
q

f(x+ q). (30)

Here the prime over the summation sign denotes omitting the term
with q = 0.

The integral GΦ(k) in Eq. (7) for this function Φ(x) takes the
form

GΦ(k) =
∫

G(x)Φ(x) exp(ik·x)dx = G0
Φ(k) + G1

Φ(k), (31)

G0
Φ(k) =

1
p

∫
G(x)f(x) exp(ik·x)dx,

G1
Φ(k) = − 1

v0

′∑
µ
f̃(µ)G̃(k− µ).

Here f̃(k) and G̃(k) are Fourier transforms of the functions f(x) and
G(x) defined in Eqs. (22), (3), µ is the vector of the inverse lattice
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in respect to the original one,

f∗(µ) = 12π
j21(µ)
µ2

, j1(µ) =
sin(µ)
µ2

− cos(µ)
µ

, µ =| µ | . (32)

The prime over the summation sign in Eq. (31) for G1
Φ(k) denotes

omitting the term with µ = 0. In order to obtain this expression for
G1

Φ(k) we have to go to Fourier transforms of the integrand functions.

5. EFFECTIVE STATIC DIELECTRIC PROPERTIES OF
COMPOSITES

Let us consider the propagation of the electromagnetic waves in a ho-
mogeneous dielectric medium with the tensor of dielectric properties
ε∗ . The Fourier transform of the electric field E(k) in such a medium
satisfies the following equation [1, 10][

k2(1−m⊗m)− ω2ε∗
]
·E(k) = 0. (33)

Eq. (11) for the mean electric field in the composite medium may be
rewritten in the form[

k2(1−m⊗m)− k2
01− p k2

0ε1 ·Λ0(k∗) ·Π(k)
]
· < E(k) >= 0,

k2
0 = ω2ε0.

Comparing this two equations one can note that the last one describes
propagation of waves in the medium with the effective tensor of dielec-
tric properties ε∗ that has the following form

ε∗(k) = ε0 + pε1 ·Λ0(k∗) ·Π(k). (34)

Let us consider the static limit of this tensor when ω,k → 0. (The
limit k→ 0 means that the exciting field is a constant.) In this limit
we have for spherical homogeneous inclusions

εs∗ = ε0 + pε1 ·Λs0 ·Πs. (35)

Λs0 = Λ0(0) =
3ε0

3ε0 + ε1
1, Πs = Π(0) = [1+pε1 ·Gs

Φ ·Λs0]−1 ,

Gs
Φ =

∫
Gs(x)Φ(x)dx, Gs(x) = �⊗�

(
1

4πε0|x|

)
.
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For isotropic and homogeneous random set of inclusions the function
Φ(x) depends only on | x |= r and the integral Gs

Φ takes the form

Gs
Φ =

1
ε0
Js1, (36)

Js =
∫ ∞

0
{Φ′(r) +

1
3
[rΦ′′(r)− Φ′(r)]}dr = −1

3
Φ(0) = −1

3
.

Here the property (10) of Φ(x) is used.
Thus the value of this integral does not depend on detailed behavior

of the function Φ(r) and the effective dielectric permittivity of the
composite takes the form of the Maxwell Garnet formula

εs∗ = ε0

[
1 +

3pε1
3ε0 + (1− p)ε1

]
. (37)

A generalization of this result may be obtained for the case when Φ is
not a spherically symmetric one but is anisotropic (for instance it might
present an a ellipsoidal symmetry but the procedure of construction
of such a distribution of inclusions is unknown). Some anisotropic
distributions of spherical inclusions can be obtained as follows: replace
the standard Poisson point process for the implantation of spheres by
a non isotropic point process; this can be built in two steps: first
consider Poisson lines with the intensity θ(ω) (equal to the average
number of lines per unit area orthogonal to the plane with a normal of
orientation ω ); secondly, we generate on every line D(ω) a Poisson
point process with the intensity λ(ω) . The correlation function Φ of
this model can be calculated as a function of θ(ω) and λ(ω) , which
control the anisotropy of the medium. In this case the tensor εs∗ is also
non isotropic and this anisotropy is caused by the spatial distribution
of inclusions.

Let us assume that there is a linear transformation A of x -space
( y = Ax) that converts the function Φ in a spherically symmetric
one: Φ(A−1y) = Φ(| y |). For this case the integral Gs

Φ also does not
depend on detailed behavior of Φ and takes the form [15]

Gs
Φ = g1e1⊗e1 + g2e2 ⊗ e2 + g3e3 ⊗ e3, (38)

gi =
a1a2a3
ε0

∫ ∞
0

dσ

(a2i + σ)H(σ)
, H(σ) =

√
(a21 + σ)(a22 + σ)(a23 + σ).
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Here ei and ai (i = 1, 2, 3) are the main directions and the corre-
sponding main semiaxes of the ellipsoid ( x ·Ax = 1 ). The tensor ε∗
in this case has an orthorhombic symmetry

εs∗ = ε(1)∗ e1⊗e1 + ε(2)∗ e2⊗e2 + ε(3)∗ e3⊗e3, (39)

ε
(i)
∗ = ε0 + pε1

Λ0

1 + pε1giΛ0
, i = 1, 2, 3, Λ0 =

3ε0
3ε0 + ε1

.

For regular lattices of inclusions the integral GΦ has the form of
Eq. (31) and for the tensor εs∗ we get the following expression

εs∗ = ε0 + pεz1 · [1 + pε1 · Γ ]−1 , (40)

Γ = − 1
v0

′∑
µ
f̃(µ)G̃s(µ), G̃s(µ) = − 1

ε0

µ⊗ µ
µ2

.

Here the tensor Γ has the symmetry of the regular lattice. For instance
in the case of an orthorhombic lattice this tensor takes the form

Γ =α1e1⊗e1 + α2e2⊗e2 + α3e3⊗e3,

αj =
3λ1λ2λ3

(2π)2ε0

′∑
i1,i2,i3

j21(
√

(λ1i1)2 + (λ2i2)2 + (λ3i3)2)
[(λ1i1)2 + (λ2i2)2 + (λ3i3)2]

2 (λjij)2,

λj =
2π
Lj
.

Here Ljej(j = 1, 2, 3) are the vectors of an elementary cell of the
lattice ( | ej |= 1 ), ij = 0,±1,±2, ..., a prime over the sum means
omitting the term with i1 = i2 = i3 = 0.

For a cubic lattice (L1 = L2 = L3 = L0) this tensor is isotropic
and takes the form

Γ =
1
ε0
α0(λ0)1, (41)

α0(λ0) =
3λ0

(2π)2

′∑
i,j,m

j21(λ0

√
i2 + j2 +m2)

i2 + j2 +m2
,

λ0 =
2π
L0
, i, j,m = 0,±1,±2, . . . ,
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where L0 is the distance between the center of inclusions. For inclu-
sions of a unit radius the parameter λ0 is connected to the volume
concentration of inclusions p by the relations

λ0 =
(
6π2p

) 1
3 .

The graph of the function α(p) is presented in Fig. 5. The correspond-
ing dependence of the effective dielectric permittivity of the composite
with a cubic lattice of inclusion is presented in Fig. 6 ( ε = 8, ε0 = 1 )
by solid line . Note that the dependence εs∗(p) for the cubic lattice al-
most coincides with the same dependence for an isotropic distributions
inclusions in space given by Eq. (34) (the point line in Fig. 6). The
deviation from the exact values of the effective dielectric permittivity
is observed only for rather high values of the volume concentration of
inclusions ( p > 0.4 ). The exact values of εs∗(p) for a cubic lattice of
inclusions were built in [16] and the dashed line in Fig.6 corresponds
to this exact solution.

As it was obtained in [1] the long wave limit of the attenuation
factor γ of the mean wave field in the composites has the form

γ =
k4

0(ε
s
∗ − ε0)2

9pε0
√
εs∗ε0

[
1− n0

∫
Φ(x)dx

]
. (42)

This expression describes the attenuation connected with the Rayleigh
wave scattering on inclusions. Here n0 is the numerical concentration
of inclusions, integration is spread over all 3-D space. In the case of a
spherically symmetric correlation function ( Φ(x) = Φ(r) ) the integral
takes the form ∫

Φ(x)dx = 4π
∫ ∞

0
Φ(r)r2dr.

For periodic structures the function Φ(x) has the form (30). Note
that for the function f(x) in Eq. (22) we get

∫
f(x+ q)dx =

4π
3
.

For spheres of a unit radius p = 4π
3 n0 and the volume of an elementary

cell of the lattice is equal to n−1
0 . Thus the integrals over all the

elementary cells disappear except the cell with q = 0 because the
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Figure 5. The dependence of the coefficient α0 in Eq. (41) for a cubic
lattice of inclusions on their volume concentration p.

Figure 6. The dependence of the effective static dielectric permittivity
εs∗ of the composite with a cubic lattice of spherical inclusions on their
volume concentration p ( ε = 10, ε0 = 1) . Point line is the same
dependence for isotropic distribution of inclusions (Eq. (37)); dashed
line is the exact values of the effective permittivity obtained in [16].
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corresponding term is not present in the sum (30). The integral over
this cell is equal to n−1

0 and we have finally the result∫
Φ(x)dx = n−1

0 .

Thus for periodic structures the long wave limit (42) of the attenuation
factor is equal to zero and γ is of order at least higher than k4

0.
Therefore, there is no Rayleigh scattering of waves in this case. This
fact is well-known for periodic structures.

On the other hand in the short wave limit the effective field method
gives the following asymptotic value of the effective wave number k∗
of the composite [1]

k∗ = k0 − iγ,
where k0 is the wave number of the matrix and the attenuation factor
γ is the solution of the following equation

γ(1− pIΦ(γ)) =
3
4
p, IΦ(γ) =

∫
eγ|x|Φ(x)dx.

For the function Φ(x) in the form (30) and γ > 0 the integral IΦ(γ)
diverges and we get γ → 0 in the short wave limit. Thus the effec-
tive field methods gives us physically correct results for the short wave
limit also: the velocities of very short waves coincide with their veloc-
ities in the matrix and they propagate through the medium without
attenuation.

6. THE SOLUTION OF THE DISPERSION EQUATIONS

Let us consider wave propagation through the inhomogeneous materi-
als we have discussed above and start with a cubic lattice of spherical
inclusions of a unit radius. For this structure the tensor GΦ(k) takes
the form (31)

GΦ(k) = G0
Φ(k) + G1

Φ(k), (43)

G0
Φ(k) =

1
p

[
G0
t (k0, k)(1−m⊗m) +G0

l (k0, k)m⊗m
]
, k = km,

G0
t (k0, k) =

1
ε0

[
k2

0qt(k0, k) + Jt(k0, k)
]
,

G0
l (k0, k) = G0

t (k0, k) +
1
ε0
Gl(k0, k),
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where integrals qt(k0, k), Jt(k0, k), Gl(k0, k) are defined in Eq. (26).
The tensor G1

Φ(k) in the basis of the unit vectors ei(i = 1, 2, 3) di-
rected along the sides of a cubic elementary cell takes the form

G1
Φ(k) = (GΦ)jlej ⊗ el,

(GΦ)jj = −9k2
0

ε0

′∑
r,s,t

j21(µ(r, s, t))
µ2(r, s, t)

[
|k− µ(r, s, t)|2 − k2

0

]
·
[
1− (kj − µj(r, s, t))2

k2
0

]
,

(j = l = 1, 2, 3; r, s, t = 0,±1,±2,±3, . . .)

(GΦ)jl =
9
ε0

′∑
r,s,t

j21(µ(r, s, t))
µ2(r, s, t)

[
|k− µ(r, s, t)|2 − k2

0

]
· (kj − µj(r, s, t))(kl − µl(r, s, t)),
j, l = 1, 2, 3; j �= l.

Here kj and µj(r, s, t) are the components of the vectors k and
µ(r, s, t) = λ0(re1 + se2 + te3) in the chosen basis, µ(r, s, t) =
λ0

√
r2 + s2 + t2, the prime over the sum sign means omitting the term

with r = s = t = 0.
If the vector k is directed along a side of the elementary cell (i.e.,

k =ke1 ) the non diagonal terms of the matrix (GΦ)jl disappear and
the diagonal ones take the forms

(GΦ)11 = Gl(k0, k)

= − 9
ε0

′∑
r,s,t

j21(µ(r, s, t))
[
k2

0 − k2 + 2kλ0r − λ2
0r

2
]

µ2(r, s, t)
[
k2 + µ2(r, s, t)− k2

0 − 2kλ0r
] , (45)

(GΦ)22 = (GΦ)33 = Gt(k0, k)

= − 9
2ε0

′∑
r,s,t

j21(µ(r, s, t))
[
2k2

0 − µ2(r, s, t) + λ2
0r

2
]

µ2(r, s, t)
[
k2 + µ2(r, s, t)− k2

0 − 2kλ0r
] ,

The functions Π(k) in Eq. (7) for this case takes the form

Π(k) = Πt(k)(1− e1 ⊗ e1) + Πl(k)e1 ⊗ e1, (46)

Πt(k) = [1 + pε1Λt(k0, k∗)Gt(k0, k)]−1,

Πl(k) = [1 + pε1Λl(k0, k∗)Gl(k0, k)]−1.
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Figure 7. The dispersion curves (dependences Re[k∗(k0)] ) and atten-
uation factors ( γ = Im[k∗(k0)] ) of the mean wave field in the compos-
ite with a regular cubic lattice of spherical inclusions of a unit radius
( ε0 = 1; ε = 5, p = 0.3 ).

The dispersion equation (12) is divided in two equations for the trans-
versal part of the mean wave field ( k = k∗ = k∗e1 )

k2
∗−k2

0−pk2
0ε1[Λt(k0, k∗)

−1+pε1G0
t (k0, k∗)+pε1G

1
t (k0, k∗)]

−1 = 0 (47)

and for the longitudinal part

1 + pε1[Λl(k0, k∗)−1 + pε1G0
l (k0, k∗) + pε1G1

l (k0, k∗)]
−1 = 0. (48)

Here Λt(k0, k∗) and Λl(k0,k∗) are transversal and longitudinal parts
of the tensor Λ0(k∗) in Eq. (16).

Let us consider the transversal part of the mean wave field that
propagates along the vector e1. We emphasize that this field is the
detail field averaged over all the translations of the regular lattice. For
the coefficient Λt(k0,k∗) one can use the exact solution (16) or the
approximate solution (23). If the approximate solution is used (the
wave field inside every inclusion is a plane wave with the wave vector
of the effective field) the dispersion equation is simplified dramatically
and take the forms

k2
∗ = k2

0 + pk2
0ε1Γt(k0,k∗), Γt(k0,k∗) = [1 + pε1G1

t (k0, k∗)]
−1, (49)
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1 + pε1Γl(k0,k∗) = 0, Γl(k0,k∗) = [1 + pε1G1
l (k0, k∗)]

−1. (50)

Here we take into account that for the plane wave approximation

Λ−1
0 (k∗) = 1− IG(k0,k∗) · ε1 = 1−ε1pG0

Φ(k∗). (51)

The numerical analysis of the equation (49) shows the existence of an
infinite set of different branches of its solution. The branches (1–7)
that are found inside the area ( 0 ≤ k0 ≤ 3, 0 ≤ Re(k∗) ≤ 5 ) are
presented in Fig. 7 ( ε = 5, ε0 = 1, p = 0.3).

Let us consider the main (“acoustic”) branch (1) of this equation.
The wave numbers k∗ that correspond to this branch are real if the
wave number k0 (non dimensional frequency) is out of the narrow
strips between vertical dashed lines in Fig. 7. The corresponding
waves propagate through the medium without attenuation. Inside
these strips (the bands of attenuations) the roots of the dispersion
equation ( k∗ ) that correspond to the branches 1 and 2 are complex
numbers. (Note that inside the band of attenuation the branch 1 and
2 are coincide and they are deviated only outside this band.) For the
branch 1 (and 2) the corresponding attenuation factor is presented in
the Fig. 7 by the curve 1′ . Other branches corresponds to some dif-
ferent types of waves that can propagate through this inhomogeneous
medium. Note that the bands of attenuation are located in the vicini-
ties of the Bragg’s frequencies (wave numbers) that are defined by the
equation

k0 =
1
2
λ0j, j = 1, 2, 3, . . . (52)

and λ0 = 2.609 for p = 0.3.
In order to better understand the input of different branches into

the mean wave field let us consider the mean Green function defined
in Eq. (13) or the mean wave field from a concentrated source of wave
in the considered medium. The general expression for the Fourier
transform of the Green function (13) takes the form

< G̃(k) >= g̃t(k)(1− e1 ⊗ e1)− g̃l(k)e1 ⊗ e1, (53)

g̃t(k) =
k2

0

ε0
[
k2 − k2

0 − pε̄1k2
0Γt(k, k0)

] , g̃l(k) =
1

ε0 [1 + pε̄1Γl(k, k0)]
,
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where g̃t(k), g̃l(k) are transversal and longitudinal parts of the Fourier
transform of the mean Green function. After application of the inverse
Fourier transform operator and integration over the unit sphere we get
for < G(x) >

< G(x) >= Gt(x) + Gl(x), (54)

Gt(x) =
1

4π2ri

∫ ∞
−∞
gt(k)eikrkdk1

+ ∇⊗∇
[

1
4π2ri

∫ ∞
−∞
gt(k)eikr

dk

k

]
,

Gl(x) =∇⊗∇
[

1
4π2ri

∫ ∞
−∞
gl(k)eikr

dk

k

]
.

For the calculation of these integrals the residual theory may be ap-
plied.

Let k0 be small. In this case the poles of the function gt(k) are
located at point k = k∗ = k0

√
εs∗ and close to the points k = k±s =

λ0s ± k0, s = 1, 2, 3, . . . , some other poles of the function gt(k) and
poles of gl(k) are located close to the points

k = kls = λ0(s− i
√
j2 +m2), s, j = 1, 2, 3, . . . ;

m = 0, 1, 2, 3, . . . , i =
√
−1.

As a result the expression for < G(x) > takes the following form

< G(x) >=
k2
∗

4πrεs∗
e−ik∗r +∇⊗∇

(
1

4πrεs∗
e−ik∗r

)

+
k2

0

4πrε0

∞∑
s=1

(
R+
s e
−ik+

s r +R−s e
−ik−s r

)

+
k2

0

4πε0
∇⊗∇

(
1
r

∞∑
s=1

(
R+
s e
−ik+

s r +R−s e
−ik−s r

))

+ . . . (55)

Here R±s are residuals of the functions gt(k) at points k±s . For large
s the numbers R±s may be estimated as

| R±s |�
9
2
p2ε21k

2
0

ε20(λ0s)5
| cos(λ0s) | .
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Thus the picture of the mean wave field that propagates from a point
source in the medium with a cubic lattice of inclusions has the following
structure. The first two terms in Eq. (55) describe the propagation of
waves in the homogeneous medium with the effective static properties
εs∗ of the composite (compare with the Eq. (3) for G(x) ). This is
the main wave that corresponds to the branch 1 in Fig. 7. The other
waves that are generated in the medium have wave numbers k±s , their
amplitudes are proportional to R±s and much less than the amplitude
of the main branch 1. For large s the amplitudes of these waves rapidly
turn to zero. The terms that are not written in Eq. (55) attenuate
exponentially with attenuation factors of order 1 and more. Thus
the corresponding waves almost disappear beyond the length L0 (the
distance between inclusions).

Note that this picture of the mean wave field in the composite with
a cubic lattice of inclusions was obtained by using the plane wave
approximation for the solution of the one particle problem. If the exact
solution (16) of this problem is used the results will change. In this case
strictly speaking there are no non attenuating waves. The attenuation
exists for all the frequencies but in the vicinities of Bragg’s frequencies
the attenuation factors are in two-there orders higher than in the region
out of the attenuation bands (The lines with dots in Fig. 7 correspond
to the branch 1 if the solution (16) of the one particle problem is used).
It is possible to say that the plane wave approximation is compatible
with the effective field method in the case of regular structures. Only
in the framework of such an approximation one can get physically
correct results: the existence of the non attenuating waves and bands
of attenuation in the vicinities of Bragg’s frequencies.

Let us study the solutions of the dispersion equation for the Boolean
random sets of inclusions. The dispersion equation for transversal
waves has the form

k2
∗ = k2

0 + pk2
0ε1[Λt(k0, k∗)

−1 + pε1Gt(k0, k∗)]−1, (56)

where Gt(k0, k∗) is defined in Eq. (26), Λt(k0, k∗) has the form in
Eq. (16) if the exact solution of the one particle problem is used and

Λt(k0, k∗) =
[
1− ε̄1[k2

0q(k0, k∗) +K1(k0, k∗)]
]−1

if the plane wave approximation (23) is used. Here q(k0, k∗) and
K1(k0, k∗) are defined in Eq. (22).
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For the one scale model ( ε = 5, ε0 = 1, p = 0.2 ) strictly speaking
one can find three different branches of the solutions of the dispersion
equation (see lines with dots in Fig.8). But in the long wave region only
the main branch (1) is essential. The branches 2 and 3 have very high
attenuation factors ( γ ≈ 3 ) and the corresponding waves disappear on
the length of the diameter of inclusions. The attenuation of the wave
that corresponds to the branch 3 decreases in the short wave region
where this wave should be taken into account.

Let us consider the two scale Boolean model of the random field of
inclusions with the parameters

p1 = 0.25, p2 = 0.8, R1 = a = 1, R2 = 5, p = p1p2 = 0.2.

The solution of the corresponding dispersion equation has also three
branches (see solid lines in Fig. 8). The main branch 1 is similar to the
similar branch in the case of the one scale model. But the attenuations
of the additional waves that correspond to the branches 2 and 3 are
much less then for the one scale model (see the graphs in the right
hand side of Fig. 8). It is possible to explain this fact as a result of
additional order in the positions of inclusions in the two scale model
in comparison with the one scale one.

Let us consider a model correlation function Φ(r) in the form

Φ(r) = e−ρr cos(0.5r). (57)

Parameter ρ−1 here may be interpreted as a correlation length in the
random field of inhomogeneities.. This length decreases as ρ increases.
(The construction of random sets corresponding to this correlation
function is not known.)

The results of the solution of the dispersion equation for ρ = 0.1;
0.3; 0.7 ( ε = 5, ε0 = 1, p = 0.2) are presented in Fig. 9–11. In all
these cases one finds three branches of the solutions of the dispersion
equation. The main branch 1 in the long wave region does not de-
pend essentially on the parameter ρ . But the value of the attenuation
factor of this branch in the short wave region as well as attenuation
factors and positions of the branches 2 and 3 in all considered region
of frequencies strongly depend on the value of ρ. The attenuation of
the additional waves increases as parameter ρ increases, which corre-
sponds to less ordered distributions of inclusions.

All the calculations in this work were done with the help of the
“Mathematica” package [17].
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Figure 8. The dispersion curves and attenuation factors for the one
scale (lines with dots) and two scale (solid lines) Boolean random sets
of inclusions ( ε0 = 1; ε = 5, p = 0.2 ).

Figure 9. The disperse curves and attenuation factors for the mean
wave field in the composite with the model correlation function (57)
and ρ = 0.1 ( ε0 = 1; ε = 5, p = 0.2 ). Lines with dots are one scale
Boolean model for p = 0.2.

7. CONCLUSION

The version of the effective field method developed in [1] and in this
work allows us to describe the influence of the peculiarities of spatial
distributions of inclusions in matrix composites on the effective dy-
namic properties of the latter. For composites with regular lattices
of inclusions the method gives the right symmetry (anisotropy) of the
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Figure 10. The same graphs as in Fig. 9 for ρ = 0.3 .

Figure 11. The same graphs as in Fig. 9, 10 for ρ = 0.7 .

effective properties in statics as well as in dynamics. The method pre-
dicts the existence of the bands of attenuations for regular composites
in the vicinities of Bragg’s frequencies.

For composites with homogeneous and isotropic distributions of in-
homogeneities the method predicts the existence of a main (acoustic)
branch and two additional branches of the solution of the dispersion
equation for transversal electromagnetic waves. The attenuations of
waves that correspond to the additional branches are higher than the
attenuation of the waves corresponding to the main branch in the long
wave region. But the value of the attenuation factors of the additional
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branches decreases as the correlation radius of the random field of in-
homogeneities increases. This results allow us to expect that if the
order in the position of inclusions in space increases, there appear new
branches of the solution of the dispersion equation or new types of
waves that may propagate through the system. For homogeneous and
isotropic random fields of inclusions all the waves attenuate but the
corresponding attenuation factors decrease as the order in the system
increases. In the limit when one goes to a regular lattice of inclusions
the attenuation takes place only inside narrow bands of frequencies. In
the short wave limit, the method gives the absence of attenuation of
waves in regular composites. This result seems to be physically correct
for the following reasons. In this limit the wave field may be considered
as a set of independent direct beams. Because of the existence of direct
lines in the matrix that do not intersect inclusions that compose a reg-
ular lattice, these beams may propagate through the medium without
attenuation and their velocity coincides with the velocity of waves in
the matrix.

Note that for regular structures the method gives physically correct
results only if the plane wave approximation of the solution of the one
particle problem is used.

The important question is the estimation of the precision of the
method. In statics the results of the method are close to the known
exact solutions of the problem and to experimental data if the vol-
ume concentration of inclusions p does not exceed the value 0.4. In
dynamics the area of application of the method has not been investi-
gated properly yet. The comparison with available experimental data
that are usually obtained for composites with small volume concentra-
tions of inclusions shows a good agreement with the predictions of the
method [1]. But the lack of such data in a wide region of properties of
inclusions, their volume concentrations and frequencies of the exciting
fields does not allow to estimate precisely the limits of the application
of the method.

The main source of the possible errors of the method is the assump-
tion that the field that acts on every inclusion in composite is a plane
wave that is the same for all inclusions. For periodic composites this
field is definitely not a plane wave and the method cannot describe
the fine structure of the dispersion curves in the region of middle and
short wave lengths. In particular the structure of the band-gaps in this
region of frequencies may hardly be investigated by the method. But
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in the region of rather long waves that correspond to the first Bragg
frequencies one may expect good agreement with the exact solutions
of the problem.

The comparison with the exact solutions for the periodic composite
may help us to estimate the area of application of the method. But the
method is more useful in application to random composites when exact
solutions are not available. The comparison with experimental data in
statics shows that the method needs corrections for composites with
very contrast components if the volume concentration of inclusions
exceeds 0.4. The version of the method developed in this work is
a simple one. The method may be modified in order to take into
account more precisely the interaction between inclusions. In statics
of elastic composites such a more complex version of the method was
developed in ([15], Chapt. 7). This modification may widen the limits
of application of the method. But the price to pay for such widening is
due to technical difficulties of the solution of the one particle problem.
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