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1. INTRODUCTION

Laterally periodic gratings have applications in many areas such as in-
tegrated optics [1], electron beams [2], holography, etc.. For the analy-
sis of wave scattering by periodic surface gratings, or slanted gratings,
there exist efficient methods such as the boundary integral method [3],
the method of moment [4], and the coupled wave method [5]. However,
there are much fewer efficient methods for laterally periodic gratings
which are inhomogeneous in a general fashion along the vertical direc-
tion. In the present paper, we treat laterally periodic inhomogeneous
gratings with a wave-splitting approach. Wave splitting means the de-
composition of the total field into two components which propagate in
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opposite directions. Various efficient wave-splitting approaches have
been developed for scattering problems for stratified media in the fre-
quency domain during the past years (see e.g. [6], [7]; see also [8] for
wave-splitting in the time domain). Compared to other efficient nu-
merical methods such as the finite element method [9] and the moment
methods [10], the wave-splitting method gives more physical insights
due to its more analytical framework.

It is well-known that scattered fields from a periodic grating are
pseudo-periodic [3]. In the present paper, we generalize the plane wave
vacuum-splitting [7] to the case when the electromagnetic fields are
pseudo-periodic. Based on such a vacuum-splitting, both the invariant
imbedding method and the transmission Green’s function method are
used to solve the scattering problem for a dielectric grating. The di-
rection of incident plane wave is arbitrary and thus in general there is
a cross scattering between TE and TM waves. Note that if the plane
of incidence coincides with a symmetry plane, there is no cross scat-
tering between TE and TM waves and consequently TE and TM can
be treated separately. In particular, for the TE case, one only needs
to consider the reduced Helmholz equation (a second order differential
equation) and the analysis is given in [11]. In the present paper, an ar-
bitrary incidence is considered and thus the treatment has to be based
directly on Maxwell’s equations, as a system of first order differential
equations. Numerical results for the co- and cross-polarized reflection
and transmission for TE and TM waves are presented. The approach
is also generalized to scattering from a bi-anisotropic grating (slanted
chiral gratings have been treated in [12] with a coupled wave method).

2. PROBLEM FORMULATION AND THE SPECTRAL
DOMAIN MATRIX EQUATIONS

Consider an electromagnetic scattering problem for an inhomogeneous
dielectric slab whose relative permittivity εr is laterally periodic (the
permeability has a value of µ0 everywhere). The inhomogeneous
slab is confined to the region 0 ≤ z ≤ l . εr is assumed to be
y− independent, and periodic in the x− direction, i.e.,

εr(x+ d, z) = εr(x, z), 0 ≤ z ≤ l (1)

where d > 0 is the period of the permittivity. Note that the variation
of εr in the z− direction is assumed to be arbitrary. Note also that
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Figure 1. The scattering configuration.

εr may be complex so as to describe losses. There is vacuum with
a permittivity ε0 on the incidence side z < 0 , and a homogeneous
dielectric medium with a relative permittivity ε

(t)
r on the transmission

side z > l . The permeability is assumed to be µ0 everywhere. A plane
wave with an arbitrary polarisation (an arbitrary linear combination
of TM and TE polarisations) is assumed to be incident upon the slab
from a direction (θ0, φ0) . The harmonic time dependence of the fields
is assumed to be eiωt . Thus, the incident field (at z = 0 ) has the
following dependence:

ei(ωt−kx;0x−ky;0y),

where

kx;0 = k0 sin(θ0) cos(φ0), ky;0 = k0 sin(θ0) sin(φ0), (2)

and where k0 = ω(µ0ε0)1/2 is the wave number of the incident field.
See Fig. 1 for the scattering configuration.

In the inhomogeneous slab, one has Maxwell’s equations

∇× �E = −iω�B, ∇× �H = iω �D, (3)
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where �D = ε0εr(x, z)�E , and �B = µ0
�H . The above Maxwell ′ s equa-

tions can be written in the following component form (( x̂ , ŷ , ẑ )
denote the unit vectors in the x , y and z directions, respectively):

x̂ :
{
∂zEy = iωµ0Hx +∂yEz,
∂zHy = −iωε0εr(x, z)Ex +∂yHz,

(4)

ŷ :
{
∂zEx = −iωµ0Hy +∂xEz,
∂zHx = iωε0εr(x, z)Ey +∂xHz,

(5)

ẑ :
{
Hz = −(iωµ0)−1 (∂xEy − ∂yEx),
Ez = (iωε0εr(x, z))−1 (∂xHy − ∂yHx).

(6)

Note that the z component of Maxwell’s equations is written as Eq. (6)
in such a way that the z components of the fields are expressed in
terms of the tangential fields and their tangential derivatives.

The periodicity of the geometry implies that the fields are pseudo-
periodic functions (i.e., Ej(x, y, z; t)eikx;0x and Hj(x, y, z; t)eikx;0x ,
j = x, y, z , are periodic functions) in x with a period of d [3]. Thus,
using the following Fourier series expansion,{

Q(x) =
∑+∞

n=−∞Qne
−in 2π

d
x,

Qn = 1
d

∫ x=d/2
x=−d/2Q(x)ein

2π
d
xdx.

(7)

one can expand the fields as


Ej(x, y, z; t) = ei(ωt−kx;0x−ky;0y)
+∞∑

n=−∞
ej;n(z) e−in

2π
d
x,

Hj(x, y, z; t) = ei(ωt−kx;0x−ky;0y)
+∞∑

n=−∞
hj;n(z) e−in

2π
d
x,

(8)

where j = x, y, z .
Using the Fourier series expansion of the fields and the orthogonal-

ity of the Fourier series, the problem is transformed into the spec-
tral domain. The n− th Fourier components of Eqs. (4)–(6) give
( n = 0,±1,±2 , ...)

x̂ :



∂zey;n(z) = iωµ0hx;n(z)− iky;0ez;n(z),

∂zhy;n(z) = −iωε0
+∞∑

m=−∞
(εr)n−mex;m(z)− iky;0hz;n(z), (9)
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ŷ :



∂zex;n(z) = −iωµ0hy;n(z)− ikx;nez;n(z),

∂zhx;n(z) = iωε0

+∞∑
m=−∞

(εr)n−mey;m(z)− ikx;nhz;n(z), (10)

ẑ :



hz;n(z) = 1

ωµ0
(kx;ney;n(z)− ky;0ex;n(z)),

ez;n(z) = 1
ωε0

(
+∞∑

m=−∞
(ε−1
r )n−m(−kx;mhy;m(z) + ky;0hx;m(z))),

(11)

where
kx;n = kx;0 + n

2π
d
, (12)

and (εr)n = (εr)n(z) and (ε−1
r )n = (ε−1

r )n(z) denote the n− th
Fourier coefficients of εr and ε−1

r , respectively. Note that a multi-
plication of εr(x, z) (or (εr(x, z))−1 ) with a field becomes a discrete
spatial convolution in the spectral domain. Note also that no deriva-
tives appear in Eq. (11).

Eqs. (9)–(11) for n = 0,±1,±2 , ..., give a system of infinite coupled
equations. In a numerical computation, one can truncate the Fourier
series by setting

ej;n = hj;n = 0, j = x, y, z, if |n| ≥M, (13)

where M is a positive integer. Thus, only a finite number of spatial
harmonics are taken into account (and the higher order spatial har-
monics are neglected). Such a truncation is used in the rest treatment
of the paper. Denote

ẽx =


 ex;−M...
ex;M


 , ẽy =


 ey;−M...
ey;M


 , ẽz =


 ez;−M...
ez;M


 , (14)

and use a similar notation for the components of the magnetic field.
Furthermore let

E =




(εr)0 (εr)−1 . . . (εr)−2M

(εr)1
. . .

...
...

. . .
...

(εr)2M . . . . . . (εr)0


 (15)
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F =




(ε−1
r )0 (ε−1

r )−1 . . . (ε−1
r )−2M

(ε−1
r )1

. . .
...

...
. . .

...
(ε−1
r )2M . . . . . . (ε−1

r )0


 (16)

K =



kx;−M 0 · · · 0

0 kx;−M+1

...
...

. . . 0
0 · · · 0 kx;M


 . (17)

Here E and F are the convolution matrices associated with εr and
ε−1
r , respectively, and K is a diagonal matrix consisting of the x

components of the propagation constants. We want to eliminate the z
components of the fields. Truncating the Fourier expansions in Eq. (11)
at n = ±M , one obtains

[
ẽz
h̃z

]
=

[
0 0 ky;0

ωε0
F − 1

ωε0
FK

−ky;0
ωµ0

I 1
ωµ0
K 0 0

] 

ẽx
ẽy
h̃x
h̃y


 , (18)

where I is the identity matrix. Each submatrix has a size of (2M +
1)×(2M+1) . Note that F approaches E−1 as M →∞ . If the second
equation of the system (6) is multiplied by iωε0εr(x, z) before Fourier
expansion and truncation, E−1 would appear in Eq. (18) instead of
F . For a specific permittivity profile in a numerical computation, one
can use E−1 as an approximation for F , if F is more difficult to
compute, or vice versa, use F−1 as an approximation for E , if E is
more difficult to compute. Denote

ẽ =
[
ẽx
ẽy

]
, h̃ =

[
h̃x
h̃y

]
. (19)

Truncating Eqs. (9) and (10) for n = 0,±1,±2, ...,±M , and using
Eq. (18) to eliminate the z components of the fields, one obtains the
following system of coupled first order differential equations in the
spectral domain:

∂z

[
ẽ
h̃

]
≡

[
0 Wb

Wc 0

] [
ẽ
h̃

]
≡W

[
ẽ
h̃

]
, (20)
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where

Wb =

[
− iky;0

ωε0
KF −iωµ0I+ i

ωε0
KFK

iωµ0I−
ik2
y;0
ωε0
F iky;0

ωε0
FK

]
, (21)

Wc =

[ iky;0
ωµ0
K iωε0E− i

ωµ0
KK

−iωε0E+
ik2
y;0

ωµ0
I − iky;0

ωµ0
K

]
. (22)

Each submatrix in the expressions (21) and (22) for Wb , Wc has a
size of (2M + 1)× (2M + 1) . Outside the inhomogeneous slab, these
submatrices become simple and diagonal, and in particular E and F
degenerate to I in vacuum.

3. VACUUM WAVE-SPLITTING FOR PSEUDO-PERI-
ODIC FIELDS

In this section we decompose the tangential electric field ẽ into compo-
nents which propagate in opposite directions, i.e, we find a transforma-
tion matrix T0 which maps the tangential fields ẽ and h̃ into waves
propagating in the forward and backward directions (with respect to
the z− axis) in the vacuum region. One would expect that W0 (the
matrix W in vacuum) is diagonalised in vacuum by the matrix T0 ,
i.e., T0W0T

−1
0 is diagonal. Furthermore, we require that each split

component corresponds either to a TE or to a TM wave.
Such a splitting and diagonalisation can be performed ’mode by

mode’. Each mode is associated with a propagation direction, though
physically only a limited number of modes are propagating modes (with
respect to z ) and the rest are evanescent modes. Extracting the n− th
mode from the matrix W0 , one obtains the following 4× 4 matrix:

W0;n =




0 0 − iky;0kx;n
ωε0

−iωµ0+ ik2
x;n
ωε0

0 0 iωµ0−
ik2
y;0
ωε0

iky;0kx;0
ωε0

iky;0kx;n
ωµ0

iωε0− ik2
x;n
ωµ0

0 0

−iωε0+
ik2
y;0

ωµ0
− iky;0kx;n

ωµ0
0 0


 .

(23)
Note that W0;n is not a block of W0 , but a matrix determined by
∂z[ex;ney;nhx;nhy;n]T = W0;n[ex;ney;nhx;nhy;n]T in vacuum. A trans-
formation matrix T0;n can then be introduced to map the tangential
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mode fields ex;n , ey;n , hx;n and hy;n to e+1;n (forward propagat-
ing TM mode), e+2;n (forward propagating TE mode), e−1;n (backward
propagating TM mode) and e−2;n (backward propagating TE mode)
[13], 


e+1;n
e+2;n
e−1;n
e−2;n


 = T0;n



ex;n
ey;n
hx;n
hy;n


 , (24)

where

T0;n =
1
2




cosφn sinφn −ZTM;n sinφn ZTM;n cosφn
− sinφn cosφn −ZTE;n cosφn −ZTE;n sinφn
cosφn sinφn ZTM;n sinφn −ZTM;n cosφn
− sinφn cosφn ZTE;n cosφn ZTE;n sinφn


 , (25)

cosφn =
kx;n

(k2
x;n + k2

y;0)1/2
, sinφn =

ky;0

(k2
x;n + k2

y;0)1/2
, (26)

and where the mode impedances ZTM;n (for the TM mode) and ZTE;n

(for the TE mode) are defined by

ZTM;n =

(
−
e−‖n
h−⊥n

=
e+‖n
h+
⊥n

=

)
η0
kz,n
k0
≡ η0 cos θn, (27)

ZTE;n =

(
e−⊥n
h−‖n

= −e
+
⊥n
h+
‖n

=

)
η0

k0

kz,n
= η0/ cos θn, (28)

with η0 = (µ0/ε0)1/2 and

kz;n =

{
(k2

0 − k2
x,n − k2

y,0)
1/2, when k2

x,n + k2
y,0 ≤ k2

0,

−i(k2
x,n + k2

y,0 − k2
0)

1/2, when k2
x,n + k2

y,0 > k2
0 .

(29)

The matrix T0;n diagonalises W0;n , i.e., T0;nW0;nT
−1
0;n is diagonal.

The eigenvalues are ∓ikz;n . The forward and backward propagat-
ing modes are decoupled in the vacuum region. Each mode is asso-
ciated with a transverse propagation direction (kx;n, ky;0) , and from
Eq. (42) one sees that the tangential component e1;n = e+1;n + e−1;n is
the component parallel to this direction and the tangential component
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e2;n = e+2;n+e−2;n perpendicular to this direction (in the direction of in-
creasing φn ). This is illustrated in Fig. 4 (associated with the second
numerical example).

We can now put all the split modes together. Denote

ẽ+ =


 e

+
−M
...
e+M


 , ẽ− =


 e
−
−M
...
e−M


 , (30)

where

e+n =
[
e+1;n
e+2;n

]
, e−n =

[
e−1;n
e−2;n

]
. (31)

From Eq. (24) for n = 0,±1,±2, ...,±M , one obtains the following
vacuum wave-splitting for the whole system[

ẽ+

ẽ−

]
= T0

[
ẽ
h̃

]
, (32)

where

T0 =
1
2

[
Φ ZΦ
Φ −ZΦ

]
, (33)

and where Φ and Z are (4M + 2)× (4M + 2) matrices defined by

Φ = [Φ1 Φ2], (34)

Z =



Z−M 0 · · · 0

0 Z−M+1

...
...

. . . 0
0 · · · 0 ZM


 , (35)

with

Φ1 =




cosφ−M 0 · · ·
− sinφ−M 0 · · ·

0
. . . 0

· · · 0 cosφM
· · · 0 − sinφM


 , Φ2 =




sinφ−M 0 · · ·
cosφ−M 0 · · ·

0
. . . 0

· · · 0 sinφM
· · · 0 cosφM


 ,

(36)

Zn =
[

0 ZTM;n

−ZTE;n 0

]
. (37)
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Note that the (4M + 2)× (2M + 1) matrices Φ1 and Φ2 are ( 2× 1 )
block diagonal, and the impedance matrix Z is ( 2×2 ) block diagonal.
Consequently, one obtains the following expression for the inverse of
the splitting matrix T0 ,

T−1
0 =

[
Φ−1 Φ−1

Φ−1Z−1 −Φ−1Z−1

]
, (38)

where the inverses of Φ and Z are given by

Φ−1 = ΦT , (39)

Z−1 =



Z−1
−M 0 · · · 0

0 Z−1
−M+1

...
...

. . . 0
0 · · · 0 Z−1

M


 . (40)

and where the superscript T denotes the transpose, and

Z−1
n =

[
0 −Z−1

TE;n

Z−1
TM;n 0

]
. (41)

Eq. (39) indicates that Φ is an orthonormal matrix.
In the present paper, we apply a vacuum wave-splitting approach

to the scattering problem. A characteristic feature of a vacuum wave-
splitting approach is that it is based on a wave-splitting that is not
related to the media which make up the inhomogeneous structure, but
is always defined with respect to vacuum. As pointed out in [7], one
of the major advantages of using the vacuum wave-splitting is that the
split fields are continuous across any z− plane even if the parameter εr
is discontinuous at that plane. This is because the splitting matrix T0

is independent of any inhomogeneous parameter. Thus, substituting
the vacuum wave-splitting (32) into Eq. (12), one obtains the the fol-
lowing system of coupled first order differential equations for the split
fields,

∂z

[
ẽ+

ẽ−

]
= T0WT−1

0

[
ẽ+

ẽ−

]
≡

[
A B
−B −A

] [
ẽ+

ẽ−

]
, (42)

where

A =
1
2
ZΦWcΦ−1 +

1
2
ΦWbΦ−1Z−1, (43)

B =
1
2
ZΦWcΦ−1 − 1

2
ΦWbΦ−1Z−1. (44)



Electromagnetic scattering from an inhomogeneous grating 157

e±n only have physical meaning in vacuum as forward-going and
backward-going components (TE or TM), respectively, along the
diffracted direction (θn, φn) (defined by Eqs. (27) and (26)). There
is no scattering field at angles other than these discrete diffraction
angles. In particular, in the vacuum region z < 0 ,

e+n ei(ωt−kx;nx−ky;0y) =
[
−ẑ × ẑ × �Einc

TM

−ẑ × ẑ × �Einc
TE

]
δn0, z < 0 (45)

( δn0 is Kronnecker’s delta function, and −ẑ× ẑ× �Einc
TM gives the tan-

gential TM incident electric field, etc.), and e−n gives the amplitudes
of the reflected TM and TE wave at the diffraction direction (θn, φn) .
For large |n| when cos θn becomes imaginary, e±n represent evanes-
cent waves which propagate along a transverse direction and which are
exponentially damped to zero as |z| goes towards infinity. Inside the
inhomogeneous grating Eq. (32) is also a useful change of basis for the
spectral domain Maxwell’s equations from the variables ex;n , ey;n ,
hx;n , hy;n to e±1;n and e±2;n .

4. INVARIANT IMBEDDING APPROACH

In principle one can determine the scattered fields with the invariant
imbedding method. In this method one considers the imbedding geom-
etry, i.e. a subslab [z, l] of the original inhomogeneous slab [0, l] , and
assumes that the material in the region [0, z] is temporarily replaced
with vacuum. For this imbedding geometry, the associated reflection
coefficient matrix (denoted R(z) ) and transmission coefficient matrix
(denoted by T (z) ) are defined as follows,

ẽ−(z) =R(z)ẽ+(z), (46)

ẽ(l+) = T (z)ẽ+(z). (47)

Note that R(z) and T (z) are (4M + 2)× (4M + 2) matrices. From
the above definition one notices that R(0) , T (0) are the physical
reflection and transmission coefficient matrices, respectively, for the
original grating.

Combining Eq. (42) with Eq. (46), one obtains the following non-
linear matrix imbedding equation (of Riccati type) for R(z) ,

∂zR(z) = −B(z)−A(z)R(z)−R(z)A(z)−R(z)B(z)R(z). (48)
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The boundary value R(l−) is a known matrix, i.e., the reflection coef-
ficient matrix at an interface between vacuum and a dielectric medium
with relative permittivity ε

(t)
r . If the medium on the transmission

side is vacuum (i.e., ε(t)r = 1 ), one then has R(l−) = 0 . The solution
for R(z) is obtained by integrating Eq. (48) along the −z direction
starting from z = l .

It can be observed that ∂z ẽ
+(l+) = ∂z(T (z)ẽ+(z)) = 0 . If this is

combined with Eqs. (42), (46) and (47), one obtains{
∂zT (z) = −T (z)A(z)− T (z)B(z)R(z),
T (l−) is known.

(49)

The boundary value T (l−) is given by the transmission coefficient
matrix at an interface between vacuum and a dielectric medium with
relative permittivity ε

(t)
r . If the medium on the transmission side is

vacuum one simply has T (l−) = I (the identity matrix). Note that the
above imbedding equation for transmission coefficient matrix T (z) is
linear in T (z) but coupled to the reflection coefficient matrix R(z) .
The physical transmission coefficient matrix T (0) can be obtained
by integrating the above imbedding equation along the −z direction
starting from z = l (after R(z) has been computed).

The matrices R and T consist of 2 × 2 submatrices Rm,n and
Tm,n , m,n = 0,±1,±2, ...,±M . If ẽ+n (z) is the only present incident
mode, one has

ẽ−m(z) = Rm,n(z) ẽ+n (z) ≡
[
r
(m,n)
1,1 r

(m,n)
1,2

r
(m,n)
2,1 r

(m,n)
2,2

]
ẽ+n (z), (50)

ẽm(l+) = Tm,n(z) ẽ+n (z) ≡
[
t
(m,n)
1,1 t

(m,n)
1,2

t
(m,n)
2,1 t

(m,n)
2,2

]
ẽ+n (z). (51)

The coefficients of R relate the amplitudes of the tangential compo-
nents of the reflected and incident electric field to each other for TM
and TE modes. As is customary, the reflection coefficients for TM and
TE modes which are propagating (not evanescent modes) are defined
by

rXY =
EsX
EincY

, X, Y = TE or TM, (52)

where EsTE (EincTE ) is the amplitudes of the reflected (incident) elec-
tric field for TE mode, etc.. rTM,TM , rTE,TM are the co- and cross-
polarized reflection coefficients for TM mode incidence, respectively,
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and rTE,TE , rTM,TE are the co- and cross-polarized reflection coeffi-
cients for TE mode incidence, respectively. Similar definitions hold for
the transmission coefficients for TM and TE modes. It is easy to see
that [

r
(m,n)
TM,TM r

(m,n)
TM,TE

r
(m,n)
TE,TM r

(m,n)
TE,TE

]
=

[
r
(m,n)
1,1

cos θn
cos θm

r
(m,n)
1,2

1
cos θm

r
(m,n)
2,1 cos θn r

(m,n)
2,2

]
, (53)

[
t
(m,n)
TM,TM t

(m,n)
TM,TE

t
(m,n)
TE,TM t

(m,n)
TE,TE

]
=


 t(m,n)

1,1
cos θn
cos θ

(t)
m

t
(m,n)
1,2

1

cos θ
(t)
m

t
(m,n)
2,1 cos θn t

(m,n)
2,2


 , (54)

where

cos θ(t)
m =

((k(t))2 − k2
x;m − k2

y;0)
1/2

k(t)
, k(t) = ω(µ0ε0ε

(t)
r )1/2 (55)

( ε(t)r is the relative permittivity on the transmission side).
The present imbedding method seems easy to understand from a

conceptional point of view. However, our numerical results and expe-
rience have shown that it is very difficult to obtain accurate numerical
results by solving the nonlinear imbedding equation for the reflection
coefficient matrix R (which is a matrix of large size) due to the non-
linear term. Thus, from a numerical point of view, the invariant imbed-
ding method is not suitable for use for the present scattering problem.
In a wave-splitting framework one may then, as an alternative consider
the linear Green’s functions approach [6]. In a usual Green’s function
approach one expresses the internal split fields in terms of the incident
field. Such a Green’s functions approach is not suitable for use either,
since in this approach one needs to know in advance the physical re-
flection coefficient matrix R(0) [6], which is obtained by solving the
nonlinear imbedding equation.

In the next section, we solve the scattering problem with a so-called
transmission Green’s functions approach, in which it is not required
that one first solves a nonlinear equation.

5. TRANSMISSION GREEN’S FUNCTION APPROACH

In a usual Green’s function approach one has to solve a system of
differential equations with two boundary conditions at two endpoints
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z = 0 and z = l . Such a two-endpoint-problem is difficult to solve.
To overcome this difficulty, a modified Green’s function approach, in
which one expresses the internal split fields in terms of the transmitted
field, was first introduced in the time domain [14]. As a consequence,
one obtains a system of differential equations with two boundary con-
ditions at one endpoint. Following the same idea, its frequency domain
version has been used in [15]. To distinguish from the usual Green’s
function, we refer to such a modified Green’s function as the transmis-
sion Green’s function in the frequency domain (in the time domain it
is referred to as the compact Green’s function, since it has compact
support in the time variable [14]).

Thus, define the transmission Green’s function matrices G±(z) by{
ẽ+(z) = G+(z) ẽ+(l−),
ẽ−(z) = G−(z) ẽ+(l−).

(56)

where G±(z) are matrices with size (4M+2)×(4M+2) . By compar-
ing Eq. (56) with Eqs. (46) and (47), one obtains the following relations
between the transmission Green’s functions and the imbedding scat-
tering coefficient matrices:


R(z) = G−(z)

[
G+(z)

]−1
,

T (z) = T (l−)
[
G+(z)

]−1
,

(57)

{
G+(z) = [T (z)]−1 T (l−),

G−(z) = R(z) [T (z)]−1 T (l−).
(58)

Substituting the definition (56) into Eq. (42), one obtains the following
system of first order linear differential equations:

∂z

[
G+

G−

]
=

[
A B
−B −A

] [
G+

G−

]
. (59)

The boundary conditions for the transmission Green’s functions are{
G+(l−) = I,

G−(l−) = R(l−).
(60)

Since the split fields ẽ± are continuous everywhere (as mentioned ear-
lier), it follows from the definition (56) that the transmission Green’s
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functions G± are also continuous everywhere. G±(z) can be com-
puted directly by integrating the linear system (59) along the −z di-
rection starting from z = l .

After the transmission Green’s functions G± have been computed,
the physical scattering coefficient matrices R(0) and T (0) are ob-
tained through the relation (57) with z = 0 .

6. NUMERICAL EXAMPLES

All the numerical results presented in this section are obtained by
solving the linear system (59) and (60) for the transmission Green’s
functions with an explicit Runge-Kutta method.

Example 1. Consider a dielectric wedge grating superimposed on
a dielectric half-space. The thickness of the grating is l = d/2 , where
the period is taken to be d = 0.4λ0 . The center dielectric wedge (with
one period) has the following profile for z ∈ [0, l] and x ∈ [−d/2, d/2]
(see the small configuration in Fig. 2(a)):

εr(x, z) =
{
εr(constant),when | x |< z,

1, otherwise ,
(61)

where εr = 2− 0.001i . The relative permittivity of the dielectric half-
space on the transmission side is ε(t)r = 3 . The Fourier coefficients for
εr(x, z) and ε−1

r (x, z) for this grating are

(εr)n(z) =

{
1 + (εr − 1)2z

d , n = 0 ,
1
nπ (εr − 1) sin(n2πz

d ), otherwise,
(62)

(ε−1
r )n(z) =

{
1 + (ε−1

r − 1)2z
d , n = 0 ,

1
nπ (ε−1

r − 1) sin(n2πz
d ), otherwise.

(63)

The incident azimuthal angle φ0 is fixed to be φ0 = 30◦ . Reflection
and transmission coefficient matrices have been computed for various
values of the incident angle θ0 . For this example, the period d is so
small that only the fundamental mode (i.e., 0− th mode) propagates
(the rest are evanescent modes). Figs. 2(a) and 2(b) show the co- and
cross-polarized reflection coefficients for the fundamental mode, respec-
tively. Figs. 3(a) and 3(b) give the co- and cross-polarized transmission
coefficients for the fundamental mode, respectively. The Fourier series
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were truncated at M = 9 in the calculation. Note that the scat-
tering coefficients for TE and TM modes are obtained through the
relations (53) and (54) with z = 0 . As expected, Fig. 2(b) indicates
that |rTE,TM | = |rTM,TE| , which is due to the reciprocity. Note, how-
ever, reciprocity doesn’t give |tTE,TM | = |tTM,TE| since ε(t)r �= 1 in this
example.

Example 2. In the second numerical example, we consider a dielec-
tric grating whose permittivity varies sinusoidally in both the vertical
and lateral directions. The inhomogeneous grating has a thickness of
l = 1.2λ0 and a period of d = 1.8λ0 . On the transmission side there
is vacuum. The relative permittivity has the following profile:

εr(x, z) = a+ sin(
2πz
l

) cos(
2πx
d

), (64)

where a = 2.2− 0.001i . The Fourier coefficients for such a profile are:

(εr)n(z) =



a, n = 0 ,
1
2 sin(2πz

l ), n = ±1 ,
0, otherwise,

(65)

(ε−1
r )n(z) =




a−1
+∞∑
m=0

( ba)
2m(1

2)2m(2m
m ), n = 0,

−a−1
+∞∑
m=0

( ba)
2m+1(1

2)2m+1( 2m+1

m− |n|−1
2

), n odd,

a−1
+∞∑
m=0

( ba)
2m+2(1

2)2m+2( 2m+2

m− |n|−2
2

), n even,

(66)

where b = sin(2πz
l ) . The incident angles are chosen to be θ0 = 35◦

and φ0 = 30◦ . The modes are illustrated in Fig. 4. The reflection and
transmission matrices have been computed, and the middle columns
of R(0) and T (0) are shown below,
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Figure 2(a) Co-polarized reflection coefficients r
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for the fundamental mode.
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refl:




−0.0000+0.0000i 0.0000−0.0000i

0.0000−0.0000i 0.0000−0.0000i

−0.0003+0.0000i 0.0001−0.0000i

0.0002−0.0001i 0.0002−0.0001i

−0.0046+0.0005i 0.0016−0.0002i

0.0028−0.0016i 0.0028−0.0008i

−0.0161+0.0009i 0.0051+0.0003i

0.0258−0.0120i 0.0251−0.0051i

0.0038+0.0174i −0.0107−0.0158i

0.0204+0.0067i 0.0131+0.0083i

0.0241+0.0053i 0.0277−0.0115i

−0.0139+0.0826i 0.0069−0.0196i

0.6126−0.0556i −0.0936+0.0113i

−0.1395+0.0169i −0.0428−0.0942i

1.3068+0.5980i −0.2186−0.1219i

−0.0853+0.1054i −0.5840+0.3475i

0.3490+0.1714i −0.0641−0.0310i

−0.0241+0.0088i −0.0532+0.0537i

0.0165+0.0095i −0.0029−0.0016i

−0.0016+0.0006i −0.0027+0.0037i

0.0009+0.0005i −0.0002−0.0001i

−0.0001+0.0000i −0.0001+0.0002i

0.0000+0.0000i −0.0000−0.0000i

−0.0000+0.0000i −0.0000+0.0000i

0.0000+0.0000i −0.0000−0.0000i

−0.0000+0.0000i −0.0000+0.0000i




, transm:




0.0000+0.0000i −0.0000−0.0000i

−0.0000+0.0000i −0.0000+0.0000i

−0.0003−0.0001i 0.0002+0.0000i

0.0002−0.0000i 0.0001−0.0000i

0.0040+0.0010i −0.0021−0.0007i

−0.0036+0.0007i −0.0021+0.0001i

−0.0089−0.0070i 0.0065+0.0042i

0.0339−0.0051i 0.0217+0.0014i

0.0322−0.0300i 0.0214+0.0124i

−0.0241−0.0049i −0.0185+0.0048i

0.0253−0.0453i 0.0808−0.1010i

−0.0502+0.0193i 0.0178−0.0200i

0.0085+0.7150i −0.1586−0.0556i

−0.2363−0.0828i −0.8005+0.5062i

−1.5230−0.4909i 0.2578+0.0968i

−0.2672−0.0378i −0.6232+0.0401i

0.4354+0.1305i −0.0673−0.0255i

0.0115+0.0018i 0.0694+0.0135i

−0.0237−0.0060i 0.0038+0.0010i

−0.0004−0.0001i −0.0040−0.0015i

0.0012+0.0003i −0.0002−0.0001i

−0.0000+0.0000i 0.0001+0.0001i

−0.0000−0.0000i 0.0000+0.0000i

0.0000−0.0000i −0.0000−0.0000i

0.0000+0.0000i −0.0000−0.0000i

−0.0000−0.0000i 0.0000+0.0000i




For each of the above two matrices, the first column corresponds to
the scattered TM and TE mode fields for the TM incidence, and the
second column corresponds to the scattered TM and TE mode fields
for the TE incidence (i.e., the first matrix consists of 2× 2 matrices
Rm,0 , m = 0,±1,±2, ...,±M , etc.; cf. Eqs. (50) and (51)). Modes
with Fourier indices −6,−5, . . . , 5, 6 were included in the calculation.
Note that the absolute values of both r

(1,0)
1,1 and t

(1,0)
1,1 are larger than

1 , which might seem strange. In fact this mode (with the index n =
1 ) corresponds to an evanescent wave and it does not contribute any
power in the far field area. The only modes that can propagate are
modes with indices n = −2,−1, 0 . Fig. 5(a) shows the absolute values
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e1;0
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e2;1

e2;-1

e1;-1e1;-2

e2;-2

Modes with indices -2,-1,0
propagate with respect to z
in example 2

Figure 4. Propagation directions of the modes for Example 2.

of the reflected tangential fields, i.e., |Esx| and |Esy| , on the surface
z = 0 , as functions of the lateral position x for a TE or TM incidence
with unit amplitude. Fig. 5(b) gives the transmitted tangential fields
|Etx| and |Ety| (spatial) at z = l . The evanescent spectral components

r
(1,0)
1,1 and t

(1,0)
1,1 contribute to the near fields with large amplitudes, as

can be recognized clearly in Figs. 5(a) and 5(b). These evanescent
components don’t contribute to the far fields but decay exponentially
for large |z| .

7. EXTENSION TO BI-ANISOTROPIC GRATINGS

The present wave-splitting approach can be easily generalized to scat-
tering from a bi-anisotropic grating. A bi-anisotropic medium has the
following general constitutive relations

�D = ε�E + ξ �H, (67)

�B = µ�H + ζ�E, (68)

where ε (the permittivity tensor), µ (the permeability tensor), ξ

and ζ are three-dimensional cartesian tensors. Assume that all the
parameter tensors are y− independent and periodic in the x direction
with a period d , i.e.,

ε(x+ d, z) = ε(x, z), etc.. (69)

From the constitutive relations (67) and (68) and the third compo-
nents of Maxwell’s equations, one can always express the third com-
ponents of �E and �H as linear functions of the tangential fields and



Electromagnetic scattering from an inhomogeneous grating 167

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

Normalized reflected fields |E x
s | and |E y

s | for TM   and TE  incidence

TM  incidence

TE  incidence

θ0=35° and φ0=30°

x /λ0

|E x
s |

|E y
s |

|E y
s |

|E x
s |

z

x

l
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TM or TE incidence.
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their tangential derivatives, viz.

Ez =p(1)Ex + p(2)Ey + p(3)∂yEx + p(4)∂xEy

+ p(5)Hx + p(6)Hy + p(7)∂yHx + p(8)∂xHy, (70)

Hz =q(1)Ex + q(2)Ey + q(3)∂yEx + q(4)∂xEy

+ q(5)Hx + q(6)Hy + q(7)∂yHx + q(8)∂xHy, (71)

where p(j) , q(j) , j = 1, 2, ..., 8 , are some combinations of the constitu-
tive parameters. Since p(j) , q(j) are periodic in x , and the fields have
the Fourier series expansion (8), one obtains the following equations
from the Fourier expansion of the above two equations,

ez;n =
+∞∑

m=−∞
{p(1)
n−mex;m + p

(2)
n−mey;m − ip

(3)
n−mky;0ex;m − ip

(4)
n−mkx;mey;m

+ p
(5)
n−mhx;m + p

(6)
n−mhy;m − ip

(7)
n−mky;0hx;m − ip

(8)
n−mkx;mhy;m},

hz;n =
+∞∑

m=−∞
{q(1)n−mex;m + q

(2)
n−mey;m − iq

(3)
n−mky;0ex;m − iq

(4)
n−mkx;mey;m

+ q
(5)
n−mhx;m + q

(6)
n−mhy;m − iq

(7)
n−mky;0hx,m − iq

(8)
n−mkx;mhy;m},
n = 0,±1,±2, ...,

which can be written in the following matrix form after the truncation,

[
ẽz
h̃z

]
= P



ẽx
ẽy
h̃x
h̃y


 , (72)

where P is a 2(2M +1)× 4(2M +1) matrix. Using Eq. (32), one can
rewrite the Fourier expansions of the first two components of Maxwell’s
equations in the following form

∂z

[
ẽ
h̃

]
=

[
Wa Wb

Wc Wd

] [
ẽ
h̃

]
, (73)

where Wa , Wb , Wc , and Wd are some (2M+1)×(2M+1) matrices.
Applying the vacuum-splitting (32) to the above equation, one obtains

∂z

[
ẽ+

ẽ−

]
=

[
A B
C D

] [
ẽ+

ẽ−

]
, (74)
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where

A =
1
2

{
ΦWaΦ−1 + ΦWbΦ−1Z−1 + ZΦWcΦ−1 + ZΦWdΦ−1Z−1

}
,

B =
1
2

{
ΦWaΦ−1 − ΦWbΦ−1Z−1 + ZΦWcΦ−1 −ZΦWdΦ−1Z−1

}
,

C =
1
2

{
ΦWaΦ−1 + ΦWbΦ−1Z−1 −ZΦWcΦ−1 −ZΦWdΦ−1Z−1

}
,

D =
1
2

{
ΦWaΦ−1 − ΦWbΦ−1Z−1 −ZΦWcΦ−1 + ZΦWdΦ−1Z−1

}
.

Therefore, the system of differential equations for the transmission
Green’s functions become (cf. Eq. (59))

∂z

[
G+

G−

]
=

[
A B
C D

] [
G+

G−

]
. (75)

The boundary condition remains the same as Eq. (60). G±(z) can be
computed from Eqs. (75) and (60), and the physical scattering coeffi-
cient matrices R(0) and T (0) are then obtained through the relation
(57) with z = 0 .

8. DISCUSSION AND CONCLUSION

When solving the differential equations for the transmission Green’s
functions by backward integration, G±(z) for the non-propagating
(i.e., evanescent) modes may grow exponentially as z approaches z =
0 . The modes with index ±M grow fastest and they may cause ill-
conditioning of the matrices G± (and eventually also cause overflow)
if no special care is taken. Consequently, it could become a problem
to calculate accurately the inverse of G+(0) (in order to obtain R(0)
and T (0) ; cf. Eq. (57)). Such a problem can be handled by e.g.
a cascading and rescaling procedure. On the other hand, the thicker
the grating is, the less these non-propagating evanescent modes (which
cause some elements of G± to grow exponentially) will influence the
physical scattering coefficient matrices R(0) and T (0) . Therefore, the
thicker the grating is, the fewer modes are required to be taken into
account (i.e., using smaller integer M ). In a numerical computation,
the appearance of very large components in G± indicates that no more
modes need to be taken into account (or should take fewer modes).

From Eqs. (28) and (27) one sees that ZTE;n and Z−1
TM ;n are singu-

lar if kz,n = 0 for a certain n (such a mode is called Bragg’s tangent



170 Forslund and He

mode). In such a case, one can compute the scattered fields by either
perturbing the incident direction by a small amount (so that there is no
Bragg’s tangent mode), or simply remove this Bragg’s tangent mode
from all the matrices (technically it may be more convenient by setting
all the associated elements in the matrices to zero; the amplitude of
this mode can be calculated from energy conservation laws).

In the present paper, the electromagnetic scattering problem for an
inhomogeneous dielectric grating has been considered. A vacuum wave-
splitting for pseudo-periodic fields has been derived. The transmission
Green’s function approach is then used to solve the scattering problem.
Numerical results for the co- and cross-polarized reflection and trans-
mission for TE and TM incidences have been presented. Numerical
results have shown that the transmission Green’s function approach
is superior to the invariant imbedding approach or the usual Green’s
function approach, for this type of scattering problem when matrices
of large size are involved. The approach has also been generalized to
scattering from a bi-anisotropic grating.
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