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1. INTRODUCTION

The generation and propagation of carrier-free ultra-wideband pulses
has attracted considerable attention in recent years [1–88, 93, 94]. This
interest has been sustained by advancements in ultrafast acoustical,
optical and electrical devices capable of generating and shaping very
short pulsed wave fields [80]. These ultrashort pulses exhibit distinct
advantages in their performance by comparison to conventional quasi-
monochromatic signals. It has been shown, in particular, that such
pulses have extended ranges of localization in the near-to-far field re-
gions [cf. e.g., 18, 24]. In dispersive media, the shaping of their initial
excitation can reduce significantly dispersive spreading [23, 78, 79, 85].
These properties, together with their uniform focused depth in the near
field, render short pulsed wave fields very useful in applications involv-
ing high resolution imaging, nondestructive testing, secure signaling
and interference-free communications.

In this paper, we are primarily interested in one class of ultra-
wideband pulses that has become known as Localized Waves (LW).
Examples of such pulsed fields include the Focus Wave Mode (FWM)
derived by Brittingham [1], the Modified Power Spectrum (MPS) pulse
deduced by Ziolkowski [18] and the X-wave introduced by Lu and
Greenleaf [34]. Each LW pulse is a carrier-free, ultra-wideband wave
field consisting of a highly focused central portion embedded in a
sparse, low intensity background. Two scales, thus, characterize these
pulsed wave fields: (i) an extremely small scale depicting the spatial ex-
tension and the temporal duration of the high intensity focused pulse;
(ii) a larger scale specifying the size of the low intensity background
field. This double trait causes LW pulses to behave in an extraordi-
nary fashion when they propagate in free space and dispersive media,
or scatter from objects. Another distinct feature of all LW pulses
is an unusual coupling between their spatial and temporal spectral
components. This coupling manifests itself as a time-dependent (dy-
namic) initial excitation on the source plane of the generated pulse;
specifically, distinct segments of the source plane should be excited at
different times using various time sequences. One factor determining
the sequential order of the excitation of the various source elements
is the spatio-temporal spectral coupling. The unusual structure of
the frequency content of LW pulses causes the spectral depletion of
the peaks of such pulsed wave fields to be entirely different from that
of conventional quasi-monochromatic signals, or other broadband sig-
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nals. Thorough investigations of the spectral depletion of LW pulses
generated from finite-time dynamic apertures have been undertaken
previously [61–64, 69–73, 85, 86]. A finite-time dynamic aperture is an
artifice developed for studying the decay of propagating finite-energy
LW pulses by time-limiting known closed-form infinite energy LW solu-
tions. This provides a well-established scheme for shaping the spectral
components of the initial field in a manner that it can control the de-
cay rate of a LW pulse traveling away from its source plane. Such an
approach is dependent on the a priori knowledge of exact closed-form
LW solutions. It does not matter whether the known exact LW pulses
have infinite energy, as long as the power content of the initial excita-
tion on the source plane is always finite. In most cases, finite energy
pulses can be generated by appropriately time-windowing the infinite
energy excitation field.

The bidirectional representation of LW has been introduced in a
previous publication by Besieris, Shaarawi and Ziolkowski [15] . It
provides the most natural basis for deriving FWM-like solutions. The
bidirectional representation utilizes the forward and backward charac-
teristics of the wave equation as fundamental variables, and uses the
corresponding spectral variables together with the transverse spectral
components to synthesize exact LW solutions. This approach has been
very successful as a comprehensive procedure for deriving closed-form
FWM-like solutions. It turns out that the bidirectional superposition
can easily be transformed into a Fourier one. This provides a great
facility for transforming the spectral content of LW pulses derived us-
ing the bidirectional representation to the more conventional Fourier
picture.

The main aim of this paper is to complement the bidirectional super-
position with another representation based on the Lorentz boost vari-
ables of the wave equation; the latter are motivated from the Lorentz
invariance of the wave equation. This allows us to boost stationary
and separable elementary solutions in order to form propagating and
nonseparable ones, for which the spatial and temporal quantities are
combined together to compose the new boost variables. The main ad-
vantage of this new superposition is its capability of yielding X-wave
type solutions. The latter have been shown to have the same ba-
sic properties as the FWM-like pulses, except that the form of their
spatio-temporal spectral coupling is different [61, 86]. This causes the
dynamic character of the aperture excitation field of an X-wave pulse
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to be slightly different from that of a FWM field.
Traditionally, wave generation and propagation in linear media has

been studied using Fourier analysis. The latter is one of the most pow-
erful techniques developed to deal with linear systems. When Fourier
analysis is applied to the scalar wave equation, one can work within
the framework of either the Whittaker or the Weyl representation [cf.,
e.g., Ref. 92]. The former consists of a superposition of forward and
backward traveling plane waves, while the latter is synthesized of con-
verging and diverging waves together with the associated evanescent
fields. Since a Fourier representation is a superposition of sinusoidal
plane wave solutions, it is well suited to situations involving quasi-
monochromatic signals. The bandwidth of the Fourier spectrum, in
this case, is much smaller than the carrier frequency. As a conse-
quence, a quasi-monochromatic wavetrain exists over a long time du-
ration containing a large number of cycles of its significant frequency
components. When one deals with ultra-wideband LW pulses, on the
other hand, the axial length of the highly focused central portion of
the pulse equals the shortest wavelength contributing to its Fourier
spectrum. It is more appropriate, then, to synthesize LW pulses using
other localized basis functions. Ziolkowski, who constructed the MPS
pulse as a superposition of FWM solutions, made the first attempt
towards such a direction [18]. Along the same vein, the realization
that FWM-like solutions involved the natural characteristic variables
(z − ct) and (z + ct) of the wave equation led to the development of
the bidirectional representation. That effort was undertaken in order
to serve two specific goals: (i) to provide a more general framework for
deriving FWM-like solutions; (ii) to devise a scheme that could easily
transform the deduced spectral information into the Fourier picture.
The latter is a crucial step because even if a Fourier superposition is
not the most natural representation of LW solutions, the information
included in their Fourier spectrum is necessary for any attempts to
construct physical sources. The practical limitations and characteris-
tics of the devices used to manufacture a real source are ultimately
formulated in terms of Fourier terminology. In this work, we extend
our previous attempt to introduce new representations well suited to
the construction of exact LW solutions, and to describe how to relate
these representations to the Fourier picture.

The plan of this work is to start by reviewing the fundamental
aspects of the bidirectional representation. This is done in Sec. 2,
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where we demonstrate that the bidirectional representation can be
transformed into a new superposition involving a product of plane
waves traveling along the subluminal and superluminal boost variables.
We show that the former representation is more suitable for deriving
FWM-like pulses, while the latter is more appropriate for dealing with
X-wave type solutions. Moreover, we demonstrate how the same finite-
energy LW pulses can be deduced using both representations. The
physical origin of the boost representation is described in Sec. 3. It
is shown that the boost representation follows naturally from the in-
variance of the scalar wave equation under Lorentz transformations.
These invariance properties are illustrated by using the Lorentz boost
to transform elementary solutions, given in a specific frame of refer-
ence, into subluminally or superluminally propagating LW pulses. The
power and flexibility provided by the two fundamental representations
of LW solutions are used in Sec. 4 to deduce new closed-form solutions
representing finite-energy LW pulses. In Sec. 5, we comment on an
interesting behavior of the excitation wave fields acting on the source
planes of the LW pulses. Concluding remarks to this work are made
in Sec. 6.

2. TWO FUNDAMENTAL SUPERPOSITIONS

The homogeneous scalar wave equation

(
∇2 − 1

c2
∂2

∂t2

)
Ψ(�r, t) = 0 (2.1)

has two fundamental properties: (i) it is invariant under Lorentz
boosts; (ii) pulsed solutions traveling along the z -axis have two natural
characteristic variables, ζ = z−ct and η = z+ct . Nonseparable local-
ized solutions to the wave equation can be derived from superpositions
based on these two natural attributes. The bidirectional superposi-
tion is associated with the second property. Since its introduction in
1989, it has been used extensively to derive different kinds of localized
waves. Furthermore, it has proved very useful in deducing unusual
spectra that are not easily motivated from a Fourier perspective. Due
to its simple form, the bidirectional representation can be transformed
in a straightforward manner into a Fourier superposition. The ability
to move from one picture to the other provides a great advantage. It
permits one to derive unusual LW solutions and subsequently deduce



6 Besieris et al.

the corresponding Fourier spectra. The latter can then be used to
identify various attributes characterizing the excitation of LW sources.
In this section, we review briefly some of the properties of the bidi-
rectional superposition and then derive a new representation based on
superluminal or subluminal boost variables.

We start with the azimuthally symmetric bidirectional representa-
tion of a solution to the scalar wave equation:

Ψ(ρ, ζ, η) =

∞∫
0

dα

∞∫
0

dβ

∞∫
0

dχχJ0(χρ)e−iαζe+iβηΦ(χ, α, β)δ(αβ − χ2/4).

(2.2)

This superposition can be transformed to the Fourier picture by realiz-
ing that α = ((ω/c) + kz) /2 and β = ((ω/c)− kz) /2 . This procedure
has been described in detail in Ref. 15 and has subsequently been used
to derive LW solutions directly from Fourier superpositions. Without
loss of generality, we carry out the integration over α to obtain

Ψ(ρ, ζ, η) =

∞∫
0

dβ

∞∫
0

dχχJ0(χρ)e−i(χ
2/4β)ζe+iβηΦ̃(χ, β), (2.3)

where Φ̃(χ, β) = Φ(χ, α, β)/β , with α = χ2/4β . Some of the well-
known LW exact solutions to the scalar wave equation are readily deriv-
able using the superposition (2.3). For example, the singular spectrum

Φ̃(χ, β) =
1
2β

e−(χ2/4β)a1δ(β − β′), a1 > 0, (2.4)

yields the FWM solution [5]

ΨFWM (ρ, z, t) =
1

a1 + iζ
e−β

′ρ2/(a1+iζ)eiβ
′η. (2.5)

Similarly, the MPS pulse is derived using the spectrum

Φ̃(χ, β) =




p

2βΓ(q)
(pβ − b)q−1e−χ

2a1/4βe−a2(pβ−b) for β ≥ b/p

0 for b/p > β > 0,
(2.6)
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where a2 > 0 . For q = 1 , the superposition (2.3) results in the finite
energy LW pulse

ΨMPS(ρ, z, t) =
1

(a1 + iζ)
1

[(ρ2/(a1 + iζ))− iη + pa2]
×

e−bρ
2/p(a1+iζ)eibη/p. (2.7)

This solution was originally derived by Ziolkowski [18] as a Laplace-
type superposition of infinite energy FWM solutions, viz.,

Ψ(�r, t) =

∞∫
0

dβ′F (β′)ΨFWM (ρ, z, t;β′). (2.8)

The main difference between the two spectra given in (2.4) and (2.6),
respectively, is that the former includes a Dirac delta function and the
latter does not. A Laplace-type integration of weighted FWM solutions
over the parameter β′ introduces a continuous spread in the values of
β around β′ . Consequently, the singular distribution δ(β − β′) is
transformed through the integration (2.8) into a continuous distribu-
tion over a range of β values. This is a recurring theme encountered
whenever a finite energy solution is derived. Notice, also, that sin-
gular spectra analogous to (2.4) yield LW solutions whose envelopes
are functions only of ζ . Obviously, an envelope depending only on ζ
propagates in the positive z -direction without spreading out. How-
ever, the total energy content of such LW pulses is infinite. Once we
depart from delta distributions in the spectrum Φ̃(χ, β) , and the pa-
rameter β is spread over a range of values, we obtain finite energy LW
solutions. The resulting LW solutions [e.g., the MPS pulse given in
Eq. (2.7)] have envelopes that depend on both characteristics ζ and
η . This mixing of the two characteristic variables causes a finite en-
ergy LW pulse to decay as it propagates beyond a certain focused range
along the z -axis.

The two solutions given in Eqs. (2.5) and (2.7) have been studied
extensively and there is no specific reason to elaborate on their prop-
erties except to compare them to other LW solutions deduced in later
sections. For such a purpose we plot, in Fig. (1), the FWM pulse for
a1 = 0.0001 m and β′ = 1 . The negative ρ values in the figure
should be understood to be the image of the positive ones along any
arbitrary transverse direction. The FWM pulse periodically acquires
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Figure 1. Surface plot of the real part of the Focus Wave Mode (FWM)
pulse with parameters a1 = 10−4 m and β′ = 1 .

the form shown in the figure at distances z = nπ/β , where n is an
integer. The radius of the focused part of the FWM field is of order√

a1/β . The finite energy MPS pulse [cf. Eq. (2.7)] initially resembles
the FWM. The radius of its focused region is equal to

√
pa1/b and it

starts decaying as (1/z) for z > (pa2/2) .
To demonstrate the facility by which other solutions analogous to

those given in (2.5) and (2.7) can be deduced, consider the following
bidirectional spectrum:

Φ̃(χ, β) =
1
2β

e−χ
2a1/βJ0(χa)δ(β − β′), a1 > 0. (2.9)

Because of the singular spectral dependence on β′ , the superposition
(2.3) gives the infinite energy Focus Splash Mode (FSM) solution

ΨFSM (ρ, z, t) =
1

a1 + iζ
e−β(a2+ρ2)/(a1+iζ)I0

(
2aβρ/(a1 + iζ)

)
eiβη.

(2.10)
In a superposition over ΨFSM (ρ, z, t) analogous to Eq. (2.8), the sub-
stitution of the spectrum F (β) = exp(−βa2) yields the finite energy



Fundamental representations of localized waves 9

Modified Splash (MS) pulse

ΨMS(ρ, z, t) =
1

(a1 + iζ)

{[
a2 + ρ2

(a1 + iζ)
+ (a2 − iη)

]2

− 4ρ2a2

(a1 + iζ)2

}− 1
2

.

(2.11)
In the limit a → 0 , the above expression reduces to the ordinary
splash pulse, of order q = 1 , introduced previously [4, 21]. The MS
pulse given in Eq. (2.11) is plotted for the parameter values a1 = 10−4

m, a1 = 10−3 m and a2 = 1000 m. The surface plots shown in
Figs. (2.a–d) correspond to the distances ct = 0 , 500, 1000 and 2000
m. These figures show that the MS spreads out beyond a certain
range. The resemblance between the shape of the spreading MS and
MPS pulses should be noted [e.g., compare with plots in Ref. 18].
However, unlike the MPS and FWM fields, the focused portion of the
MS pulse decays monotonically and does not exhibit the oscillatory
behavior along the direction of propagation characterizing the former
two pulses. The parameters included in the solution affect the shape of
the propagating pulse. Specifically, smaller a1 values result in shorter
pulses that have narrower waists. On the other hand, the parameter
a2 determines the dispersion-free range of the propagating MS pulse.

The examples considered so far in this section demonstrate the great
facility provided by the bidirectional representation in deriving LW so-
lutions. In previous work [61–64, 69–73, 85–87], schemes for generating
good approximations to LW solutions were developed and the spectral
depletion of the launched LW pulses was studied in detail. The param-
eters included in the exact solutions affect the various attributes of the
initial excitation of a LW aperture and, consequently, control the decay
rates of the propagating pulses. In an effort to characterize the decay
behavior of LW pulses, it has been established that the spectral de-
pletion of LW pulses differs entirely from that of quasi-monochromatic
as well as other broadband signals. When compared to other pulsed
beams, LW pulses exhibit an extended range of localization in the near-
to-far field regime. However, the behavior of different LW pulses may
vary over their ranges of localization. As a consequence, being able to
derive new exact solutions is a vital tool in the study of such pulsed
wave fields. Basically, one may search for infinite energy solutions
characterized by a singular bidirectional spectrum. Large numbers of
closed-form expressions for these infinite energy pulses can be derived
easily from the bidirectional representation because of the Dirac delta
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(a) νt = 0 m.

(b) νt = 500 m.

Figure 2(a-b). Surface plot of the real part of the Modified Splash
(MS) pulse with parameters a1 = 10−4 m, a = 10−3 and a2 = 103 m.
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(c) νt = 1000 m.

(d) νt = 2000 m.

Figure 2(c-d). Surface plot of the real part of the Modified Splash
(MS) pulse with parameters a1 = 10−4 m, a = 10−3 and a2 = 103 m.
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functions included in their spectra. The presence of the Dirac delta
functions reduces the number of multiple integrals to be evaluated.
These simple closed-form expressions help in understanding the gen-
eral features of the deduced LW solutions. Finite energy pulses can
then be derived simply by smoothing the singular spectrum, thus al-
lowing the argument of the delta function to acquire a distribution
over a finite range of values. The smoothing of the singular spectrum
adds an extra integration and, in most cases, closed-form expressions
for finite energy solutions cannot be derived. Guided, however, by our
knowledge of the behavior of infinite energy pulses, numerical inves-
tigations of finite energy solutions can be carried out. The point we
wish to emphasize is that deriving closed-form expressions is vital to
any thorough investigation of LW pulses. No wonder most investiga-
tions have been centered on exact LW solutions, e.g., FWM, MPS and
X-wave pulses. In this work, our main objective is to demonstrate how
to deduce closed-form expressions of various types of LW solutions.
Furthermore, we would like to show how seemingly disparate types of
pulses might be linked together.

The few examples discussed so far in this section are variants of
the source-free FWM pulse. There is another type of a LW solution,
namely the X-wave, that has been developing independently [34–36,
47, 60, 65–67, 74–76, 82–84, 94]. The X-wave has a closed-form ex-
pression that appears to be very different from that of the FWM pulse.
However, the generation and propagation characteristics of these wave-
fields show great similarities [61, 86, 87]. Both are tightly focused, high
intensity, pulsed wavefields embedded in an extended background of a
much lower magnitude. They have extended ranges of localization in
the near-to-far field limit and are generated by dynamic apertures for
which the size of the active area of the initial excitation is time depen-
dent. Furthermore, it has been shown [61, 86, 87] that the X-wave and
the FWM pulses have very similar spectral structures. They only differ
in the way their respective spatial and temporal frequency components
are coupled together. The coupling of the spatial and temporal spec-
tral components is an essential feature characterizing all LW solutions.
Based on these observations, we would like to raise the following ques-
tion: How can two pulses that have so much in common be related to
each other? Apparently, it is not very clear how to derive the X- wave
solution from a bidirectional superposition.
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In the sequel, we shall demonstrate that the bidirectional represen-
tation is linked to a new representation based on subluminal or superlu-
minal boost variables. First we introduce the subluminal variables τ̄ =
−γ̄(ν/c)(z − (c2/ν)t) and σ̄ = γ̄(z − νt) , where γ̄ = (1− (ν/c)2)−1/2

for (ν/c) < 1 . These new variables are just the subluminal Lorentz
boosts of z and t . They are natural variables of the wave equation
because the latter is invariant under a Lorentz transformation. Using
these new variables, the characteristic variables are rewritten as

ζ = z − ct = γ̄ (1− (ν/c)) (σ̄ − τ̄)
and

η = z + ct = γ̄ (1 + (ν/c)) (σ̄ + τ̄). (2.12)

The relation between the characteristic variables and the subluminal
boost variables transforms the bidirectional representation (2.2) into
the superposition

Ψ(ρ, σ, τ) =

+∞∫
−∞

dκ

∞∫
0

dλ

∞∫
0

dχχJ0(χρ)e+iκσ̄e+iλτ̄ ·

Φ(χ, κ, λ)δ(λ2 − κ2 − χ2), (2.13)

where

κ = βγ̄(1 + (ν/c))− αγ̄(1− (ν/c))
and

λ = βγ̄(1 + (ν/c)) + αγ̄(1− (ν/c)) (2.14)

In Eq. (2.13), the lower bound on λ is 0 and not −∞ by virtue of
Eqs. (2.2) and (2.14). It is clear that for α and β positive [see the lim-
its in Eq. (2.2)], λ should acquire only positive values. The integration
over κ in Eq. (2.13) yields the subluminal boost representation

Ψ(ρ, σ, τ) =

+∞∫
−∞

dλ

∞∫
0

dχχJ0(χρ)e+i
√
λ2−χ2σ̄e+iλτ̄ Φ̃(χ, λ). (2.15)

The limits of the integration over λ change to −∞ to +∞ to accom-
modate the negative and positive roots of the Dirac delta function. For
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χ2 > λ2 , the integration must be analytically continued using a suit-
able complex contour integration. The above superposition resembles
the Weyl representation of solutions to the scalar wave equation, with
the variables z and t replaced by the subluminal boost variables σ̄
and τ̄ , respectively. Similarly, the superluminal boost variables are
introduced as σ = γ(ν/c)(z − (c2/ν)t) and τ = −γ(z − νt) , where
γ = ((ν/c)2 − 1)1/2 for (ν/c) > 1 . The conventional characteristic
variables are related to σ and τ as follows:

ζ = z − ct = γ ((ν/c)− 1) (σ − τ)
and

η = z + ct = γ ((ν/c) + 1) (σ − τ) (2.16)

Introducing the relations given in (2.16) into (2.2), we obtain

Ψ(ρ, σ, τ) =

+∞∫
−∞

dκ

∞∫
0

dλ

∞∫
0

dχχJ0(χρ)e+iκσe+iλτ

· Φ(χ, κ, λ)δ(λ2 − κ2 − χ2), (2.17)

where

κ = βγ ((ν/c) + 1)− αγ ((ν/c)− 1)
and

λ = βγ ((ν/c) + 1) + αγ ((ν/c)− 1) (2.18)

The integration over λ gives the superluminal representation

Ψ(ρ, σ, τ) =

+∞∫
−∞

dκ

∞∫
0

dχχJ0(χρ)e+iκσe+i
√
κ2+χ2τ Φ̃(χ, κ). (2.19)

It should be noted that this superposition resembles the Whittaker
representation of solutions to the scalar wave equation, except that
the variables z and t are replaced by the boost variables σ and τ ,
respectively. The superluminal representation (2.19) is a superposi-
tion of a product of two plane waves, one moving along the positive
z -direction with speed ν > c and the other traveling in the same di-
rection at a speed (c2/ν) < c . Although these two plane waves appear
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to be unidirectional, the superposition (2.19) consists generally of for-
ward and backward traveling components. The same property is more
apparent in the bidirectional representation. In both cases, one should
be careful to isolate the backward traveling components in order to be
able to generate a completely causal forward traveling wavefield. In
some solutions, like the X-wave, the traveling pulse consists solely of
forward propagating plane waves.

Superpositions leading to X-wave-type solutions follow naturally
from the representation given in Eq. (2.19) by choosing the singular
spectrum

Φ̃(χ, κ) = Φ̃n(χ)δ(κ). (2.20)

The substitution of the relation (2.20) reduces Eq. (2.19) to the familiar
X-wave superposition

Φ(ρ, z, t) =

∞∫
0

dχχJ0(χρ)e−iγχ(z−νt)Φ̃n(χ). (2.21)

The specific spectrum

Φ̃0(χ) = e−χa1/χ, a1 > 0, (2.22)

yields the conventional zeroth order X-wave [cf. Ref. 34]

Φ(0)
XW (ρ, z, t) =

1(
ρ2 +

(
a1 + iγ(z − νt)

)2
)1/2

. (2.23)

Higher order X-wave solutions can be derived simply choosing the spec-
trum Φ̃n(χ) = χne−χa1 , n > 0 . In Fig. (3), we provide a 3-D sur-
face plot of the X-wave for the parameter values a1 = 0.0001 m and
(ν/c) = 1.0001 . One should note that away from the central focused
portion the background field branches out to acquire the distinct shape
of the letter X.

Since a simple change of variables transforms the bidirectional repre-
sentation into the Lorentz boost variable representation, one can show
that the X-wave solution may be directly inferred from the bidirectional
representation. The transformation of the α and β variables into αχ
and βχ , respectively, modifies the bidirectional representation (2.2)
into the following form [61]:
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Figure 3. Surface plot of the real part of the X-wave pulse with pa-
rameters a1 = 10−4 m and ν/c = 1.0001 .

Ψ(ρ, ζ, η) =

∞∫
0

dα

∞∫
0

dβ

∞∫
0

dχχJ0(χρ)e−iαχζe+iβχη·

Φ(χ, α, β)δ(αβ − 1/4). (2.24)

The integration over α gives

Ψ(ρ, ζ, η) =

∞∫
0

dβ

∞∫
0

dχχJ0(χρ)e−i(χ/4β)ζe+iβχηΦ̃(χ, β). (2.25)

A spectrum analogous to the one given in equation (2.22), namely
Φ̃(χ, β) = δ(β−β′)e−χa1/χ , yields the X-wave solution [cf. Eq. (2.23)],
with (ν/c) = (1 + 4β′2)/(1 − 4β′2) and γ = (1 − 4β′2)/4β′ . This is
a remarkable result because it demonstrates that a specific choice of
a bidirectional spectrum leads to an X-wave solution traveling along a
boost variable instead of the characteristic variables used in Eq. (2.25).
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The same applies to a Whittaker representation consisting of plane
waves characterized by the spectral Fourier variables ω , χ , and kz .
With a proper choice of spectra, one can use the Whittaker superpo-
sition to derive any of the known LW solutions. The important point
is to use the most natural representation and to be able to transform
the results from one picture to another. For example, the only possi-
ble way to get to the Fourier spectrum of the MPS pulse is through a
transformation of its bidirectional spectrum into a Fourier one.

In closing this section, we shall show by means of a specific example
how to synthesize finite energy LW pulses as superpositions of infinite
energy X-wave type solutions. Towards this goal, we substitute the
spectrum

Φ̃(χ, β) =
√

4χ
πβ3

e−χa1/βe−βχa2 (2.26)

into the modified bidirectional representation (2.25). Next, we intro-
duce the new variable β̄ =

√
β and use the relation (3.472.3) in Grad-

shteyn and Ryzhik [90] to carry out the integration over β̄ :

Ψ(ρ, ζ, η) =

∞∫
0

dχJ0(χρ)
1√

a1 + iζ
e−χ
√

(a1+iζ)(a2−iη). (2.27)

The integration over χ is carried out using the identity (6.611.1) in
Ref. 90 to obtain

ΨSP (ρ, z, t) =
1√

a1 + iζ

{
ρ2 + (a1 + iζ)(a2 − iη)

}−1/2
. (2.28)

This is the splash pulse corresponding to q = 1/2 . When the spec-
trum (2.26) is substituted in Eq. (2.25), but the order of integration
is reversed, the integration over χ can be carried out using formula
(6.62) in Ref. 90, yielding

ΨSP (ρ, z, t) =

∞∫
0

dβ̄
1
β̄2

ΨPXW (ρ, z − ν(β̄)t; β̄). (2.29)

This shows that the splash pulse (2.28) can be derived as a superposi-
tion of Legendre X-wave defined as
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ΨPXW (ρ, z, t) =
1{(

Λ(β̄) + iγ(β̄)(z − ν(β̄)t)
)2

+ ρ2

}3/4

· P 0
1/2




(
Λ(β̄) + iγ(β̄)(z − ν(β̄)t)

)
√(

Λ(β̄) + iγ(β̄)(z − ν(β̄)t)
)2

+ ρ2




(2.30)

where P 0
1/2 is an associated Legendre function of the first kind and

Λ(β̄) = (a1/4β̄2) + a2β̄ . The pulsed solution given in Eq. (2.30) is
nondispersive and its center travels at the superluminal speed ν(β̄) =
c(1 + 4β̄4)/(1− 4β̄4) with γ(β̄) = (1− 4β̄4)/4β̄2 .

The analysis presented in this section shows that apparently two
disparate types of solutions exhibit fundamental congruencies. There
are no fundamental differences between the FWM-type and the X-
wave-type LW solutions. It appears, however, that the most natural
representation of the former is in terms of the characteristic variables
η and ζ , while it is more natural to utilize the superluminal boost
variables σ and τ in the latter case. Finite energy LW solutions can
be derived using either of the two representations. Before applying the
procedure derived here to obtain new finite energy LW solutions, we
would like to elaborate on the origin of the boost variables. In the
following section, we will utilize the Lorentz invariance of the wave
equation to generate new LW solutions.

3. THE INVARIANCE OF SOLUTIONS TO THE WAVE
EQUATION

The boost variables entering into the subluminal and superluminal
fundamental representations given in Eqs. (2.15) and (2.19), respec-
tively, ensue from the invariance of the wave equation under general-
ized Lorentz transformations, viz.,

ct→ τ̄ = γ̄(ct− (ν/c)z), z → σ̄ = γ̄(z − νt),
y → y and x→ x for ν < c. (3.1.a)

and
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ct→ τ = γ(νt− z), z → σ = γ((ν/c)z − ct),
y → y and x→ x for ν > c. (3.1.b)

The knowledge of this invariance property facilitates the derivation of
various LW waves.

3.1 General Boost Representations

Consider the Fourier-Bessel transform of the scalar wave equation,
viz.,

(
∂2

∂z2
− 1

c2
∂2

∂t2
− χ2

)
ψ̃(χ, z, t) = 0, (3.2)

which is an (1+1) Klein-Gordon equation. This equation has elemen-
tary solutions of the form

ψ̃e(χ, z, t) = Φ(χ, κ, λ)eiκzeiλct, (3.3)

as long as the condition λ2 − κ2 − χ2 = 0 is satisfied. From the
Lorentz invariance of the scalar wave equation, we know that boosted
solutions still satisfy the same equation. Consequently, using either of
the transformations (3.1.a) or (3.1.b) to boost ψ̃e(χ, z, t) given in Eq.
(3.3) yields a new elementary solution to Eq. (3.2). The evaluation
of the inverse Hankel transform of the boosted elementary function,
followed by a superposition over all values of κ and λ , yields the gen-
eral subluminal and superluminal representations given in Eqs. (2.15)
and (2.19), respectively. A large number of new LW solutions may be
derived following this path. In the following, we will present a few ex-
amples demonstrating the facility provided by the invariance principle
in generating exact LW solutions.

3.2 X-Wave Superpositions Arising from Boosts of Solutions
to the 2-D Wave Equation

Consider solutions to Eq. (3.2) that are independent of z ; the latter
obey the (1 + 2) transformed wave equation

(
− 1
c2

∂2

∂t2
− χ2

)
ψ̃(χ, t) = 0. (3.4)
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An elementary solution to Eq. (3.4) is ψ̃e(χ, t) = Φ̃(χ) exp(iχct) . Ap-
plying the inverse Hankel transform to this solution, we obtain

ψ(ρ, t) =

∞∫
0

dχχJ0(χρ)eiχctΦ̃(χ). (3.5)

A superluminal boost ct→ γ(νt− z) yields the X-wave type superpo-
sition; specifically,

Ψ(ρ, z, t) =

∞∫
0

dχχJ0(χρ)e−iγχ(z−νt)Φ̃(χ).

The subluminal transformation (3.1.a) results in a similar expression
representing a pulse traveling with (c2/ν) > c . Different choices of
the spectrum Φ̃(χ) give various types of infinite energy X-wave type
solutions. Examples of these exist in the literature and have been
discussed briefly in Sec. 2. In closing, we would like to point out that
our work in this subsection provides a fundamental explanation for the
procedure followed recently by Lu, Zou, and Greenleaf [65] in deriving
a superluminal X-wave superposition.

3.3 Localized Waves Arising from Boosts of Solutions to the
3-D Laplace Equation

Consider, next, solutions to Eq. (3.2) that are independent of t . In
this case, we have the reduced equation(

∂2

∂z2
− χ2

)
ψ̃(χ, z) = 0. (3.6)

An elementary solution to this equation is given by ψ̃e(χ, z) = Φ̃(χ)
exp(±χz) for ∓z > 0 . The inverse Hankel transformation gives the
following solution to the 3-D Laplace equation:

ψ(ρ, t) =

∞∫
0

dχχJ0(χρ)e±χzΦ̃(χ), for∓ z > 0. (3.7)

The subluminal boost z → γ̄(z − νt) yields a solution to the scalar
wave equation in the form of a Laplace-type superposition; specifically,

Ψ(ρ, z, t) =

∞∫
0

dχχJ0(χρ)e±γ̄χ(z−νt)Φ̃(χ), for ∓ (z−νt) > 0. (3.8)
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A large number of closed-form solutions may be derived using a Laplace
transform table. As an example, we use the spectrum

Φ̃(χ) =
1
χ
e−χ(a1+ia2) (3.9)

to obtain

Ψ(ρ, z, t) =

∞∫
0

dχJ0(χρ)e−χ(a1+ia2±γ̄(νt−z)). (3.10)

The integration over χ gives the following solution:

Ψ(ρ, z, t) =




1(
ρ2 + (a1 + ia2 + γ̄(νt− z))2

)1/2 , for (νt− z) > 0

1(
ρ2 + (a1 + ia2 + γ̄(z − νt))2

)1/2 , for (z − νt) > 0

(3.11)
This solution is valid under the following restriction. Eq. (3.10) re-
quires Re{a} > 0 , with a = a1 + ia2± γ(νt− z) . Then, in Eq. (3.11),
the value of the square root should be taken that obeys the constraint
|a + (a2 + ρ2)1/2| > ρ . Plots of this solution are shown in Fig. (4) for
different values of the parameters a1 , a2 and (ν/c) . The main char-
acteristic of this field is that the peak of the pulse (3.11) does not occur
on the axis (ρ = 0) . Instead, the part of the propagating field acquir-
ing higher intensities forms a cylindrical ring. The transverse radius
of this ring is dependent on a2 , while its length along the direction
of propagation increases as (ν/c) becomes smaller. These effects are
illustrated in Figs. (4.a–c). Comparing Figs. (4.a) and (4.b) we note
that for (ν/c) = 0.9 the pulse is much longer than for (ν/c) = 0.9999 .
Furthermore, the annular ring thins out in the transverse direction, as
it becomes longer. In Fig. (4.c), it is shown that the radial position of
the annular ring becomes larger than in Fig. (4.a) when a2 is increased
to the value 2.5× 10−2 m.

The Hankel representation given in Eq. (3.7) is a solution to the
3-D Laplace equation. This means that boosting other solutions to
the Laplace equation leads to functions satisfying the 3-D scalar wave
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(a) a1 = 10−5 m, a2 = 10−2 m, ν/c = 0.9999 .

(b) a1 = 10−5 m, a2 = 10−2 m, ν/c = 0.9 .

Figure 4(a-b). Surface plot of the real part of the subluminal LW
pulse given in Eq. (3.11).
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(c) a1 = 10−5 m, a2 = 2.5× 10−2 m, ν/c = 0.9999 .

Figure 4(c). Surface plot of the real part of the subluminal LW pulse
given in Eq. (3.11).

equation. Consider, for example, the following asymmetric solution to
the Laplace equation derived by Ziolkowski and Donnelly [43]:

Ψ(x, y, z) =
1

(z0 + z + iy)1/2
e−β0x2/(z0+z+iy)e−β0(z−iy),

for β0, z0 > 0. (3.12)

Applying a subluminal boost in the z -direction, viz., z → γ̄(z − νt) ,
yields the following solution to the 3-D wave equation:

Ψ(�r, t) =
1

(z0 + γ̄(z − νt) + iy)1/2
e−β0x2/(z0+γ̄(z−νt)+iy)e−β0(γ̄(z−νt)−iy),

for β0, z0 > 0. (3.13)

3.4 Localized Waves Arising from Boosts of the 3-D
Helmholtz Equation

In this subsection, we shall obtain LW solutions to the 3-D scalar
wave equation by boosting, either subluminally or superluminally,
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known stationary solutions of the 3-D Helmholtz equation. Analo-
gous work along these lines has been undertaken previously [cf. e.g.,
Ref. 49].

We consider the cases of monochromatic solutions to the 3-D wave
equation; specifically,

Ψ(ρ, z, t) = φ(ρ, z)eiλct. (3.14)

The function φ(ρ, z) obeys the Helmholtz equation(
∇2
T +

∂2

∂z2
+ λ2

)
φ(ρ, z) = 0. (3.15)

A specific solution to this equation is given by

φ(ρ, z) =
sin

(
λ
√

ρ2 + z2
)

√
ρ2 + z2

. (3.16)

As a consequence, substituting the function (3.16) in Eq. (3.14) and
boosting the resulting stationary solution subluminally, we obtain Mac-
Kinnon’s nondispersive wave packet [89]

Ψ(ρ, z, t) =
sin

(
λ
√

ρ2 + γ̄2(z − νt)2
)

√
ρ2 + γ̄2(z − νt)2

eiλγ̄(ct−(ν/c)z). (3.17)

This solution consists of a localized envelope moving at a sublumi-
nal speed multiplied by a plane wave modulation traveling with a
superluminal velocity. The envelope of this solution can be written

as j0

(
λ
√

ρ2 + σ̄2

)
, the zeroth order spherical Bessel function of the

first kind. This solution can be generalized to a superposition of all
spherical modes jl(R)Ylm(θ, ϕ) , where Ylm(θ, ϕ) are the spherical har-
monics.

4. FINITE ENERGY LOCALIZED WAVES

Traditionally, finite energy LW solutions have been derived using two
distinct methods. The first is based on a superposition over particular
classes of infinite energy LW solutions. Such a superposition is con-
structed by integrating over one of the free parameters appearing in
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the LW solutions. An example of this procedure is the derivation of
the MPS pulse [cf. Eq. (2.8)] by means of a weighted superposition of
the basis functions ΨFWM (�r, t;β) that depend on the free parameter
β . The second approach exploits the fact that exact infinite energy
LW solutions are nonsingular. Their infinite energy content is a conse-
quence of their boundless extension; i.e., their energy density is finite
but space-time is infinite. Consequently, such LW solutions are well
behaved on any 2-D surface. For example, infinite energy LW fields
on the source plane z = 0 are nonsingular and well behaved but their
power content does not diminish in time. To obtain planar sources
capable of radiating finite energy LW pulses, one can simply time limit
the excitation wavefields on the 2-D source plane. This can be done
by choosing a suitable time window. This method has been used to
derive integral representations of finite time LW solutions [61–64, 69–
73, 85–87]. It allows one to work directly with the Fourier spectral
content of the initial excitation of a finite energy LW pulsed field. Ear-
lier studies of the generation and propagation of finite time LW and
X-wave solutions have demonstrated that they all have unique spa-
tial and temporal spectral structures. Furthermore, it has been shown
that the nature of the spectral depletion of LW pulses, as they travel
away from their source plane, is different from that of other broadband
pulses and quasi-monochromatic signals.

The two approaches discussed in the preceding paragraph are tan-
tamount to introducing some distribution around the conjugate vari-
able frozen by the delta functions appearing in the singular spectra of
infinite energy LW pulsed solutions. Consider, for example, the sin-
gular spectra given in Eqs. (2.4) and (2.20). In the former case, the
Dirac delta function restricts the characteristic variable η to appear
only as a phase factor; as a consequence, the localized envelope of the
FWM solution depends solely on the other characteristic variable ζ
and propagates along this characteristic without any dispersion. The
same applies to the singular distribution δ(κ) appearing in the spec-
trum given in Eq. (2.20). Since this spectrum restricts κ to be equal to
zero, the associated boost variable σ does not appear in the resulting
X-wave solution. It is clear from this discussion that allowing “frozen”
spectral parameters to spread over continuous ranges results in LW so-
lutions having envelopes dependent on both characteristic variables η
and ζ , or, alternatively, envelopes that are functions of the two boost
variables σ and τ . As they propagate in free-space, such solutions
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eventually decay beyond a certain range.
To clarify this issue, we start with the superluminal boost repre-

sentation given in Eq. (2.19). The introduction of the new variable
χ′ =

√
1 + (χ/κ)2 yields the expression

Ψ(ρ, σ, τ) =

+∞∫
−∞

dκ

∞∫
1

dχ′χ′J0

(
βρ

√
χ′2 − 1

)
e+iκσe+iκχ′τκ2Φ̃(χ′, κ).

(4.1)
Next, we choose the specific spectrum

Φ̃(χ′, κ) = φ(κ)e−a1κχ′/κ2χ′, a1 > 0, (4.2)

where φ(κ) is a well behaved function that allows for a spread in the
values of κ . The substitution of the spectrum (4.2) and the use of
identify (6.646) in Gradshteyn and Ryzhik [90] reduces the integral in
(4.1) to the following form:

Ψ(ρ, σ, τ) =

+∞∫
−∞

dκφ(κ)
1

κ
√

ρ2 + (a1 − iτ)2
e−κ
√
ρ2+(a1−iτ)2e+iκσ.

(4.3)
It is interesting to note that for the singular spectrum φ(κ) =
κ0δ(κ− κ0) we obtain a new infinite energy LW solution; specifically,

ΨFXW (ρ, z, t) =
1√

ρ2 + (a1 + iγ(z − νt))2

· e−κ0

√
ρ2+(a1+iγ(z−νt))2e+iκ0γ((ν/c)z−ct), (4.4)

where γ = 1/
√

(ν/c)2 − 1 > 0 and (ν/c) > 1 . This pulse combines
features appearing in both the X-wave and the FWM pulsed fields.
We choose to call it the Focused X-wave (FXW) pulse. It resembles
the X-wave, except that its highly focused central portion has a tight
exponential transverse localization in contrast to the loose algebraic
transverse dependence of the X-wave. This behavior results in X-wave-
type solutions with lower sidelobes, a property that can significantly
improve their resolution when applied to pulse echo techniques used in
medical imagine [47]. When compared with the FWM solution given
in Eq. (2.5), the FXW appears to have the same form. It consists of
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a dispersion-free envelope depending on the boost variable γ(z − νt)
multiplied by an oscillatory term, which is a function of the other
boost variable γ((ν/c)z − ct) . The FWM given in Eq. (2.5) has a
similar structure except that the envelope and the modulation factor
depend on the forward and backward traveling characteristic variables
(z − ct) and (z + ct) , respectively. Another common feature between
the FXW and FWM is that both regenerate periodically along the
axial z -direction. This can be seen from the surface plots of the FXW
shown in Figs. (5.a–e) for different distances νt = 2nπ(ν/c)/κ0 . From
the figures, it is seen that the FXW is localized at the center and has
tails similar to those of the FWM. Another feature is that the center
of the envelope of the FXW moves at superluminal speeds ν > c like
the X-wave. Figs. (5.a–e) show the periodic regeneration of the FXW
pulse at distances corresponding to n = 0 , 1/8 , 1/4 , 3/8 and 1/2 .
The length of the focused portion of the pulse depends on the ratio
ν/c . The pulse becomes larger as ν/c increases. The radius of the
FXW pulse is of the order of a1 .

The envelope and modulation of the FXW seem to be moving in the
same direction but at different speeds; however, the superposition (4.1)
indicates that this solution consists of forward and backward traveling
components. This feature is a prevailing property of all FWM-like so-
lutions. In contrast, the X-wave does not contain backward traveling
components because the δ(κ) term in the spectrum (2.20) eliminates
the modulation factor that depends on one of the boost variables. In
most situations, we would be interested in generating FXW pulses
that are predominantly moving in the forward direction. This can be
achieved by controlling the parameters appearing in the solution in
order to ensure that most of the spectral components contributing to
the pulse are moving in one direction. Along this vein, consider the
superposition (4.1) consisting of plane waves moving in the z -direction
with the χ′ –dependent speeds V (χ′) = c(1 − (ν/c)χ′)/((ν/c) − χ′) .
Spectral components in the regime (ν/c) > χ′ > 1 travel in the back-
ward direction. On the other hand, spectral components for which
χ′ > (ν/c) acquire positive V (χ′) values; i.e., they travel in the for-
ward direction. Since χ′ = 1 is the minimum value contributing to
the integration (4.1), values of ν larger but very close to c guarantee
that most of the spectral components are moving in the positive z -
direction. This condition ensures that a causally generated FXW pulse
is a close approximation to the exact pulsed solution given in Eq. (4.4).
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(a) νt = 0 m.

(b) νt = (π/4)× 70.71 m.

Figure 5(a-b). Surface plot of the real part of the superluminal Focus
X-Wave (FXW) pulse with parameters a1 = 1 m, κ0 = 10 m−1 ,
ν/c = 1.000001 .



Fundamental representations of localized waves 29

(c) νt = (π/2)× 70.71 m.

(d) νt = (3π/4)× 70.71 m.

Figure 5(c-d). Surface plot of the real part of the superluminal Focus
X-Wave (FXW) pulse with parameters a1 = 1 m, κ0 = 10 m−1 ,
ν/c = 1.000001 .
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(e) νt = π × 70.71 m.

Figure 5(e). Surface plot of the real part of the superluminal Focus
X-Wave (FXW) pulse with parameters a1 = 1 m, κ0 = 10 m−1 ,
ν/c = 1.000001 .

One should observe that Eq. (4.3) is a Laplace-type integral. As
a consequence, the use of a table of Laplace transforms to evaluate
(4.3) can generate a large number of finite energy LW solutions. As
an example of a finite energy LW solution derived as a superposition
over FXW solutions, we use a spectrum analogous to that of the MPS
pulse; specifically,

φ(κ) =
{

1
Γ(q)(κ− b)q−1e−a2(κ−b) for κ ≥ b,
0 for b > κ > 0,

(4.5)

where q, a2 > 0 . Substituting this spectrum in Eq. (4.3) and consult-
ing a Laplace transform table, we obtain the Modified Focused X-wave
(MFXW) finite energy solution
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ΨMFXW (ρ, z, t) =
1[√

ρ2 + (a1 − iτ)2 + (a2 − iσ)
]q

· 1√
ρ2 + (a1 − iτ)2

e−b
√
ρ2+(a1−iτ)2e+ibσ. (4.6)

Fig. (6) shows the real part of the MFXW pulse at νt = γ2nπ/b ,
with the parameter values a1 = 10−2 m, a2 = 10−3 m, (ν/c) =
1.0001 , q = 1 and b = 1 . One should note that this pulse has
the same X-shaped branches that characterize the X-wave. It is clear
that this pulse holds out to large distances before it starts decaying.
Furthermore, the focused envelope of the pulse does not undergo any
major deformation as it decays with distance.

To derive finite energy subluminal X-wave type solutions, one may
start with the subluminal boost superposition given in Eq. (2.15) and
proceed as in the superluminal case considered in the earlier part of this
section. Alternatively, one can start with any of the solutions derived
in Sec. 3 and use the invariance properties of the wave equation. An
interesting possibility is to consider finite energy solutions that are
weighted superpositions of MacKinnon’s nondispersive wave packets
given in Eq. (3.17), viz.,

Ψ(ρ, z, t) =

+∞∫
−∞

dλφ(λ)
sin

(
λ
√

ρ2 + γ̄2(z − νt)2
)

√
ρ + γ̄2(z − νt)2

eiλγ̄(ct−(ν/c)z). (4.7)

For the specific spectrum

φ(λ) =
e−a2λ

λ
Hs(λ), (4.8)

where Hs(λ) is the Heaviside unit step function, the integration over
λ can be carried out using entry (16) on p. 152 in Erdelyi [91]. The
final result is given as follows:

Ψ(ρ, z, t) =
1√

ρ2 + γ̄2(z − νt)2
arctan




√
ρ2 + γ̄2(z − νt)2(

a2 − iγ̄(ct− (ν/c)z)
)


.
(4.9)
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(a) νt = 0 m.

(b) νt = 100π × 70.71 m.

Figure 6(a-b). Surface plot of the real part of the superluminal Mod-
ified Focus X-Wave (MFXW) pulse with parameters b = 1 m−1 ,
a1 = 10−2 m, a2 = 103 m, and ν/c = 1.0001 .
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(c) νt = 500π × 70.71 m.

(d) νt = 2000π × 70.71 m.

Figure 6(c-d). Surface plot of the real part of the superluminal Mod-
ified Focus X-Wave (MFXW) pulse with parameters b = 1 m−1 ,
a1 = 10−2 m, a2 = 103 m, and ν/c = 1.0001 .
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This is a well behaved nonsingular solution representing a wavepacket
moving at a subluminal speed ν < c , but modified by the presence
of the second boost variable γ̄(ct − (ν/c)z) . This solution can be
made “almost undistorted” by choosing ν slightly smaller than c .
Plots of this new solution are shown in Fig. (7) for a2 = 0.1 m and
(ν/c) = 0.99999 at distances νt = 0 , 100, 500 and 2000 m. One should
note the resemblance of the decay of this pulse to that of the MS pulse
illustrated in Fig. (2). This pulse initially has a good localization. It
does not branch out in the manner that the X-wave or the FWM pulses
do. In addition, the pulse given in (4.9) is more focused at νt = 100
m than at the origin. This means that the pulse focuses a little before
it starts spreading out.

5. BEHAVIOR OF LW FIELDS ON THE SOURCE PLANE
z = 0

In this section, we would like to discuss some of the aspects related to
the behavior of the LW fields on a specific source plane. Toward this
goal, it is useful to introduce the following Fourier representation of
solutions to the scalar wave equation:

Ψ(ρ, z, t) =

+∞∫
−∞

dkz

+∞∫
−∞

dω

∞∫
0

dχχJ0(χρ)e+iωte−ikzz

· ΦF (χ, kz, ω)δ
(
(ω/c)2 − k2

z − χ2
)
. (5.1)

It has already been mentioned that one can transform the bidirec-
tional superposition given in Eq. (2.2) to the Fourier superposition
given in Eq. (5.1) using the change of variables α = ((ω/c) + kz) /2
and β = ((ω/c)− kz) /2 . Analogously, the subluminal and super-
luminal superpositions given in Eqs. (2.15) and (2.19), respectively,
can be transformed to the Fourier picture using the relations κ =
γ̄ ((ω/c)− kz(ν/c)) and λ = γ̄ ((ω/c)(ν/c)− kz) for the subluminal
representation, and κ = γ ((ω/c)− kz(ν/c)) and λ = γ((ω/c)(ν/c)
−kz) for the superluminal one. The Weyl representation, viz.,

Ψ(ρ, z, t) =

+∞∫
−∞

dω

∞∫
0

dχχJ0(χρ)e−i
√

(ω/c)2−χ2ze+iωtΦ̃F (χ, ω) (5.2)
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(a) νt = 0 m.

(b) νt = 100 m.

Figure 7(a-b). Surface plot of the real part of the subluminal pulse
given in Eq. (4.9) with parameters a2 = 0.1 m, and ν/c = 0.99999 .
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(c) νt = 500 m.

(d) νt = 2000 m.

Figure 7(c-d). Surface plot of the real part of the subluminal pulse
given in Eq. (4.9) with parameters a2 = 0.1 m, and ν/c = 0.99999 .
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follows from carrying out the integration over kz in Eq. (5.1). Using
the aforementioned connection between the Fourier and the boost spec-
tral variables, we can show that the Fourier spectrum of the infinite
energy X-wave pulse (2.23) has the following form:

Φ̃F (ω, χ) = δ(ω − γνχ)e−χa1/χ. (5.3)

To obtain finite energy X-waves, we can replace the Dirac delta func-
tion in (5.3) by a continuous Gaussian distribution. Specifically, we
choose

Φ̃F (ω, χ) = δ̂(ω − γνχ)e−χa1/χ, (5.4a)

where
δ̂(ω − γνχ) =

T√
π
e−T

2(ω−γνχ)2 . (5.4b)

Introducing this spectrum into expression (5.2), we have

Ψ(ρ, z, t) =
T√
π

+∞∫
−∞

dω

∞∫
0

dχχJ0(χρ)e−i
√

(ω/c)2−χ2ze+iωt

× e−T
2(ω−γνχ)2 e

−χa1

χ
. (5.5)

Suppose we consider this expression on the aperture plane z = 0 , viz.,

Ψ(ρ, 0, t) =
T√
π

+∞∫
−∞

dω

∞∫
0

dχχJ0(χρ)e+iωte−T
2(ω−γνχ)2 e

−χa1

χ
. (5.6)

Carrying out the integrations over ω and χ , we obtain

Ψ(0)
XW (ρ, 0, t) =

1

(ρ2 + (a1 − iγνt)2)1/2
e−t

2/4T 2
. (5.7)

This is just the infinite energy X-wave field at z = 0 , time-limited by
a Gaussian window.

One should note that any infinite energy X-wave type solution has
the form

Φ2(ρ, t) ≡ Ψ(ρ, 0, t) =

∞∫
0

dχχJ0(χ, ρ)e+iγνχtΦ̃(χ) (5.8)
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at the source plane z = 0 . This is a solution of the 2-D pseudo-
differential equation

−i 1
γν

∂

∂t
Ψ2(ρ, t) =

√
−∇2

TΨ2(ρ, t), (5.9)

which governs the complex analytical signal corresponding to the 2-D
scalar wave equation(

∇2
T −

1
(γν)2

∂2

∂t2

)
Ψ2(ρ, t) = 0. (5.10)

An important observation, then, is that the infinite energy X-wave field
restricted to the source plane z = 0 is a solution to the 2-D scalar wave
equation (5.10). This indicates that a spreading 2-D wave solution
propagates on the source plane with a velocity (γν) . This reflects the
dynamic character of the illumination of the plane of an X-wave source.
It must be emphasized that this behavior is a property only of infinite
energy pulses. A finite energy X-wave restricted to the source plane
[cf. Eq. (5.7)] is not necessarily a solution of the 2-D wave equation. In
most cases, the finite energy solution consists of an infinite energy 2-D
wave function multiplied by a time window. This window limits the
expansion of the 2-D illumination of the source plane and prevents it
from acquiring infinite extension. In Eq. (5.7) the time window is the
Gaussian exp(−t2/4T 2) . Another example is the finite energy solution
given in Eq. (4.6). It consists of a product of the infinite energy FXW

solution and the time window
[√

ρ2 + (a1 − iγνt)2 + (a2 + iγct)
]−q

.
The window in this case depends on the transverse radius ρ . This
means that distinct annular rings of the source plane are windowed
using different time functions.

In a similar fashion, we consider the behavior of FWM-like fields on
the source plane z = 0 . The infinite energy FWM pulse has the Weyl
representation

Ψ(ρ, z, t) =

+∞∫
−∞

dω

∞∫
0

dχχJ0(χρ)e−i
√

(ω/c)2−χ2ze+iωtΦ̃F (χ, ω),

(5.11a)
with the Fourier spectrum

Φ̃F (χ, ω) =
1
2β

e−(χ2/4β)a1δ
(
ω − c

((
χ2/4β

)
+ β

))
. (5.11b)
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The replacement of the Dirac δ function by a Gaussian function δ̂
[cf. Eq. (5.4b)] produces a finite energy solution. On the source plane
( z = 0 ), the finite energy field consists of the infinite energy FWM
multiplied by the time window exp(−t2/4T 2) . In contrast to the X-
wave infinite-energy solution, the FWM-like pulse restricted to the
source plane does not satisfy the 2-D scalar wave equation. Consider
the representation given in (5.11) on the plane z = 0 . After carrying
out the integration over ω , we obtain

Ψ2(ρ, t) ≡ Ψ(ρ, 0, t) =
1
2β

∞∫
0

dχχJ0(χρ)e+i((χ2/3β)+β)cte−χ
2(a1/4β).

(5.12)
This expression is a solution to the Schrödinger equation

−i1
c

∂

∂t
Ψ2(ρ, t) = − 1

2β
∇2
TΨ2(ρ, t) + βΨ2(ρ, t). (5.13)

As a consequence, the infinite energy FWM field on the source plane is
governed by a 2-D parabolic equation. This means that the dynamic
character of the illumination of the FWM aperture is that of a diffusion
field. This should be contrasted to the propagating 2-D fields associ-
ated with the planar illumination of the X-wave. These differences are
reflected also in the corresponding spatio-temporal spectral couplings.
The FWM pulse has a spatio-temporal coupling of the form ω ∝ χ2 ,
while for the X-wave we have ω ∝ χ . The former is basically the
dispersion relationship of a parabolic equation, while the latter is the
dispersion relation of a first-order hyperbolic equation. A possible ex-
tension of our analysis to new LW solutions is to work with a spectral
coupling of the form ω ∝ χn for n > 2 . This will lead to new classes
of infinite energy LW solutions for which the illumination of the source
planes obeys higher order 2-D partial differential equations.

6. CONCLUDING REMARKS

In this work we have studied two superpostions that are suitable for the
derivation of LW solutions to the scalar wave equation. The first uses
superpositions over products of plane waves moving in opposite direc-
tions along the characteristic variables (z − ct) and (z + ct) . This
bidirectional representation was introduced in an earlier publication
and has proved instrumental in advancing our understanding of the
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properties of FWM-like pulses. In this sequel, we have been guided by
our previous experience with the bidirectional representation towards a
new superposition. The latter uses products of plane waves propagat-
ing along the subluminal and superluminal boost variables. This new
superposition was motivated by the need to derive new closed-form
X-wave type solutions. We were able to extend our previous knowl-
edge of constructing FWM-like solutions to X-wave types because these
two classes of wavefields have more common features than differences.
They are both highly focused pulses embedded in extended background
fields having much lower intensities. The closed-form infinite energy
X-wave and FWM pulses have similar spectral structures. Both are
characterized by a Dirac delta function that couples their spatial and
temporal spectral variables. To obtain finite energy X-wave and FWM
pulses, the sharp delta function is smeared. The resulting decay in
the amplitudes of the propagating wavefields is caused by a distinctive
spectral depletion mechanism shared by the two types of pulses.

The boost representations presented in this paper are based on the
Lorentz invariance of the wave equation. This implies that our tech-
nique can be easily extended to other Lorentz invariant equations; e.g.,
the Klein-Gordon or Maxwell’s equations. We have elaborated on the
use of superluminal and subluminal Lorentz transformations to derive
LW solutions to the scalar wave equation by boosting known solutions
of other equations. Elementary solutions derived by such a procedure
can be superimposed over different spectral distributions to yield a
variety of closed- form infinite and finite energy solutions. Several of
these have been deduced and their properties have been discussed. It
has been shown that the envelope of an infinite energy LW pulse, de-
rived in this manner, depends only on one of the two boost variables.
On the other hand, a finite energy pulse is a nonseparable function
of the two boost variables. This is analogous to the properties of LW
pulses derived using the bidirectional representation. In this case, the
envelope of an infinite energy pulse depends on one of the two charac-
teristic variables (z − ct) or (z + ct) , while a finite energy solution is
a nonseparable function of these two quantities.

The two superpositions studied in this work provide a natural frame-
work for deriving novel LW solutions and subsequently deduce their
Fourier spectra. The latter is an important step because ultimately
one needs to link the Fourier spectral properties of the LW pulses to
the physical characteristics of the sources generating them. In ad-
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dition, a study of the depletion of the spectral components provides
insight into the propagation characteristics of the LW pulses.

The main thrust of our work has not been to investigate the de-
tails of the applicability of the deduced solutions in specific fields. In-
stead, we have attempted to present a simple and coherent procedure
that can be efficiently used to deduce new LW pulses and to comment
briefly on their general properties. The strength of our approach is not
based only on retrodiction, that is the deduction and categorization of
already-known solutions. Our approach has an extraordinary power of
prediction. This power is made evident in this paper by the system-
atic derivation of a number of new LW solutions. Two of these are
finite energy X-wave type of solutions [e.g., Eqs. (4.6) and (4.9)]. To
the best of our knowledge these are the first closed-form expressions
deduced for finite energy LW pulses of this kind. We anticipate that
such new solutions can be studied individually and that detailed fu-
ture comparisons can lead to more insights concerning possible fields
of application. Specifically, we hope that certain features exhibited by
these pulses can be beneficial to the advancement of the applicability
of LW pulses.

The generation of LW pulses may be understood as a result of an
initial illumination of an aperture plane. On such a source surface, the
power of the initial excitation of an infinite energy LW pulse is always
finite. The energy becomes infinite because the aperture is illumi-
nated for an infinite period of time. To obtain finite energy LW pulses
one may turn off the illumination field at a certain time. This proce-
dure has been studied in previous publications [61–64, 69–73, 85–87].
However, in this paper we have investigated the behavior of the illumi-
nation fields on the generating aperture. We have shown, specifically,
that whereas the infinite energy FWM on the source plane obeys a
2-D parabolic Shrodinger-like equation, the X-wave obeys a 2-D scalar
wave equation. This is a consequence of their specific spatio-temporal
spectral couplings. Finite energy solutions obtained by smearing the
spectral delta functions consist of two terms. One is still a solution
of the 2-D parabolic or the 2-D scalar wave equation, while the other
represents a time window that ultimately turns off the power of the
illumination wavefield.
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