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1. INTRODUCTION

It is well-known that apertures have been considered as the most im-
portant microwave antenna, as introduced in the conventional antenna
text books [1–3], and that such microwave antennas are usually fed by
waveguides of either rectangular and circular cross sections. Because
of its simple structure and ease of manufacture as well as because of
the field symmetry during the antenna scanning, the aperture antenna
fed by a circular waveguide with an infinite conducting flange is of
practical use. In the aforementioned text books, the current distribu-
tion over the aperture is assumed as either a constant [1, 2, 4] or a
waveguide-generated dominant-mode [1, 5].

With a generalized representation of dyadic Green’s functions
(DGFs) for multi-layered media given by Li et al. [6], the electromag-
netic fields in a three-layered geometry due to an aperture antenna
of a known constant current distribution covered by a hemi-spherical
radome shell has been considered [4]. Then, a more practical field dis-
tribution over the aperture, i.e., the dominant TE 11 mode excitation
generated by a circular waveguide, has been further taken into account
as an improvement of the current distribution over the aperture [7].
This work was further extended to the analysis of the isotropic radome
fed by an off-centered aperture source [8]. Recently, a further im-
provement has been achieved [9] by modifying the aperture’s magnetic
current distribution due to the near-field interaction and by employing
the reactive interaction procedure. However, the above analysis does
not include all the re-excited modes inside the waveguide due to the
aperture mainly due to the difficulty of the geometry involving both
cylindrical and spherical structures. Although the circular waveguide
feeding has been considered in the authors’ previous studies on the
antenna radome performance, the image theory and the given current
distribution over the aperture opening have been assumed. So far, an
exact analysis of such a geometry, where all the modes are considered
in the matching of boundary conditions on all the conducting walls
and dielectric interfaces, is still unavailable.

This paper presents a fullwave rigorous analysis of electromagnetic
radiation of a dipole antenna located in a circular open waveguide. The
waveguide flange is then flushed mounted on an infinite ground plane
and then covered by a dielectric spherical-shell radome (see Figure 1).
To conveniently solve the problem, the physical structure is separated
into five regions. For these regions, dyadic Green’s functions are for-
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mulated in terms of the spherical vector wave functions in the first
four regions and the cylindrical vector wave functions in the fifth re-
gion. The third and fourth regions are separated because of the future
ease of determination of the power patterns which need not the coor-
dinates transform. In the analysis, all the possible modes are included
and all the conducting walls and (imaginary) dielectric interfaces are
considered. Although coupled to each other, the scattering coefficients
of these DGFs are formulated in compact matrix form by using the
mode-matching technique and applying the method of scattering su-
perposition. The antenna patterns of the radiating system in the far
zone are obtained and various effects due to different radome thick-
nesses, dimensions, and radian of the feed waveguide are discussed in
detail.

2. BASIC FORMULATION OF THE PROBLEM

The geometry of the problem is illustrated in Fig. 1 where the wave-
guide opening aperture is excited by a dipole antenna located inside
the circular waveguide, mounted on the ground plane, and covered by
a dielectric hemi-spherical radome shell. For convenience of the analy-
sis, an imaginary hemi-spherical interface at r = r0 and a interface of
the circular waveguide opening are assumed. Therefore, the structure
is divided into the five regions, as shown in Fig. 1.

Figure 1. A circular waveguide-fed aperture mounted on an infinite
ground plane and covered by a dielectric hemi-spherical shell.
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The radiated electromagnetic fields, Ef and Hf in the f -th region
( f = I, · · · , V ), contributed by an electric current distribution Js
lying in the fifth region may be expressed by

∇×∇×Ef (r)− k2
0Ef (r) = iωµ0Jf (r′)δf5, (1a)

∇×∇×Hf (r)− k2
0Hf (r) = (∇× J)f (r′)δf5, (1b)

where δfs ( = 1 for s = f and 0 for s �= f ) denotes the Kronecker
delta, while k0 = ω

√
µ0ε0 , εf , and µ0 identify the propagation con-

stant, the permittivity, and the permeability in free-space, respectively.
A time dependence exp(−iωt) is assumed for the field expressions
throughout the paper.

Since the above equations are linear, the electric and magnetic fields
Ef and Hf due to such an electric current source can be obtained as
follows:

Ef (r) = iωµf

∫∫∫
Vs

G
(f5)
e (r, r′) · Js(r′)dV ′, (2a)

Hf (r) =
∫∫∫

Vs

∇×G(f5)
e (r, r′) · Js(r′)dV ′, (2b)

where Vs identifies the volume occupied by the sources in the fifth
region. Substituting Eq. (2) into (1a) yields

∇×∇×G(f5)
e (r, r′)− k2

0G
(f5)
e (r, r′) = Iδ(r− r′)δf5, (3)

where I is the identity dyadic and δ(r− r′) the Dirac delta function.
On dielectric interfaces, the electric type of dyadic Green’s function

G
(f5)
e (r, r′) hence satisfies the following boundary conditions at the

hemi-spherical interface:

r̂×G(f5)
e

∣∣∣
r=rf

= r̂×G[(f+1)5]
e

∣∣∣
r=rf

, (4a)

1
µf
r̂×∇×G(f5)

e

∣∣∣∣
r=rf

=
1

µf+1
r̂×∇×G[(f+1)5]

e

∣∣∣∣
r=rf

. (4b)

with f = 1 , 2, and 3 and

r1 = a1, r2 = a2, r3 = r0. (5)
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and the following boundary conditions at the aperture interface be-
tween regions IV and V ( z = 0 in cylindrical coordinates or θ = 90◦

in spherical coordinates):

θ̂×G(45)
e

∣∣∣
θ=90◦

= −ẑ×G(55)
e

∣∣∣
z=0

, (6a)

1
µ4
θ̂×∇×G(45)

e

∣∣∣∣
θ=90◦

= − 1
µ5
ẑ×∇×G(55)

e

∣∣∣∣
z=0

. (6b)

For TE- and TM-modes, the electric type of dyadic Green’s function,
G

(fs)
e (r, r′) , satisfies the Dirichlet and Neumann boundary conditions

respectively on the conducting ground θ = 90◦ (regions I, II, and III)
and on the conducting wall of the circular waveguide ρ = r0 (region
V):

θ̂×G(f5)
e

∣∣∣
θ=90◦

= 0, for f = 1, 2, 3; (7a)

ρ̂×G(55)
e

∣∣∣
ρ=r0

= 0. (7b)

Since the electric and magnetic types of dyadic Green’s functions are
dual, the electric type of dyadic Green’s function G

(f5)
e (r, r′) can be

converted to the magnetic type G(f5)
m (r, r′) or vice versa by making

the simple replacement E → H , H → −E , J → M , M → −J ,
µ→ ε , and ε→ µ . To avoid unnecessary repetition, only the electric
type of dyadic Green’s function will be presented in this paper.

3. EXPRESSIONS OF DYADIC GREEN’S FUNCTIONS
IN FIVE REGIONS

To formulate the electromagnetic dyadic Green’s functions in the five
regions shown in Fig. 1, both the spherical and cylindrical vector wave
functions as introduced by [10–12] will be utilized in this paper.

For expressing the electromagnetic fields and dyadic Green’s func-
tions, we define the following vector eigenfunctions using the same no-
tations as those shown by Tai [12] for spherical coordinates (in regions
I ,II, III and IV):

Me
omn(k) = ∓ m

sin θ
zn(kr)Pm

n (cos θ)
sin
cos

(mφ)θ̂

− zn(kr)
dPm

n (cos θ)
dθ

cos
sin

(mφ)φ̂, (8a)
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Ne
omn(k) =

n(n + 1)
kr

zn(kr)Pm
n (cos θ)

cos
sin

(mφ)r̂

+
1
kr

d[rzn(kr)]
dr

[
dPm

n (cos θ)
dθ

cos
sin

(mφ)θ̂

∓ m

sin θ
Pm
n (cos θ)

sin
cos

(mφ)φ̂
]
, (8b)

where zn(kr) denotes the spherical Bessel function of n-order ,
Pm
n (cos θ) identifies the associated Legendre function of the first kind

with the order ( n,m ), and for cylindrical coordinates (in region V):

Me
omν(h) =

[
∓mJm(νρ)

ρ

sin
cos

(mφ)ρ̂

−dJm(νρ)
dρ

cos
sin

(mφ)φ̂
]
eihz, (9a)

Ne
omλ(h) =

1
kλ

[
ih

dJm(λρ)
dρ

cos
sin

(mφ)ρ̂

∓ ihm

r
Jm(λρ)

sin
cos

(mφ)φ̂

+λ2Jm(λρ)
cos
sin

(mφ)ẑ
]
eihzi, (9b)

where

ν =
qmn
r0

, (10a)

λ =
pmn
r0

, (10b)

with qmn and pmn as roots of

dJm(x)
dx

∣∣∣∣
x=ν

= 0 (for TEmn- modes), kν =
√
h2 + ν2;

Jm(x)|x=λ = 0 (for TMmn- modes), kλ =
√
h2 + λ2.

The parameter r0 is the radius of the conducting circular waveguide.
The above vector wave functions have been verified by Tai [12] to

be orthogonal among themselves as well as with respect to each other
as they are integrated over all the values of ρ , φ , and z in cylindrical
coordinates and r , θ , and φ in spherical coordinates.
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Applying the method of contour integration in the complex h-plane ,
and following the similar way of constructing the dyadic Green’s func-
tion for spherical structures by [12], we define, for the current source
located in the region V , the dyadic Green’s function in regions I, II,
III, and IV with the spherical Bessel and Hankel functions as follows:

G
(f5)
es (r, r′) =

iks
4π

∞∑
n=0

n∑
m=0

(2− δ0
m)

2n + 1
n(n + 1)

(n−m)!
(n + m)!

·
[
(1− δ4

f )M
(1)
e
omn

(kf )Af5
MM

′
e
omν

(−kν)

+ (1− δ4
f )N

(1)
e
omn

(kf )Af5
NN

′
e
omλ

(−kλ)
+ (1− δ1

f )Me
omn(kf )B

f5
MM

′
e
omν

(−kν)

+ (1− δ1
f )Ne

omn(kf )B
f5
N N

′
e
omλ

(−kλ)
]
,

(11)

where the prime denotes the coordinates ( r′, θ′, φ′ ) of the current
source Js(r′) , m and n identify the eigenvalue parameters in spher-
ical coordinates while ν and λ represent the eigenvalues in circular
cylindrical coordinates, Me

omn stands for the electric field of the TEmn

mode while Ne
omn represents that of the TMmn mode, and Af5

M,N and

Bf5
M,N are the scattering coefficients of dyadic Green’s function to be

solved for.
Both the spherical and cylindrical vector wave functions are used

in the representation to express the electromagnetic fields due to the
given source current distribution. The superscript (1) denotes that
the third-type spherical or cylindrical Bessel function or the first-type
spherical or cylindrical Hankel function h

(1)
n (ρ) should be chosen in

the expression of the spherical wave vector functions. For the rest of
the vector wave functions, we should still choose the normal first-type
spherical Bessel function Jn(ρ) .

As for regions I, II and III, in order to satisfy the boundary condi-
tions on the ground plane, we have to assume

n =
{
q, q + m = even for Me

omn-mode;
p, p + m = odd for Ne

omn-mode. (12)

Using the method of scattering superposition, we consider the dyadic
Green’s function in region V as the sum of an infinite waveguide DGF
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and a scattering DGF. The dyadic Green’s function is therefore given
by [13]:

G
(55)
e (r, r′) = G0e(r, r′) +G(55)

es (r, r′) (13)

where the infinite waveguide DGF can be expressed [12] for z><z
′ as

G0e(r, r′) = − ẑẑ
k2

0

δ(r− r′)

+
∑
m,n

[
i(2− δm0)
4πν2Iνkν

Me
omν(±kν)M ′

e
omν

(∓kν)

+
i(2− δm0)
4πλ2Iλkλ

Ne
omλ(±kλ)N

′
e
omλ

(∓kλ)
]
,

(14)

and the scattering DGF can be therefore expressed for z><z
′ as

G
(55)
es (r, r′) =

∑
m,n

[
i(2− δm0)
4πν2Iνkν

CM
mνMe

omν(±kν)M ′
e
omν

(∓kν)

+
i(2− δm0)
4πλ2Iλkλ

CN
mνNe

omλ(±kλ)N
′
e
omλ

(∓kλ)
]
,

(15)

in which the eigenvalues ν and λ have been given previously in (9)
and the two parameters Iν and Iλ are given respectively by

Iν =
∫ r0

0
J2
n(νρ)ρdρ =

r2
0

2ν2

[
∂Jn(νρ)

∂ρ

]2

ρ=r0

, (16a)

Iλ =
∫ r0

0
J2
n(λρ)ρdρ =

r2
0

2λ2

[
∂Jn(λρ)

∂ρ

]2

ρ=r0

. (16b)

In different regions, it is assumed that the source contribution to the
field at a given point remains, i.e.,

[
Icost
M
Icost
N

]
=

∫∫∫
Vs

[
M ′(ks)
N ′(ks)

]
· Js(r′)dV ′

= constant matrix.
(17)

Therefore, M ′(ks) and N ′(ks) for r><r
′ (in regions I, II, III and IV)
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or z><z
′ (in region V) can be expressed as

[
M ′(ks)
N ′(ks)

]
=




[
M ′

e
omn

(−k1,2,3,4)
N ′e

omn
(−k1,2,3,4)

]
,

Source in regions I, II, III and IV;[
M ′

e
omν

(∓kν)
N ′e

omλ
(−kλ)

]
,

Source in region V.

(18)

As we do not intend to cover all the possibilities in this paper, we
will concentrate on the antenna radiation in the conducting circular
waveguide only.

4. DETERMINATION OF SCATTERING COEFFICIENTS
OF DGFS USING BOUNDARY CONDITIONS

So far, we have constructed the dyadic Green’s functions for every
region with unknown scattering coefficients. To formulate these coef-
ficients, boundary conditions are applied. It is immediately realized
that these coefficients are coupled to each other. To solve for them
for the structure is not as simple as that for the multilayered spherical
structure where these coefficients can be decoupled.

A Boundary Conditions on Hemi-Spherical Interfaces

The boundary conditions satisfied by the dyadic Green’s function
have been shown in Eqs. (4a–7b). By applying the boundary condition
(4a) and (4b) on the interfaces at r = a1 and r = a2 and by using the
same method and procedure in [6], we obtain the following coefficient
matrix equations:

[
h̄ffAfsM
∂h̄ffAfsN

]
+

[
�ffBfsM
∂�ffBfsN

]

=

[
h̄(f+1)fA(f+1)s

M

∂h̄(f+1)fA(f+1)s
N

]
+

[
�(f+1)fB(f+1)s

M

∂�(f+1)fB(f+1)s
N

] (19)
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and

kf
µf

[
∂h̄ffAfsM
h̄ffAfsN

]
+

kf
µf

[
∂�ffBfsM
�ffBfsN

]

=
kf+1

µf+1

[
∂h̄(f+1)fA(f+1)s

M

h̄(f+1)fA(f+1)s
N

]
+

kf+1

µf+1

[
∂�(f+1)fB(f+1)s

M

�(f+1)fB(f+1)s
N

]
,

(20)

where

�il = jn(kial), (21a)

h̄il = h(1)
n (kial), (21b)

∂�il =
1
ρ

d[ρjn(ρ)]
dρ

∣∣∣∣
ρ=kial

, (21c)

∂h̄il =
1
ρ

d[ρh(1)
n (ρ)]
dρ

∣∣∣∣∣
ρ=kial

, (21d)

with
l = 1, and 2.

Using the method similar to that introduced by Li et al. for the planar,
stratified media [14] and rewriting (19) and (20) into the simplified
forms, we obtain

[
A(f+1)s
M,N

]
=

1

T H,VFf

[
AfsM,N

]
+
RH,V
Ff

T H,VFf

[
BfsM,N

]
, (22a)

[
B(f+1)s
M,N

]
=
RH,V
Pf

T H,VPf

[
AfsM,N

]
+

1

T H,VPf

[
BfsM,N

]
, (22b)

where

RH
Pf =

µfkf+1∂h̄(f+1)f h̄ff−!µf+1kf∂h̄ff h̄(f+1)f

µfkf+1�ff∂h̄(f+1)f − µf+1kf∂�ff h̄(f+1)f
, (23a)

RH
Ff =

µfkf+1∂�(f+1)f�ff − µf+1kf∂�ff�(f+1)f

µfkf+1∂�(f+1)f h̄ff − µf+1kf�(f+1)f∂h̄ff
, (23b)

RV
Pf =

µfkf+1h̄(f+1)f∂h̄ff − µf+1kf h̄ff∂h̄(f+1)f

µfkf+1∂�ff h̄(f+1)f − µf+1kf�ff∂h̄(f+1)f
, (23c)
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RV
Ff =

µfkf+1�(f+1)f∂�ff − µf+1kf�ff∂�(f+1)f

µfkf+1�(f+1)f∂h̄ff − µf+1kf∂�(f+1)f h̄ff
, (23d)

T HPf =
µfkf+1(�(f+1)f∂h̄(f+1)f − ∂�(f+1)f h̄(f+1)f )
µfkf+1�ff∂h̄(f+1)f − µf+1kf∂�ff h̄(f+1)f

, (23e)

T HFf =
µfkf+1(∂�(f+1)f h̄(f+1)f −�(f+1)f∂h̄(f+1)f )
µfkf+1∂�(f+1)f h̄ff − µf+1kf�(f+1)f∂h̄ff

, (23f)

T VPf =
µfkf+1(∂�(f+1)f h̄(f+1)f −�(f+1)f∂h̄(f+1)f )
µfkf+1∂�ff h̄(f+1)f − µf+1kf�ff∂h̄(f+1)f

, (23g)

T VFf =
µfkf+1(�(f+1)f∂h̄(f+1)f − ∂�(f+1)f h̄(f+1)f )
µfkf+1�(f+1)f∂h̄ff − µf+1kf∂�(f+1)f h̄ff

, (23h)

and the subscripts F and P denote the centrifugal and centripetal
waves, respectively.

The symbols T H(P,F )f and RH
(P,F )f represent the centripetal and cen-

trifugal transmission and reflection contributions from TE waves (cor-
responding to the superscript H ) while T V(P,F )f and RV

(P,F )f represent
the centripetal and centrifugal transmission and reflection contribu-
tions from TM waves (corresponding to the superscript V ). The coef-
ficients in matrix are subject to the conditions as described in Eq. (12),
i.e., q and p refer to TE-mode and TM-mode, respectively.

In the same process, applying the boundary condition(4a) on the
interface r = r0 , we can derive an equation in terms of the coefficients
AfsM,N andBfsM,N as follows:

∑
m,n

[
(h(1)

n (k3r0)A35
Mmn + jn(k3r0)B35

Mmn)K
M
mn

+

(
d[r0h

(1)
n (k3r0)]

k3r0dr0
A35
Nmn +

d[r0jn(k3r0)]
k3r0dr0

B35
Nmn

)
KN

mn

]

=
∑
m,n

[
jn(k4r0)B45

MmnK
M
mn +

d[r0jn(k4r0)]
k4r0dr0

B45
NmnK

N
mn

]
,

(24)

where m and n on the left-hand side are so chosen that the condition
as described in Eq. (12) is satisfied, and the two vectors are defined as
follows:

KM
mn = (2− δ0

m)
2n + 1
n(n + 1)

(n−m)!
(n + m)!

[ m

cos θ
Pm
n (cos θ)θ̂
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× sin(mφ)− dPm
n (cos θ)
dθ

sin(mφ)φ̂
]
, (25a)

KN
mn = (2− δ0

m)
2n + 1
n(n + 1)

(n−m)!
(n + m)!

[
dPm

n (cos θ)
dθ

cos(mφ)θ̂

− m

sin θ
Pm
n (cos θ) sin(mφ)φ̂

]
. (25b)

From now on, we will add one more subscript mn to the scattering
coefficients, AfsM,N and BfsM,N , so as to represent different eigenvalues
to be used.

Making use of the orthogonal relationships described in Appendix A
for the left-hand side in Eq. (24), we can derive the following coupled
equations as

h(1)
q (k3r0)A35

Mmq + jq(k3r0)B35
Mmq

= jq(k2r0)B45
Mmq +

∑
p

jp(k4r0)TMM
pq B45

Mmp

+
∑
q

d[r0jq(k4r0)]
k4r0dr0

TMN
qq B45

Nmq, (26a)

d[r0h
(1)
p (k3r0)]

k3r0dr0
A35
Nmp +

d[r0jp(k3r0)]
k3r0dr0

B35
Nmp

=
d[r0jp(k4r0)]

k4r0dr0
B45
Nmp

+
∑
q

d[r0jq(k4r0)]
k4r0dr0

TNN
pq B45

Nmq, (26b)

where as (P,Q ) stands for (M,N ), (M,M ), or (N,N ), we have

TPQı =
∫ π

2

0

∫ 2π

0

1
πı(ı + 1)Nmı

KPmı ·KQm sin θdθdφ, (27)

with the normalized factor over ( 0, π/2 ) given by

Nmn =
∫ π

2

0
Pm
n Pm

n sin θdθ. (28)
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In a similar fashion, by applying the boundary condition (4b) on the
hemi-spherical interface r = r0 , one more set of coupled equations can
be derived as follows

k3

µ3

[
d[r0h

(1)
q (k3r0)]

k3r0dr0
A35
Mmq +

d[r0jq(k3r0)]
k3r0dr0

B35
Mmq

]

=
k4

µ4

[
d[r0jq(k4r0)]

k4r0dr0
B45
Mmq +

∑
p

T ′MM
pq

d[r0jp(k4r0)]
k4r0dr0

B45
Mmp

+
∑
q

T ′MN
qq jq(k4r0)B45

Nmq

]
, (29a)

k3

µ3

[
h(1)
p (k3r0)A35

Nmp + jp(k3r0)A35
Nmp

]

=
k4

µ4

[
jp(k4r0)B45

Nmp +
∑
q

T ′NN
pq jq(k4r0)B45

Nmq

]
, (29b)

where

T ′PQı =
∫ π

2

0

∫ 2π

0

1
πı(ı + 1)Nmı

K′Pmı ·K′Qm sin θdθdφ, (30)

in which

K′Mmn = (2− δ0
m)

2n + 1
n(n + 1)

(n−m)!
(n + m)!

[
dPm

n (cos θ)
dθ

sin(mφ)θ̂

+
m

θ
Pm
n (cos θ) cos(mφ)φ̂

]
, (31a)

K′Nmn = (2− δ0
m)

2n + 1
n(n + 1)

(n−m)!
(n + m)!

[
− m

sin θ
Pm
n (cos θ) sin(mφ)θ̂

−dPm
n (cos θ)
dθ

cos(mφ)φ̂
]
. (31b)

B Boundary Conditions on the Aperture z = 0 or θ = π/2

Now applying the boundary conditions (6) on the aperture, we can
derive equations satisfied by the coefficients B45

Mmn , B45
Nmn , CM

mν , and
CN
mλ as follows∑
m,n

[
B45
MmnFM

mn + B45
NmnFN

mn

]
=

∑
m,n

[
CM
mνUM

mν + CN
mλUN

mλ

]
, (32)
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where

FM
mn =

ikν
4π

(2− δ0
m)

2n+1
n(n + 1)

(n−m)!
(n + m)!

× [−jn(k4r)]
∂Pm

n (cos θ)
∂θ

∣∣∣∣
θ=π

2

sin(mφ)φ̂, (33a)

FN
mn =

ikλ
4π

(2− δ0
m)

2n + 1
n(n + 1)

(n−m)!
(n + m)!

∂Pm
n (cos θ)
∂θ

∣∣∣∣
θ=π

2

×
[
n(n + 1)

k4r
jn(k4r) cos(mφ)r̂

−m∂[rJn(k4r)]
k4r∂r

sin(mφ)φ̂
]
, (33b)

UM
mν =

mJm(νρ)
ρ

cos(mφ)ρ̂− dJm(νρ)
dρ

sin(mφ)φ̂, (33c)

UN
mλ =

1
kλ

[
ih

dJm(λρ)
dρ

cos(mφ)ρ̂− ihm

ρ
Jm(λρ) sin(mφ)φ̂

]
.(33d)

Again, ν and λ on the right-hand side of Eq. (32) satisfy the condi-
tions as described in Eq. (10) while the coefficients on the left are still
the same as those in Eq. (24).

By use of the orthogonal relationship described in Appendix B, the
matrix equations can be derived as follows:

CM
mν + 1 =

∑
n

4kν
i(2− δm0)

∫ 2π

0

∫ r0

0

[
B45
MmnFM

mn

+B45
NmnFN

mn

]
· UM

mνρdρdφ, (34a)

CN
mλ + 1 =

∑
n

4kλ
i(2− δm0)

∫ 2π

0

∫ r0

0

[
B45
MmnFM

mn

+ B45
NmnFN

mn

]
· UN

mλρdρdφ, (34b)

where Iν and Iλ have been given in Eqs. (16a–16b). It should be
noted that the argument r in FM

mn and FN
mn is now reduced to ρ

for the aperture opening.
In a similar fashion, using the other boundary condition on the

aperture in explicit form, we have

kν
µ5

(CM
mν + 1) =

k4

µ4

∑
n

4kν
I(2− δm0)

∫ 2π

0

∫ r0

0

[
B45
MmnF ′Mmn
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+B45
NmnF ′Nmn

]
· U ′Mmνρdρdφ, (35a)

kλ
µ5

(CN
mλ + 1) =

k4

µ4

∑
n

4kλ
I(2− δm0)

∫ 2π

0

∫ r0

0

[
B45
MmnF ′Mmn

+B45
NmnF ′Nmn

]
· U ′Nmλρdρdφ, (35b)

where it is defined that

F ′Mmn =
ikν
4π

(2− δ0
m)

2n + 1
n(n + 1)

(n−m)!
(n + m)!

Pm
n (cos θ)|θ=π

2

×
[
n(n + 1)

k2r
jn(k2r) cos(mφ)r̂

−m∂[rjn(k2r)]
k2r∂r

sin(mφ)φ̂
]
, (36a)

F ′Nmn =
ik3

4π
(2− δ0

m)
2n + 1
n(n + 1)

(n−m)!
(n + m)!

× [−�n(k2r)]
∂Pm

n (cos θ)
∂θ

∣∣∣∣
θ=π

2

sin(mφ)φ̂, (36b)

U ′Mmν =
1
kν

[
ih

∂Jm(νρ)
∂ρ

sin(mφ)ρ̂− hm

ρ
Jm(νρ) cos(mφ)φ̂

]
,(36c)

U ′Nmλ = −mJm(λρ)
ρ

sin(mφ)ρ̂− ∂Jm(λρ)
∂ρ

cos(mφ)φ̂. (36d)

So far, we have obtained Eqs. (19, 20, 26, 29, 34, 35) which are actually
expressed in a compact matrix form. From the matrix equation system,
the corresponding coefficients can be solved for and used in the future
numerical computation.

5. FRAUNHOFER FIELD EXPRESSIONS IN FAR-ZONE

Consider an electric dipole polarized in the r̂ -direction located at
(ρ′′, 0,−d) in the waveguide. The dipole current distribution is as-
sumed to be expressed by

Js(r′) = prρ̂
δ(ρ′ − ρ′′)δ(φ′)δ(z′ + d)

ρ′
(37)
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where pr stands for the dipole moment, d denotes the distance down
from dipole to aperture. For ease of computation, φ′ = 0 has been
assumed due to the symmetry of the problem.

For the field in the far-zone region or under the high-frequency ap-
proximation kr � 1 , the Hankel function and its derivative can be
expressed [15] or [12] by

h(1)
n (kr) � (−i)n+1 e

ikr

kr
, (38a)

d[rh(1)
n (kr)]
dr

� (−i)neikr. (38b)

By making use of the above equation (38), the electric field components
in the far-zone can be approximated from Eq. (2) as follows:

Er �
E0r0e

ikr

r2

iks
4π

∞∑
n=0

n∑
m=0

(2− δ0
m)

2n + 1
n(n + 1)

(n−m)!
(n + m)!

×A15
MΦmnP

m
n (cos θ) sin(mφ) ≈ 0, (39a)

Eθ �
E0r0e

ikr

r

∞∑
n=0

n∑
m=0

(2− δ0
m)

2n + 1
n(n + 1)

(n−m)!
(n + m)!

sin(mφ)

×
[
−ikA15

MΦmn
dPm

n (cos θ)
dθ

+A15
N Ψmn

Pm
n (cos θ)
sin θ

]
, (39b)

Eφ �
E0r0e

ikr

r

∞∑
n=0

n∑
m=0

(2− δ0
m)

2n + 1
n(n + 1)

(n−m)!
(n + m)!

cos(mφ)

×
[
−ikA15

MΦn
Pm
n (cos θ)
sin θ

+A15
N Ψn

dPm
n (cos θ)
dθ

]
, (39c)

where

Φmn =
∫∫∫

V
M ′

e
omν

(−kν) · Js(r′)dV ′

=
prmJm(νρ′)

ρ′

∣∣∣∣
ρ′=ρ′′

eihd, (40a)

Ψmn =
∫∫∫

V
N ′e

omλ
(−kλ) · Js(r′)dV ′

= −prh

kλ

∂Jm(λρ′)
∂ρ′

∣∣∣∣
ρ′=ρ′′

eihd. (40b)
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Figure 2. Normalized power patterns against spherical polar angle
for three different situations: (i) Balanis where there is no radome and
reaction feed-back effects are absent; (ii) Case 1 where the radome is
absent but the full-wave analysis is considered; and (iii) Case 2 where
the radome is present and the full-wave analysis is considered.

6. NUMERICAL DISCUSSIONS ON EFFECTS OF APER-
TURE-RADOME INTERACTION

The power patterns at a frequency of 3 GHz are obtained numeri-
cally, as shown in Fig. 2. Three cases are considered in Fig. 2, namely
(i) “Balanis” — the Balanis’s radome-free result for which the given
source distribution without field feed-back is assumed; (ii) “Case 1”
— a radome-free result for which the full-wave analysis is considered;
and (iii) “Case 2” — a result for which the radome is present and the
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Figure 3. Normalized power patterns of far zone fields against spher-
ical polar angle θ for various positions where the dipole locates in
the waveguide. L = λe is the wavelength of waves in the dielectric
radome.

full-wave analysis is considered. The parameters used in the particular
discussion are: the aperture radius, r0 = 1.5λ0 ; the inner radius of
the radome, a = 1.5λ0 ; the thickness of the radome, d = λe/2 ; and
the relative permittivity of the radome material, εr = 4.6(1 + i0.023)
where the relative permittivity and the wavelength in radome material
are given generally by εr = ε′(1 + tan δi) and λe = λ0/

√
ε′ , respec-

tively. It can be seen clearly that the main lobe and the null beam
widths of the aperture antenna pattern become narrow in the presence
of the radome. Of special interest is the observation that the radome



An open-ended circular waveguide: full-wave analysis 239

Figure 4. Normalized power patterns of far zone fields against spher-
ical polar angle θ for various radome thicknesses. L = λe is the
wavelength in the dielectric radome.

causes the side lobes of higher power level especially near an angle of
θ from 80◦ to 90◦ . This is mainly due to the effects of high modes.

To gain insight into the effects of the dipole location on the power
pattern, Fig. 3 shows the normalized E- and H-plane patterns against
the spherical polar angle. It is assumed that d , which is the distance
from dipole to waveguide opening, changes from 0.1λe to 10λe . The
parameters used are still the same as those in Fig. 2. When the distance
is extremely large, the power patterns represent the far-zone pattern,
therefore remain the same even if the distance gets larger. It can also be
seen that as the dipole moves toward the opening of the waveguide, the
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power patterns become more complicated. This is expected as more
multiple interactions between the dipole antenna and the waveguide
opening (such as the strong diffraction) come to be significant. More
and high side lobes and poor direction occur on the patterns for this
case, because of the high-order modes.

Figure 5. Power patterns of far zone fields against spherical polar
angle θ for various radome inner radii, where a2 = 1.5λ0

(
1 + n

4

)
( n = 0, 1, 2, 3 and 4 ).

Fig. 4 shows another example where the effects of the radome thick-
ness t have been taken into account. The parameters used are still
the same as before in Fig. 2. It is realized that the E- and H-plane
patterns of the excited aperture in the presence of a radome with half-
wave thickness resemble those in the absence of radome. Physically,
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this is what we expected from the considerations of transmission line
theory. When the thickness t �= nλe/2 (for instance, it becomes less
than a half wavelength), the radiation pattern gets distorted as the
impedance matching is broken. As a result, more multiple reflections
make the high-order modes present and then form the higher flash
lobes near θ = 80◦ − 90◦ .

To gain insight into the effects of the radome inner radius, Fig. 5
shows the normalized E- and H-plane patterns against the spherical
polar angle. It is assumed that a2 = 1.5λ0

(
1 + n

4

)
where n changes

from 0 to 4 ), while the aperture size r0 is still equal to 1.5λ0 . It
is apparent that for a half-wave radome thickness (i.e. t = λe/2 ), the
power patterns do not change with the radome inner radius signifi-
cantly, as shown in Fig. 4. However, the multiple reflections can be
very strong if the radius of the radome is close to the dimension of the
aperture opening, which is not desirable.

7. CONCLUDING REMARKS

This paper presents a rigorous full-wave analysis of the antenna ra-
diation inside a conducting waveguide that is covered by a dielectric
hemi-spherical radome over the ground plane. Both the electromag-
netic fields radiated by the antenna located inside the waveguide and
the dyadic Green’s functions in such a structure are formulated. The
scattering superposition principle and the mode-matching technique
are applied. The scattering coefficients of the dyadic Green’s func-
tions, although coupled in matrix form, are derived by matching the
boundary conditions on circular waveguide conducting walls and all
the dielectric interfaces. Furthermore, the Fraunhofer electric fields
are obtained using the far-zone approximation. As a demonstration on
how the theory is implemented in practical applications, the E-plane
and H-plane power patterns of the open aperture excited by a dipole
antenna located inside the circular waveguide are obtained and com-
puted for various dimensions of the radiating system.

The results currently obtained are compared with existing published
data. In the comparison made, the result of Balanis [1] (in the case
of TE 11 wave excitation without field feed-back and in the absence of
a radome) is considered as a base. The following conclusions can be
drawn from the analysis and the comparisons.
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• The main lobe and the null beam widths of the aperture antenna
pattern become narrow in the presence of a radome. Of special
interest is the observation that the radome causes the side lobes
of higher power level, especially near an angle of θ from 80◦ to
90◦ .

• As the dipole becomes nearer to the aperture, the field patterns
become more complicated. More side lobes and poor direction
occur. It is realized that the multiple interaction between the
dipole antenna and the aperture opening results in significant
changes in power patterns.

• The thickness of the dielectric radome plays an important role in
the radome design and a half-wave thickness is the best choice
of the radome thickness since it is almost transparent to the ra-
dio wave radiated from the centre-located aperture; a radome of
thickness thinner than half-a-wavelength bears even more trans-
mission loss and makes the power patterns rather dramatic.

• For a given radome thickness of λe/2 ,the field patterns are al-
most independent of the radome inner radius when the radius
has been quite large. However, quite small radome, which has
a radius close to the aperture dimension, can also significantly
distort the performance of the antenna system.

A ORTHOGONAL RELATIONS OF THE CONICAL VEC-
TOR WAVE FUNCTIONS

Following the method described in Tai [12] and using integration by
parts for half space, it is not difficult to show that

∫ π
2

0

[(
dPm

q

dθ

)2

+
(
mPm

q

sin θ

)2
]

sin θdθ = q(q + 1)Imq, (A1a)

∫ π
2

0

[(
dPm

p

dθ

)2

+
(
mPm

p

sin θ

)2
]

sin θdθ = p(p + 1)Imp, (A1b)

where ∫ π
2

0
Pm
q Pm

q′ sin θdθ =
{

0, q �= q′

Imq, q = q′
, (A2a)

∫ π
2

0
Pm
p Pm

p′ sin θdθ =
{

0, p �= p′

Imp, p = p′
, (A2b)
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and {
q, q + m = even for Me

omn-mode;
p, p + m = odd for Ne

omn-mode. (A3)

With the aid of these orthogonal relations, the orthogonal relations of
the conical vector wave functions can be determined as follows:∫∫∫

Me
omq(κ) ·Ne

om
′p′(κ′)dV = 0; (A4a)∫∫∫

Me
omp(κ) ·Ne

om
′p′(κ′)dV = 0; (A4b)∫∫∫ {

Me
omq(κ) ·Me

om
′q′(κ′)

Ne
omq(κ) ·Ne

om
′q′(κ′)

}
dV

=

{ 0, m �= m′ or q �= q′,
(1 + δ0)π2q(q + 1)Imq

2k2
δ(κ− κ′) m = m′ & q = q′;

(A4c)

∫∫∫ {
Me

omp(κ) ·Me
om
′p′(κ′)

Ne
omp(κ) ·Ne

om
′p′(κ′)

}
dV

=

{ 0, m �= m′ or p �= p′,
(1 + δ0)π2p(p + 1)Imp

2k2
δ(κ− κ′) m = m′ & p = p′.

(A4d)

B ORTHOGONAL RELATIONS OF CYLINDRICAL VEC-
TOR WAVE FUNCTIONS

The orthogonal Relations between the various cylindrical vector wave
functions can be stated as follows [12]:

∫∫∫
Me

omν(h) ·Ne
om
′λ(−h′)dV = 0; (B5a)∫∫∫

Me
omν(h) ·Me

om
′ν′(−h′)dV =

∫∫∫
Ne

omν(h) ·Ne
om
′ν′(−h′)dV

=
{

0, m �= m′ or ν �= ν ′,
(1 + δ0)2π2ν2Imνδ(h− h′), m = m′ & ν = ν ′; (B5b)∫∫∫

Me
omλ(h) ·Me

om
′λ′(−h′)dV =

∫∫∫
Ne

omλ(h) ·Ne
om
′λ′(−h′)dV

=
{

0, m �= m′ or λ �= λ′,
(1 + δ0)2π2λ2Imλδ(h− h′), m = m′ & λ = λ′. (B5c)
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