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1. INTRODUCTION

Methods for reconstructing the physical parameters of a nonuniform
transmission line from the transient response are of interest in many
applications such as design of nonuniform transmission line filters, anal-
ysis of a signal channel between a transmitter and receiver, optimal
design of impedance matching sections, impedance–matched voltage
transformers, etc.
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During the last few decades, several approaches to inverse problems
for transmission lines have been proposed in the both frequency and
time domain, see [1–5] and references therein. In [4], the time–domain
method based on coupled integral equations for the compact Green’s
functions has been developed to determine simultaneously two of the
transmission line parameters. In [5], the simultaneous reconstruction of
three parameters was presented that is based on the time–domain con-
jugate gradient search algorithm to minimize the difference between
the target transient response and the calculated one. This method
uses the transient responses with respect to incident signals from both
sides. The examples of successful as well as unsuccessful reconstruc-
tion (when the different sets of the nonuniform line parameters give
identical transient responses) were reported.

In the present paper, a frequency–domain approach to the inverse
problem for a nonuniform transmission line is presented. It is shown
that exactly two combinations of the physical parameters (shunt con-
ductance, inductance, capacitance, and series resistance) as functions
of the travel time, together with the attenuation factors, are deter-
mined uniquely by the transient response.

The paper is organized as follows. In Section 2, the model equations
are given. The transformation of the split components and two propo-
sitions on the uniqueness in the direct problem, that is, the uniqueness
of the transient response, are given in Section 3. Uniqueness in the in-
verse problem, that is, in the reconstruction of the line parameters, is
discussed in Section 4. Details concerning the inverse scattering prob-
lem for the Zakharov–Shabat system are given in Appendix A, and the
uniqueness results in the case of a hard reflection at the end of the line
are presented in Appendix B.

2. BASIC EQUATIONS

A lossy nonuniform transmission line of a length l is described by
the inductance L(x) , capacitance C(x) , series resistance R(x) , and
shunt conductance G(x) , 0 < x < l . The nonuniform line is joined
to two lossless uniform lines x < 0 and x > l characterized by the
constant parameters {L0, C0} and {Ll, Cl} , respectively (R = G = 0
outside (0, l) ). The telegrapher’s equations for the time–harmonic
voltage V (x, ω) and current I(x, ω) are
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d

dx

(
V
I

)
(x, ω) =− iω

(
0 L(x)

C(x) 0

) (
V
I

)
(x, ω)

−
(

0 R(x)
G(x) 0

) (
V
I

)
(x, ω), x ∈ (−∞,∞).

(1)
According to the wave splitting approach to the scattering problems
for continuously varying media (see, e.g., [6–9]), introduce the right–
and left–moving components by diagonalizing the first term in the
righthand side of (1):

Y (x, ω) ≡
(
Y1

Y2

)
(x, ω) = T (x)

(
V
I

)
(x, ω)

≡
(

1 Z(x)
1 −Z(x)

) (
V
I

)
(x, ω),

where Z(x) =
√

L(x)
C(x) is the characteristic impedance. Equation (1)

becomes (cf. [5])

dY

dx
= iω

1
c(x)

(
−1 0
0 1

)
Y +W (x)Y, (2)

where c(x) = 1√
L(x)C(x)

is the wavefront velocity,

W (x) ≡
(
α(x) β(x)
γ(x) δ(x)

)

=
1
2


−ZG−

R

Z
+
Z ′

Z
−ZG+

R

Z
− Z ′

Z

ZG− R

Z
− Z ′

Z
ZG+

R

Z
+
Z ′

Z


 (x).

(3)

Note that W (x) = 0 for x < 0 and x > l .
It is assumed that G(x), R(x) , and c(x) are piecewise continuous

functions. The impedance Z(x) is assumed to be absolutely continu-
ous on (0, l) , with possible jump discontinuities at x = 0 and x = l ,
described by the parameters q0 and ql :

q0 =
1
2

(
1− Z(−0)

Z(+0)

)
, ql =

1
2

(
1− Z(l − 0)

Z(l + 0)

)
.
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Let Y ±(x, ω) be two fundamental solutions of (2) for x ∈ (−∞,∞)
(so that Y ±(x, ω) are discontinuous at points where Z(x) has jump
discontinuities) determined by their behaviors on the uniform parts of
the line:

Y −(x, ω) =




exp
{
−iω x

c(−0)

}
0

0 exp
{
iω

x

c(−0)

}

 for x < 0,

Y +(x, ω) =




exp
{
−iω x

c(l + 0)

}
0

0 exp
{
iω

x

c(l + 0)

}

 for x > l.

(4)
The transient response of the line can be described in terms of a scat-
tering matrix S(ω) that relates Y −(x, ω) and Y +(x, ω) :

Y −(x, ω)S(ω) = Y +(x, ω), x ∈ (−∞,∞). (5)

The 2 × 2 scattering matrix S(ω) ≡
(
a1(ω) b2(ω)
b1(ω) a2(ω)

)
contains all

informations about the transient responses from both left–sided and
right–sided incidence of an input signal; namely, a1(ω) and b1(ω)
describe the transient response to the left–sided incidence, whereas the

second column of S−1(ω) , 1
detS(ω)

(
−b2(ω)
a1(ω)

)
, describes the response

to an incident signal from the right.
The matrix elements of the scattering matrix S(ω) are related

directly to the time–domain reflection and transmission kernels, at-
tenuation factors, and the travel time. For instance, in the case of
q0 = ql = 0 , that is, when the impedance is a continuous function on
(−∞,∞) ,

1
a1(ω)

eiω∆ = b+ + T̂+(ω),
b1(ω)
a1(ω)

= R̂+(ω),

T̂−(ω) =
Z(0)
Z(l)

T̂+(ω), − b2(ω)
a1(ω)

= R̂−(ω) exp
{

2iω
l

c(l + 0)

}
,

where R̂±(ω) and T̂±(ω) are the Fourier transforms of the time–
domain reflections and transmission kernels, respectively, for the left–
side (+) and right–side (−) incidence, b+ = exp{

∫ l
0 α(s)ds} is the



Reconstruction of a transmission line 157

attenuation factor, ∆ = L− l/c(l + 0) , L =
∫ l
0

ds
c(s) is the travel time

of the wavefront from x = 0 to x = l (see [5]).
For the response to the left–side incident signal in the mismatching

case with ql 
= 0, q0 = 0 (see [4]),

1
a1(ω)

exp{iω∆} =
1

1− ql
exp

{∫ l

0
α(s)ds

}
+ T̂+(ω),

b1(ω)
a1(ω)

=
ql

1− ql
exp

{∫ l

0
(α(s)− δ(s))ds− 2iωL

}
+ R̂+(ω).

3. TRANSFORMATION OF THE SPLIT COMPONENTS

The paper aims at determining the information about the characteris-
tics of the nonuniform transmission line that can be obtained uniquely
from the transient response. For this purpose, the inverse scattering
method in the spectral domain for a 2 × 2 matrix differential equa-
tion, referred usually as a Zakharov–Shabat system, is applied (see,
e.g., [10]).

First, if the line has mismatched impedance at the ends, the prob-
lem is reduced to that for an auxiliary impedance–matched line. The
latter is characterized by the same characteristics inside the nonuni-
form part 0 < x < l , whereas the uniform lines x < 0 and x > l have
the impedance Zaux(x) = Z(+0) , x < 0 , and Zaux(x) = Z(l − 0) ,
x > l , respectively. The split components Y aux±(x, ω) are defined as
continuous solutions of (2) for x ∈ (−∞,∞) satisfying the same con-
ditions (4) as Y ±(x, ω) do, and are related by the scattering matrix
Saux(ω)

Y aux−(x, ω)Saux(ω) = Y aux+(x, ω), x ∈ (−∞,∞).

On the other hand, continuity of the voltage V (x, ω) and current
I(x, ω) yields

Y ±(−0, ω) = P0Y
±(+0, ω),

Y ±(l − 0, ω) = PlY
±(l + 0, ω),

(6)

where

Pa = T (a− 0)T −1(a+ 0) =
(

1− qa qa
qa 1− qa

)
, a ∈ {0, l}.
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It follows from (4) and (5) that the scattering matrices can be repre-
sented as

S(ω) = Y +(−0, ω), Saux(ω) = Y aux+(0, ω). (7)

Relations (6), (7), and the fact that the actual and auxiliary lines have
the same characteristics inside the interval (0, l) allow us to relate the
actual and auxiliary scattering matrices. Indeed,

S(ω) = Y +(−0, ω) = P0Y
+(+0, ω) = P0R(ω)Y +(l − 0, ω)

= P0R(ω)PlY +(l + 0, ω),

Saux(ω) = Y aux+(0, ω) = R(ω)Y aux+(l, ω),

where R(ω) is the transition matrix for equation (2) from x = l − 0
to x = +0 ; hence,

S(ω) = P0S
aux(ω)D−1(ω)PlD(ω), (8)

where

D(ω) = Y +(l + 0, ω) = Y aux+(l, ω)

=




exp
{
−iω l

c(l + 0)

}
0

0 exp
{
iω

l

c(l + 0)

}

 .

Further, the problem is transformed to make the “potential” part of
equation (2), W (x) , off–diagonal. Setting F (x, ω) = E(x)Y aux(x, ω) ,
where

E(x) =




exp
{
−

∫ x

0
α(s)ds

}
0

0 exp
{
−

∫ x

0
δ(s)ds

}

 ,

one gets

dF

dx
(x, ω) = iω

1
c(x)

(
−1 0
0 1

)
F (x, ω) +W1(x)F (x, ω),

x ∈ (−∞,∞),
(9)
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where W1(x) =
(

0 Q1(x)
Q2(x) 0

)
,

Q1(x) = β(x) exp
{∫ x

0
(δ − α)ds

}

=
1
2

(
−ZG+

R

Z
− Z ′

Z

)
(x) exp

{∫ x

0

(
ZG+

R

Z

)
ds

}
,

Q2(x) = γ(x) exp
{
−

∫ x

0
(δ − α)ds

}

=
1
2

(
ZG− R

Z
− Z ′

Z

)
(x) exp

{
−

∫ x

0

(
ZG+

R

Z

)
ds

}
.

(10)

At last, the travel time variable is introduced

ξ(x) =
∫ x

0

ds

c(s)
. (11)

Setting Φ(ξ, ω) = F (x(ξ), ω) , one arrives at the equation

dΦ
dξ

(ξ, ω) = iω

(
−1 0
0 1

)
Φ(ξ, ω)+U(ξ)Φ(ξ, ω), ξ ∈ (−∞,∞), (12)

where

U(ξ) =
(

0 u1(ξ)
u2(ξ) 0

)
, (13)

uk(ξ) = Qk(x(ξ))c(x(ξ)), k = 1, 2.

Define the scattering matrix SΦ(ω) and the related fundamental so-
lutions Φ±(ξ, ω) of (12) by

Φ−(ξ, ω) =
(
e−iωξ 0

0 eiωξ

)
for ξ < 0, (14)

Φ+(ξ, ω) =
(
e−iωξ 0

0 eiωξ

)
for ξ > L = ξ(l), (15)

Φ−(ξ, ω)SΦ(ω) = Φ+(ξ, ω) for −∞ < ξ <∞. (16)

(Also see (A1) in Appendix 1.) Comparing the large x –behavior of
the split components yields

Φ−(ξ(x), ω) = E(x)Y aux−(x, ω),

Φ+(ξ(x), ω) = E(x)Y aux+(x, ω)E−1(l)
(
e−iω∆ 0

0 eiω∆

)
,
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so that the corresponding scattering matrices are related as

Saux(ω) = SΦ(ω)


exp
{
−

∫ l

0
α(s)ds+ iω∆

}
0

0 exp
{
−

∫ l

0
δ(s)ds− iω∆

}

 .

(17)
It follows from (8) and (17) that the actual scattering matrix S(ω) is
determined completely by SΦ(ω) together with the constants∫ l
0 α(s)ds ,

∫ l
0 δ(s)ds , L , q0 , and ql . On the other hand, SΦ(ω) ,

being the scattering matrix of equation (12), is determined by U(ξ) ,
ξ ∈ (0, L) , that is, by u1(ξ) and u2(ξ) . Therefore, we arrive at the
following proposition.
Proposition 1 Suppose that two nonuniform lines are characterized by
the parameters P(k) = {L(k)(x), C(k)(x), R(k)(x), G(k)(x)} , x ∈ (0, l) ,
k = 1, 2 , and joined to two lossless and uniform transmission lines
x < 0 and x > l . Let their characteristics satisfy the following:
1)

∫ l
0 α

(1)(s)ds =
∫ l
0 α

(2)(s)ds,
∫ l
0 δ

(1)(s)ds =
∫ l
0 δ

(2)(s)ds,∫ l
0

ds
c(1)(s)

ds =
∫ l
0

ds
c(2)(s)

ds ≡ L ,

where c(k)(x) =
(
L(k)(x)C(k)(x)

)− 1
2 , α(k)(x) and δ(k)(x) are con-

structed from P(k) by (3);
2) u

(1)
j (ξ) = u

(2)
j (ξ) , ξ ∈ (0, L) , j = 1, 2 ,

where u
(k)
j (ξ) relates to P(k) by (10) and (13), with ξ(x) =∫ x

0
ds

c(k)(s)
ds ;

3) Z(1)(−0)
Z(1)(+0)

= Z(2)(−0)
Z(2)(+0)

, Z(1)(l−0)
Z(1)(l+0)

= Z(2)(l−0)
Z(2)(l+0)

. Then S(1)(ω) =

S(2)(ω) , that is, the transient responses of the lines P(1) and P(2)

are equivalent.
The wavefront velocity c(x) plays the special role in the problem

transformation. Consider the particular case when c(x) is fixed. As
an immediate consequence of Proposition 1 we have
Proposition 2 If two sets of parameters {Z(k)(x), R(k)(x), G(k)

(x)} , x ∈ (0, l) , k = 1, 2 , are such that
1)

∫ l
0 α

(1)(s)ds =
∫ l
0 α

(2)(s)ds,
∫ l
0 δ

(1)(s)ds =
∫ l
0 δ

(2)(s)ds ,
2) Q

(1)
j (x) = Q

(2)
j (x) , x ∈ (0, l) , j = 1, 2 ,

where Q
(k)
j (x) relates to {Z(k)(x), R(k)(x), G(k)(x)} by (10),
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3) Z(1)(−0)
Z(1)(+0)

= Z(2)(−0)
Z(2)(+0)

, Z(1)(l−0)
Z(1)(l+0)

= Z(2)(l−0)
Z(2)(l+0)

,

then S(1)(ω) = S(2)(ω) .

4. UNIQUENESS IN THE PARAMETER RECONSTRUC-
TION

In this section we address the problem which is inverse to that of Propo-
sitions 1 and 2. Suppose that two nonuniform lines produce the same
transient response (or a part of it, related, for instance, to the one–
sided incidence only). Can one conclude that the related combinations
uj(ξ) of the line characteristics (as well as the constants involved in
Propositions 1 and 2) are equal?

Consider first the problem of determination of the constants. Due
to the fact that SΦ(ω) → I2 as ω → ∞ , where I2 is the 2 × 2
identity matrix (see Appendix A), the large ω–behavior of the one–
sided response a1(ω) and b1(ω) allows reconstructing the propagation
constants. Indeed, from (8) and (17) one has, as ω →∞ ,

a1(ω) exp
{
iω

l

c(l + 0)

}
� (1− q0)(1− ql) exp

{
−

∫ l

0
αds+ iωL

}

+ q0ql exp
{
−

∫ l

0
δds− iωL

}
,

b1(ω) exp
{
iω

l

c(l + 0)

}
� q0(1− ql) exp

{
−

∫ l

0
αds+ iωL

}

+ (1− q0)ql exp
{
−

∫ l

0
δds− iωL

}
,

which gives means to determine L, q0, ql ,
∫ l
0 αds , and

∫ l
0 δds .

Consider now the problem of reconstruction of u1(ξ) and u2(ξ) .
It is shown in Appendix A that u1(ξ) and u2(ξ) , ξ ∈ (0, L) , are

determined uniquely by SΦ(ω) ≡
(
aΦ

1 bΦ2
bΦ1 aΦ

2

)
(ω) , ω > 0 . In turn,

as far as the constant parameters are determined, the transient re-
sponse, that is, two reflection coefficients r+(ω) = b1(ω)/a1(ω) and
r−(ω) = −(detS(ω))−1b2(ω)/a1(ω) , together with the transient coef-
ficient t(ω) = a−1

1 (ω) , determine SΦ(ω) via (8) and (17) (notice that
detS(ω) = (1− 2q0)(1− 2ql) exp{−

∫ l
0(α + δ)ds ). Therefore, we have

the following proposition.
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Proposition 3 The two–sided transient response determines uniquely
u1(ξ) and u2(ξ) .

The possibility to reconstruct uniquely u1(ξ) and u2(ξ) simul-
taneously depends on whether the hard reflection at the back end
of the line occurs or not. Consider first the case when there is no
hard reflection at x = l , that is, ql = 0 . If u2(ξ) ≡ 0 , then,
for any u1(ξ) , one has aΦ

1 (ω) ≡ 1 and bΦ1 (ω) ≡ 0 , so that, in
virtue of (8) and (17), a1(ω) = (1 − q0) exp{−

∫ l
0 αds + iω∆} and

b1(ω) = q0 exp{−
∫ l
0 αds + iω∆} . Therefore, in this case, a family

of lines with different u1(ξ) produces the same left–sided transient
response.

The one–sided response becomes more informative in the presence
of the hard reflection, cf. [4]. The following proposition holds.
Proposition 4 If ql 
= 0 then the left–side incidence response, that
is, a1(ω) and b1(ω) , determines u1(ξ) and u2(ξ) uniquely.

The reason for this is that in the case of hard reflection, an expres-
sion for a1(ω) in terms of the elements of SΦ(ω) involves bΦ2 (ω) as
well. The proof of Proposition 4 is given in Appendix B.

5. CONCLUSION

In this paper we have presented an analysis of the uniqueness ques-
tion in the multiparameter reconstruction of a nonuniform transmis-
sion line from the transient response. By using the transformation
of the problem (in the frequency domain) to a canonical form of the
Zakharov–Shabat equation and the solution of the related inverse scat-
tering problem, we have shown that only two travel time dependent
combinations of the line characteristics are determined uniquely by the
transient response (or, in the case of hard back reflection, by the one–
sided transient response). In particular, in the case of known wavefront
velocity, all three other parameters enter these combinations, so that
the characteristic impedance can varies (together with the dissipative
parameters like series resistance and shunt conductance) without af-
fecting the transient response of the line (cf. [5]).

APPENDIX A. INVERSE SCATTERING PROBLEM FOR
THE ZAKHAROV–SHABAT SYSTEM

The inverse scattering problem for equation (12) consists of
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determining the potential matrix U(ξ) from the scattering matrix
SΦ(ω) (see, e.g., [10]). In this paper we are interested in the case
when supp U(ξ) ⊂ [0, L] , and U(ξ) has the structure (13), with real–
valued u1(ξ) and u2(ξ) .

The solutions Φ±(ξ, ω) can be represented as

Φ−(ξ, ω) = eiωξJ +
∫ ξ

−ξ
K−(ξ, t)eiωtJdt, ξ ≥ 0,

Φ+(ξ, ω) = eiωξJ +
∫ 2L−ξ

ξ
K+(ξ, t)eiωtJdt, ξ ≤ L.

(A1)

(See (14) and (15) for their representations in the complementary re-

gions.) Here, J =
(
−1 0
0 1

)
, and the 2×2 matrix functions K±(ξ, t)

solve (in weak sense, if needed) the Goursat problems for the hyper-
bolic systems of equations

∂K−11(ξ, t)
∂ξ

+
∂K−11(ξ, t)

∂t
= u1(ξ)K−21(ξ, t) in D−,

∂K−21(ξ, t)
∂ξ

− ∂K−21(ξ, t)
∂t

= u2(ξ)K−11(ξ, t) in D−,

K−11(ξ,−ξ) = 0, K−21(ξ, ξ) =
1
2
u2(ξ) for ξ ≥ 0; (A2)

∂K−22(ξ, t)
∂ξ

+
∂K−22(ξ, t)

∂t
= u2(ξ)K−12(ξ, t) in D−,

∂K−12(ξ, t)
∂ξ

− ∂K−12(ξ, t)
∂t

= u1(ξ)K−11(ξ, t) in D−,

K−22(ξ,−ξ) = 0, K−12(ξ, ξ) =
1
2
u1(ξ) for ξ ≥ 0, (A3)

where D− = {(ξ, t) : −ξ < t < ξ, ξ > 0} ;

∂K+
11(ξ, t)
∂ξ

+
∂K+

11(ξ, t)
∂t

= u1(ξ)K+
21(ξ, t) in D+,

∂K+
21(ξ, t)
∂ξ

− ∂K+
21(ξ, t)
∂t

= u2(ξ)K+
11(ξ, t) in D+,

K+
11(ξ, 2L− ξ) = 0, K+

21(ξ, ξ) = −1
2
u2(ξ) for ξ ≤ L; (A4)
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∂K+
22(ξ, t)
∂ξ

+
∂K+

22(ξ, t)
∂t

= u2(ξ)K+
12(ξ, t) in D+,

∂K+
12(ξ, t)
∂ξ

− ∂K+
12(ξ, t)
∂t

= u1(ξ)K+
11(ξ, t) in D+,

K+
22(ξ, 2L− ξ) = 0, K+

12(ξ, ξ) = −1
2
u1(ξ) for ξ ≤ L; , (A5)

where D+ = {(ξ, t) : ξ < t < 2L − ξ, ξ < L} . Because of the finite
support of u1(ξ) and u2(ξ) , the kernels K− and K+ vanish outside
the domains {(ξ, t) : 0 < ξ − t < 2L, 0 < ξ + t < 2L} and {(ξ, t) :
0 < t − ξ < 2L, 0 < ξ + t < 2L} , respectively. The kernels K±(ξ, t)
can be obtained as unique solutions of Volterra integral equations of
the second kind which are equivalent to the problems (A2–A5). Since
u1(ξ) and u2(ξ) are real–valued, the components K±jk(ξ, t), j, k = 1, 2,
are real–valued also, and

Φ±(ξ,−ω) = Φ±(ξ, ω).

Notice that K±(ξ, t) are closely related to the compact Green’s func-
tions Gc±(x, t) used in the time domain reconstruction methods, see,
e.g., [5]. These relations are particularly simple for an impedance–
matched line ( q0 = ql = 0 ). Comparing the expressions for the split
components in the time and frequency domain gives

Gc+(x, t) = exp
{
−

∫ l

x
αds

}
K+

11(ξ(x), t+ ξ(x)),

Gc−(x, t) = exp
{∫ x

0
δds−

∫ l

0
αds

}
K+

21(ξ(x), t+ ξ(x)).

In the mismatching case, Gc+ relates to both K+
11 and K+

12 , whereas
the expression for Gc− involves K+

21 and K+
22 .

Off–diagonal structure of U(ξ) implies

det Φ±(ξ, ω) = detSΦ(ω) ≡ 1.

The elements of the scattering matrix SΦ =
(
aΦ

1 bΦ2
bΦ1 aΦ

2

)
can be ex-

pressed in terms of the kernels K±(ξ, t) . From SΦ(ω) = Φ+(0, ω) it
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follows that

aΦ
1 (ω) = 1 +

∫ 2L

0
K+

11(0, t)e
−iωtdt,

bΦ1 (ω) =
∫ 2L

0
K+

21(0, t)e
−iωtdt, (A6)

aΦ
2 (ω) = 1 +

∫ 2L

0
K+

22(0, t)e
iωtdt,

bΦ2 (ω) =
∫ 2L

0
K+

12(0, t)e
iωtdt. (A7)

The integral representations (A1), (A6), and (A7) imply that:
1) for a fixed ξ , Φ±jk(ξ, ω) and SΦ

ij(ω), j, k = 1, 2, are entire functions
in the ω–complex plane;

2) as |ω| → ∞ ,
aΦ

1 (ω)→ 1 , bΦ1 (ω)→ 0 , Im ω ≤ 0 ,
aΦ

2 (ω)→ 1 , bΦ2 (ω)→ 0 , Im ω ≥ 0 ;
(Φ−(1), Φ+

(2)) � eiωξJ , Im ω ≥ 0 ,
(Φ+

(1), Φ−(2)) � eiωξJ , Im ω ≤ 0 ;
(here Φ(j) denotes the j-th column of Φ ).
Denote the contour M in the ω-plane by M = R ∪ {ω : |ω| = R}

where R is large enough such that all zeros of aΦ
1 (ω) and aΦ

2 (ω) are
contained in the disk {ω : |ω| < R}. Define a 2 × 2 matrix function
G(ξ, ω) holomorphic in C \M ( ξ being a parameter) as follows:

G(ξ, ω) =




(Φ−(1), Φ+
(2))(ξ, ω)e−iωξJ , Im ω > 0, |ω| > R,

(Φ+
(1), Φ−(2))(ξ, ω)

1
a1(ω)

e−iωξJ , Im ω < 0, |ω| > R,

Φ−(ξ, ω)e−iωξJ , |ω| < R.
(A8)

Since

detG(ξ, ω) =



a2(ω), Im ω > 0, |ω| > R,

1
a1(ω)

, Im ω < 0, |ω| > R,

1, |ω| < R,

the matrix G(ξ, ω) is nondegenerate for any ξ and ω . Besides,
G(ξ, ω)→ I2 as ω →∞ .
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The contour M is the boundary for the open set Ω+ = {ω : Im ω >
0, |ω| > R} ∪{ω : Im ω < 0, |ω| < R} , as well as for Ω− = C \ (M ∪
Ω+) . Let

G±(ξ, ν) = lim
ω→ν
ω∈Ω±

G±(ξ, ω), ν ∈M.

Then the scattering relation (16) is transformed to

G+(ξ, ν) = C−(ξ, ν) · g(ξ, ν), ν ∈M, (A9)

where g(ξ, ν) = eiωξJg0(ν)e−iωξJ ,

g0(ν) =




(
1 bΦ2
−bΦ1 1

)
(ν), ν ∈ (−∞,−R) ∪ (R,∞),(

1 0
−bΦ1 aΦ

1

)
(ν), |ν| = R, Im ν < 0,(

1 bΦ2
0 aΦ

2

)
(ν), |ν| = R, Im ν > 0,

I2, ν ∈ (−R,R).

In the inverse problem, SΦ(ω) =
(
aΦ

1 bΦ2
bΦ1 aΦ

2

)
(ω) is given on the real

axis ω ∈ R (notice that SΦ(−ω) = SΦ(ω) and detSΦ(ω) = 1 ).
The conjugation matrix g0(ν) , ν ∈ M , is determined uniquely by
using the analytic continuation of the corresponding matrix elements
of SΦ(ω) .

Therefore, we arrive at the following problem: given g(ξ, ν) , ξ ∈
[0, L] , ν ∈ M , find a matrix function G(ξ, ω) , which is piecewise
holomorphic and nondegenerate in C \M , such that G(ξ, ω) → I2
as ω → ∞ , and its limiting values G±(ξ, ν) , ν ∈ M , are related by
g(ξ, ν) through (A9).

The solution of this problem is unique. Indeed, if there are two
solutions, G(1)(ξ, ω) and G(2)(ξ, ω) , then G(1)(ξ, ω)

[
G(2)(ξ, ω)

]−1
is

continuous across M , tends to I2 as ω → ∞ , hence it is I2 identi-
cally. Therefore, G(ξ, ω) (and, as a consequence, u1(ξ) and u2(ξ) ) is
uniquely determined by the scattering matrix SΦ(ω) , ω > 0 .

APPENDIX B. UNIQUENESS IN THE CASE OF HARD
BACK REFLECTION

Let us consider the case when ql 
= 0 , q0 = 0 . The input data are
taken to be a1(ω) and b1(ω) . As it was shown above, the constants
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L , ql ,
∫ l
0 αds , and

∫ l
0 δds are determined from the large ω–behavior

of a1(ω) and b1(ω) . From (8) and (17) we have

a1(ω) =(1− ql) exp
{
−

∫ l

0
αds+ iω∆

}
aΦ

1 (ω)

+ ql exp
{
−

∫ l

0
δds− iω∆′

}
bΦ2 (ω),

b1(ω) =(1− ql) exp
{
−

∫ l

0
αds+ iω∆

}
bΦ1 (ω)

+ ql exp
{
−

∫ l

0
δds− iω∆′

}
aΦ

2 (ω),

(B1)

where ∆′ = ∆ + 2l
c(l+0) .

Proposition 5 Let two sets of the line parameters (with ql 
= 0 ,

q0 = 0 ) related to U (1)(ξ) =

(
0 u

(1)
1 (ξ)

u
(1)
2 (ξ) 0

)
and U (2)(ξ) =(

0 u
(2)
1 (ξ)

u
(2)
2 (ξ) 0

)
, respectively, produce the same a1(ω) and b1(ω) .

Then u
(1)
1 (ξ) = u

(2)
1 (ξ) and u

(1)
2 (ξ) = u

(2)
2 (ξ) .

The proof is based on using the transformation operator that relates
the solutions Φ(k)−(ξ, ω) , k = 1, 2 , of equation (12) with U(ξ) =
U (k)(ξ) , respectively:

Φ(1)−(ξ, ω) = Φ(2)−(ξ, ω) +
∫ ξ

−ξ
N(ξ, t)Φ(2)−(t, ω)dt. (B2)

Substituting (B2) into (12) implies that the kernel 2× 2 matrix func-
tion N(ξ, t) solves the Goursat problem for the hyperbolic system
(cf. (A2, A3))

∂N(ξ, t)
∂ξ

+ J
∂N(ξ, t)

∂t
J = −JN(ξ, t)JU (2)(t) + U (1)(ξ)N(ξ, t),

− ξ < t < ξ, 0 < ξ < L,

N(ξ,−ξ) + JN(ξ,−ξ)J = 0, 0 ≤ ξ ≤ L,

N(ξ, ξ)− JN(ξ, ξ)J = U (1)(ξ)− U (2)(ξ), 0 ≤ ξ ≤ L,

(B3)
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or, in terms of the matrix elements,

∂N11(ξ, t)
∂ξ

+
∂N11(ξ, t)

∂t
= u

(2)
2 (t)N12(ξ, t) + u

(1)
1 (ξ)N21(ξ, t),

∂N21(ξ, t)
∂ξ

− ∂N21(ξ, t)
∂t

= −u(2)
2 (t)N22(ξ, t) + u

(1)
2 (ξ)N11(ξ, t),

∂N22(ξ, t)
∂ξ

+
∂N22(ξ, t)

∂t
= u

(2)
1 (t)N21(ξ, t) + u

(1)
2 (ξ)N12(ξ, t),

∂N12(ξ, t)
∂ξ

− ∂N12(ξ, t)
∂t

= −u(2)
1 (t)N11(ξ, t) + u

(1)
1 (ξ)N22(ξ, t),

(B4)

in the domain D = {(ξ, t) : −ξ < t < ξ, 0 < ξ < L} , and

N11(ξ,−ξ) = N22(ξ,−ξ) = 0, 0 ≤ ξ ≤ L, (B5)

N12(ξ, ξ) = u
(1)
1 (ξ)− u(2)

1 (ξ),

N21(ξ, ξ) = u
(1)
2 (ξ)− u(2)

2 (ξ), 0 ≤ ξ ≤ L.
(B6)

Since (SΦ)−1(ω) ≡
(
aΦ

2 −bΦ2
−bΦ1 aΦ

1

)
(ω) = exp{−iωLJ}Φ−(L, ω) , rela-

tions (B1) yield

(−1, ρe2iωL)e−iωLJΦ(1)−(L, ω) = (−1, ρe2iωL)e−iωLJΦ(2)−(L, ω),
(B7)

where ρ = 1−ql
ql

exp
{∫ l

0(δ − α)ds
}

.
Substituting (B7) into (B2) gives

ĥ

∫ L

−L
N(L, t)Φ(2)−(t, ω)dt = 0, (B8)

where ĥ = (−1, ρ) . Since Φ(2)−(t, ω) is also related to exp{iωtJ} by
the transformation (A1), equation (B8) can be written, by a suitable
changes of variables, as

0 = ĥ

{∫ 0

−L
N(L, t)eiωtJdt+

∫ L

0
N(L, t)eiωtJdt+

∫ L

0
N(L, t)

∫ t

−t
K−(t, s)eiωsJdsdt

}

= ĥ

{∫ 0

−L

[
N(L, t) +

∫ L

−t
N(L, s)K−(s, t)ds

]
eiωtJdt

+
∫ L

0

[
N(L, t) +

∫ L

t
N(L, s)K−(s, t)ds

]
eiωtJdt

}
.

(B9)
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Since (B9) holds for any ω ∈ R , one gets

ĥ

{
N(L, t) +

∫ L

−t
N(L, s)K−(s, t)ds

}
= 0, −L ≤ t ≤ 0, (B10)

ĥ

{
N(L, t) +

∫ L

t
N(L, s)K−(s, t)ds

}
= 0, 0 ≤ t ≤ L. (B11)

The integral equation (B11) is the uniform Volterra equation of the
second kind (with respect to ĥN(L, t) , t ∈ [0, L] ), the only solution
of which is the trivial one:

ĥN(L, t) = 0, 0 ≤ t ≤ L. (B12)

Then, (B10) gives

ĥN(L, t) = 0, −L ≤ t ≤ 0. (B13)

In terms of the matrix elements of N(L, t) , relations (B12) and (B13)
read

N12(L, t) = ρN22(L, t),

N21(L, t) =
1
ρ
N11(L, t).

(B14)

Now consider the boundary value problem (B4) + (B5) + (B14) for
N(ξ, t) in D . If we show that the solution of this problem vanishes
identically, then, in virtue of (B6), u(1)

1 (ξ) − u(2)
1 (ξ) = N12(ξ, ξ) = 0

and u
(1)
2 (ξ)− u(2)

2 (ξ) = N21(ξ, ξ) = 0 .
In the characteristic variables

µ = ξ + t, η = ξ − t, Ñ(µ, η) = N

(
µ+ η

2
,
µ− η

2

)
,

the problem (B4) + (B5) + (B14) becomes

∂Ñ11(µ, η)
∂µ

=
1
2
u

(2)
2

(
µ− η

2

)
Ñ12(µ, η) +

1
2
u

(1)
1

(
µ+ η

2

)
Ñ21(µ, η),

∂Ñ21(µ, η)
∂η

= −1
2
u

(2)
2

(
µ− η

2

)
Ñ22(µ, η) +

1
2
u

(1)
2

(
µ+ η

2

)
Ñ11(µ, η),

∂Ñ22(µ, η)
∂µ

=
1
2
u

(2)
1

(
µ− η

2

)
Ñ21(µ, η) +

1
2
u

(1)
2

(
µ+ η

2

)
Ñ12(µ, η),

∂Ñ12(µ, η)
∂η

= −1
2
u

(2)
1

(
µ− η

2

)
Ñ11(µ, η) +

1
2
u

(1)
1

(
µ+ η

2

)
Ñ22(µ, η)

(B15)
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in the domain D̃ = {(µ, η) : µ > 0, η > 0, µ + η < 2L} , with the
boundary conditions

Ñ11(0, η) = Ñ22(0, η) = 0, 0 ≤ η ≤ 2L,

Ñ12(µ, 2L− µ) = ρÑ22(µ, 2L− µ), 0 ≤ µ ≤ 2L,

Ñ21(µ, 2L− µ) =
1
ρ
Ñ11(µ, 2L− µ), 0 ≤ µ ≤ 2L.

(B16)

Integrating the equations in (B15) with respect to the corresponding
variables, µ or η , using the boundary conditions (B16), yields

Ñ11(µ, η) =
1
2

∫ µ

0

[
u

(2)
2

(
s− η

2

)
Ñ12(s, η)

+u(1)
1

(
s+ η

2

)
Ñ21(s, η)

]
ds,

Ñ21(µ, η) =
1
2

∫ 2L−µ

η

[
u

(2)
2

(
µ− τ

2

)
Ñ22(µ, τ)

−u(1)
2

(
µ− τ

2

)
Ñ11(µ, τ)

]
dτ + Ñ21(µ, 2L− µ)

=
1
2

∫ 2L−µ

η

[
u

(2)
2

(
µ− τ

2

)
Ñ22(µ, τ)

−u(1)
2

(
µ− τ

2

)
Ñ11(µ, τ)

]
dτ

+
1
2ρ

∫ µ

0

[
u

(2)
2

(
s− 2L+ µ

2

)
Ñ12(s, 2L− µ)

+u(1)
1

(
s+ 2L− µ

2

)
Ñ21(s, 2L− µ)

]
ds,

Ñ22(µ, η) =
1
2

∫ µ

0

[
u

(2)
1

(
s− η

2

)
Ñ21(s, η)

+u(1)
2

(
s+ η

2

)
Ñ12(s, η)

]
ds,

Ñ12(µ, η) =
1
2

∫ 2L−µ

η

[
u

(2)
1

(
µ− τ

2

)
Ñ11(µ, τ)

−u(1)
1

(
µ− τ

2

)
Ñ22(µ, τ)

]
dτ

+
ρ

2

∫ µ

0

[
u

(2)
1

(
s− 2L+ µ

2

)
Ñ21(s, 2L− µ)
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+u(1)
2

(
s+ 2L− µ

2

)
Ñ12(s, 2L− µ)

]
ds. (B17)

The system of the Volterra equations (B17) can be written as

N(µ, η) = AN(µ, η), (B18)

where N = (Ñ11, Ñ21, Ñ12, Ñ22)� , and A is a 4 × 4 matrix integral
operator.

Define the norm ‖N‖ = sup (µ,η)∈D̃
1≤j,k≤2

|Ñjk(µ, η)| . By induction, it is

seen that
|(AnN)j(µ, η)| ≤ ‖N‖Cn

(µ+ 2L− η)n
n!

,

for all (µ, η) ∈ D̃ , 1 ≤ j ≤ 4 , and n ∈ N , where

C = max
{
C1, ρC1,

C1

ρ

}
, C1 = sup

0≤ξ≤L
1≤j,k≤2

|u(k)
j (ξ)|;

thus, ‖AnN‖ ≤ ‖N‖ (2LC)n

n! . Since ‖An‖ → 0 as n→∞ , the system
of equations (B18) has only the trivial solution.

The case q0 
= 0 is reduced to the case considered above by using

P−1
0

(
a1(ω)
b1(ω)

)
instead of

(
a1(ω)
b1(ω)

)
.
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