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1. INTRODUCTION

Much attention has been focussed on the aperture coupled microstrip
antenna since its introduction by Pozar [1]. So far, moment method
techniques based on the spectral domain approach [2, 3] have been used
to deal with the problem. Although these methods generate accurate
results, the enormous computational effort required renders them im-
practical in an actual design environment. In this paper, a mixed po-
tential integral equation (MPIE) approach is developed to analyze the
aperture coupled microstrip patch antenna. The method is basically
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an extension of [4] to an aperture coupled geometry. The problem is
formulated as three coupled integral equations in the spatial domain as
opposed to the electric field integral equations in [2]. In order to avoid
the formidable numerical task of evaluating the Sommerfeld integrals,
closed-form Green’s functions [5,6] are employed. The result is a great
increase in the overall computation speed while the comprehensiveness
of the analysis is maintained.

In [5–7], the closed-form Green’s functions for the potentials of an
horizontal electric dipole (HED) are derived. Using the same tech-
niques, the closed-form expressions are similarly derived for the poten-
tials of an horizontal electric dipole (HMD) and the associated coupled
fields.

2. FORMULATION

The geometry (Fig. 1) is essentially similar to that of [2] except in
our formulation the length of feedline is finite. The space above and
below the ground plane ( z = 0 ) which are the microstrip structure
for the radiating antenna and the feedline are denoted as region 1
and 2 respectively. The thickness of the substrate in these respective
regions are denoted as h1 and h2 . The excitation current and induced
current on the feedline are denoted Je and Jf ; Jp is the induced
current on the patch. Using the equivalence principle, the x -directed
E field in aperture can be short circuited and replaced by magnetic
surface currents Map just above and below the ground plane. If the
aperture and feedline have their width much smaller than the operating
wavelength, then we can assume the currents flowing on them are only
directed along their lengths. To maintain the continuity of tangential
electric field through the aperture, we have M(1)

ap = −M(2)
ap = −Map =

−ŷMap .
The total fields in each region can be written as the sum of the

scattered and excitation fields due to the corresponding potentials:

E(1)
tot = E(1)

A (Jp) + E(1)
F (Map) (1)

H(1)
tot = H(1)

A (Jp) + H(1)
F (Map) (2)

E(2)
tot = E(2)

A (Jf ) + E(2)
F (Map) + Ee(2)

A (Je) (3)

H(2)
tot = H(2)

A (Jf ) + H(2)
F (Map) (4)
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(a)

(b)

Figure 1. Geometry of aperture coupled patch antenna. (a) Top view
(b) Side view.
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where EA , HA , EF , and HF (the superscript denotes the region
considered) are the fields due the corresponding potentials in each re-
gion; Ee is the excitation electric field in region 2. These are written
as

EA = −jωA−∇V (5)
EF = −(1/ε)∇× F (6)
HA = (1/µ0)∇×A (7)
HF = −jωF−∇Vm (8)

where A is the magnetic vector potential, V is the electric scalar
potential, F is the electric vector potential, and Vm is the magnetic
scalar potential.

2.1 Green’s Functions

The vector and scalar potentials are in turn expressed as convolution
integrals of the induced current and charge distributions with the cor-
responding Green’s function:

A(r|r′) =
∫
S0

GA(r|r′) · J(r′)dS′ (9)

V(r|r′) =
∫
S0

Gv(r|r′)q(r′)dS′ (10)

F(r|r′) =
∫
S0

GF (r|r′) ·M(r′)dS′ (11)

Vm(r|r′) =
∫
S0

GVm(r|r′)qm(r′)dS′ (12)

where GA and GF are the dyadic Green’s functions of Sommerfeld’s
choice [8].

In the above expressions the electric (magnetic) charge density is re-
lated to the electric (magnetic) current density through the continuity
equation for electric (magnetic) current.
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2.2 Mixed Potential Integral Equations

The mixed potential integral equations can be obtained by enforcing
the boundary conditions such that the total electric fields vanish on the
electric conductors and that the magnetic field is continuous through
the aperture. Allowing for some ohmic losses on the conductors by
assuming that the surface impedance for the patch and feedline are
both Zs , the following three coupled MPIEs are obtained:

1) On the patch in region 1 (z = h1)

ẑ ×
(
−jω

∫
Sp

G
(1)

A · JpdS
′ −∇

∫
Sp

G(1)
v ρpdS

′ − ZsJp

+(1/ε1)
∫

Sap

Gxy(1)
EM ·MapdS

′
)

= 0 (13)

2) On the feedline in region 2 (z = −h2)

ẑ ×
(
−jω

∫
Sp

G
(2)

A · JfdS
′ −∇

∫
Sp

G(2)
v ρfdS

′ − ZsJf

−(1/ε2)
∫

Sap

Gxy(2)
EM ·MapdS

′ + Ee

)
= 0 (14)

3) In the aperture (z = 0)

ẑ×
(

+jω

∫
Sap

G
(1)

F ·MapdS
′ −∇

∫
Sap

G
(1)
Vm

ρ(1)
map

dS′

− (1/µ0)
∫
Sp

Gyx(1)
HJ JfdS

′
)

= ẑ×(−jω
∫

Sap

G
(2)

F ·MapdS
′ −∇

∫
Sap

G
(2)
Vm

ρ(2)
map

dS′

− (1/µ0)∇×
∫
Sf

Gyx(2)
HJ JfdS

′) (15)
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and Gyx
HJ = −Gxy

EM . These are the Green’s functions for the associated
coupled fields in the region considered and can be expressed as

Gxy
HJ =

1
µ0

[
∂Gxx

A

∂z
− ∂Gzx

A

∂x

]
z=0, z′=h

(16)

If all the other boundary conditions are satisfied by the Green’s func-
tions, the problem is fully formulated by the above three mixed po-
tential integral equations which can be solved for the various unknown
surface currents.

2.3 Method of Moments

The moment method is applied to solve the integral equations (13)–(15)
and the approach is similar to [4] where the rooftop basis function and
razor test functions are used. In a similar manner, the patch, feedline
and the aperture are divided into charge cells. Let there be M and
N electric current cells on the patch x and y direction respectively,
P electric current cells on the feedline (in the x -direction), and Q
magnetic current cells on the aperture (in y -direction). The electric
currents on the feedline and patch, and the magnetic currents on the
aperture are expanded over a set of rooftop basis functions as

Jf = x̂
1
wf

P∑
j=1

If xjTfx(r− rxj) (17)

Jp = x̂
1
wp

M∑
j=1

Ip xjTpx(r− rxj) + ŷ
1
lp

N∑
j=1

IpyjTpy(r− ryj) (18)

Map = ŷ
1

wap

Q∑
j=1

KapyjTap y(r− ryj) (19)

where If xj , Ipxj(Ipyj) and Kapyj are corresponding current coeffi-
cients; rxj and ryj are the vectors denoting the centre of the corre-
sponding current cells.

The rooftop basis function Tx(Ty) is given by:

Ts(r) =
{

1− |x|/l |x| < l, |y| < w
2

0 elsewhere
(20)
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where s = x or y , and w is the width and l is the length of the
charge cell considered.

By the continuity equations for electric and magnetic current densi-
ties, the associated electric and magnetic charge densities are obtained
as follows:

qf =
1

jωwf lf

P∑
j=1

If xj [Πf (r− r+
xj)−Πf (r− r−xj)] (21)

qp =
1

jωwplp

{ M∑
j=1

Ip xj [Πp(r− r+
xj)−Πp(r− r−xj)]

+
N∑

j=1

Ipyj [Πp(r− r+
yj)−Πp(r− r−yj)]

}
(22)

qmap =
1

jωwaplap

Q∑
j=1

Kapyj [Πap(r− r+
yj)−Πap(r− r−yj)] (23)

where Π is a two dimensional unit pulse function and r+
xj , r−xj , r+

yj

and r−yj are the vectors denoting the centre of the corresponding charge
cells.

To simplify the notation, we introduce the discrete Green’s functions
relating to the potentials and fields based on the basis functions defined
above. From [4], we have:

Γxx
A (r|rxj) =

1
µ0ko

∫
Sxj

Gxx
A (r|r′)Tx(r|r′)(k2

0dS
′) (24)

ΓV (r|rxj) =
ε0
k0

∫
S0j

GV (r|r′)Π(r′ − r0j)(k2
0dS

′) (25)

In addition, we define the discrete Green’s functions electric vector
potential and magnetic scalar potential as:

Γyy
F (r|ryj) =

1
εk0

∫
Sapyj

Gyy
F (r|r′)Ty(r′ − ryj)(k2

0dS
′) (26)

ΓVm(r|ryj) =
µ0

k0

∫
Sap 0j

GVmq(r|r′)Π(r′ − r0j)(k2
0dS

′) (27)
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with Sapyj(Sap0j) is the area of the aperture current (charge) cell.
For the coupled fields Gyx

HJ and Gxy
EM another two notations are

introduced

Γyx
HJ(r|ryj) =

∫
Sxj

Gyx
HJ(r|r′)Tx(r′ − rxj)dS′ (28)

Γxy
EM (r|ryj) =

∫
Sapyj

Gxy
EM (r|r′)Ty(r′ − ryj)dS′ (29)

Given the above surface current and charge distributions (21)–(23),
we obtain the resultant potentials as the superposition integrals of the
corresponding Green’s function. Substituting into coupling equations
(13)–(15) and applying the razor test function on each current cell, we
obtained the following matrix equations:

1) [Z(1)
p ][I(1)

p ]− [T (1)
ap ][Kap] = 0 (30)

2) [Z(2)
f ][I(2)

f ] + [T (2)
ap ][Kap]− [V e(2)] = 0 (31)

3) [C(1)
p ][I(1)

p ]− [Y (1)
ap ][Kap] = [C(2)

f ][I(2)
f ] + [Y (2)

ap ][Kap] (32)

The matrices and their elements are defined as follows:

a) [Z(1)
p ] - the (M +N)× (M +N) impedance matrix of the patch.

z
xx(1)
pij =

jZ0

k2
0wplp

[
Γ(1)

V (r+
xi|r+

xj)− Γ(1)
V (r+

xi|r−xj)

− Γ(1)
V (r−xi|r+

xj) + Γ(1)
V (r−xi|r−xj)

]
(33a)

− jZ0

wp

∫
Cpξ

Γxx(1)
A (rxi|rxj)dx− Zs

lp
wp

σij

z
xy(1)
pij =

jZ0

k2
0wplp

[
Γ(1)

V (r+
xi|r+

yj)− Γ(1)
V (r+

xi|r−yj)

− Γ(1)
V (r−xi|r+

yj) + Γ(1)
V (r−xi|r−yj)

]
(33b)

Similar expression is obtained for z
yy(1)
pij , and it is also noted that

z
xy(1)
pij = z

yx(1)
pij .
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b) [Z(2)
f ] - the P × P impedance matrix of the feedline.

z
xx(2)
fij =

jZ0

k2
0wf lf

[
Γ(2)

V (r+
xi|r+

xj)− Γ(2)
V (r+

xi|r−xj)

− Γ(2)
V (r−xi|r+

xj) + Γ(2)
V (r−xi|r−xj)

]

− jZ0

wf

∫
Cfxi

Γxx(2)
A (rxi|rxj)dx− Zs

lf
wf

σij

(34)

c) [Y (k)
ap ] - the Q×Q admittance matrix of the aperture in region 1

or 2 (k = 1 or 2).

y
yy(k)
apij =

jY0

k2
0waplap

[
Γ(k)

Vm
(r+

yi|r+
yj)− Γ(k)

Vm
(r+

yi|r−yj)

− Γ(k)
Vm

(r−xi|r+
xj) + Γ(k)

Vm
(r−xi|r−xj)

]

− jY0

wap

∫
Capyi

Γyy(k)
F (ryi|ryj)dy (35)

d) [C(1)
p ] - the Q× (M + N) transfer matrix of the patch.

c
(1)
pij =

1
wp

∫
Capyi

Γyx(1)
HJ (ryi|rxj)dy (36)

e) [C(2)
f ] - the Q× P transfer matrix of the feedline.

c
(2)
fij =

1
wf

∫
Capyi

Γyx(2)
HJ (ryi|rxj)dy (37)

f) [T (1)
ap ] - the P ×Q transfer matrix of the aperture in region 1.

t
(1)
apij =

1
wap

∫
Cfxi

Γxy(1)
EM (rxy|ryj)dx (38)

g) [T (2)
ap ] - the (M + N) × Q transfer matrix of the aperture in

region 2.
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t
(2)
apij =

1
wap

∫
Cpxi

Γxy(1)
EM (rxy|ryj)dx (39)

where Cfxi , Cpxi(Cpyi) , and Capyi are the test segments of the cor-
responding current cells.

The excitation model of [4] can be similarly applied by placing the
excitation current distribution over the charge cell located at the end
of the feedline. We obtain the excitation vector [V (1)

e ] as

ve
xi =

jZ0

k2
0ab

[ΓV (r+
xi|re)− ΓV (r−xi|re)] (i = 1 . . . P ) (40)

Solving the matrix equations yields the unknown current vector as:

[Kap] =
[C(2)

f ][Z(2)
f ]−1[V (2)

e ]

[Y (1)
ap ] + [Y (2)

ap ]− [C(1)
p ][Z(1)

p ][T (1)
ap ]− [C(2)

f ][Z(2)
f ][T (2)

ap ]
(41)

[I(1)
p ] =[Z(1)

p ]−1[T (1)
ap ][Kap] (42)

[I(2)
f ] =− [Z(2)

f ]−1
{

[T (2)
ap ][Kap]− [V (2)

e ]
}

(43)

where [Kap] = [K(1)
ap ] = [K(2)

ap ] .
The numerical calculation involved in solving for these current vec-

tors is still a formidable task. In order to increase the computation
speed, approximations for the surface and line integrals (as in [4]) can
be applied to the above matrix elements when the source and field
distance is sufficiently large. Since the coupling effect is dominated by
the coupled fields in the vicinity of the aperture, the associated ma-
trix elements of the coupling matrices with large source and field can
effectively be neglected.

3. RESULTS

3.1 Results for Green’s Functions

To confirm the valid use of the closed-form Green’s functions in our
algorithm, the accuracy of the relevant Green’s functions in (13)–(15)
are tested. Before the moment method is applied, the computed results



MPIE analysis of a microstrip patch antenna 239

Figure 2. Magnitude of magnetic vector potential and electric scalar
potential vs. radial distance from field to source (Operating frequency:
5 GHz). Substrate parameters: h = 1.524 mm, εr = 2.54 .

for the Green’s functions evaluated by straight numerical integration
of the Sommerfeld integral and the closed-form Green’s functions are
compared. For Gxx

A and GV , where the source and field positions are
both on the dielectric surface, the closed-form expressions are given in
[5]. Numerical results are shown in Fig. 2 for a given substrate.

For Gyy
F and GVm , where the source and field positions are both

on the aperture, closed-form expressions can be obtained using the
procedure of [6] in which the Green’s functions in the spectral domain
are expressed in terms of transmission coefficients and the incident and
reflected fields. Numerical results are shown in Fig. 3.

To obtain the closed-form approximation for Gyx
HJ(Gyx

EM ) , we treat
the two differential terms of (16) separately. By differentiating with
respect to z all the field components of Gxx

A in the spatial domain, a
closed-form for ∂Gxx

A /∂z can be obtained. On the other hand, Gzx
A

can not be expressed in terms of incident and reflected fields and thus
the extraction of the various field components is not possible. Fortu-
nately, the curve of Gzx

A decays rapidly in the spectral domain which
allows us to make an exponential approximation of the integrand for
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Figure 3. Magnitude of electric vector potential and magnetic scalar
potential vs. radial distance from field to source (Operating frequency:
5 GHz). Substrate parameters: h = 1.524 mm, εr = 2.54 .

Figure 4. Magnitude of Green’s functions relating to the coupled fields
vs. radial distance from field to source (Operating frequency: 5 GHz).
Substrate parameters: h = 1.524 mm, εr = 2.54 .
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Figure 5. Smith chart plot of input impedance of the aperture coupled
patch antenna. Antenna parameters: εrl = 2.54 , h1 = 1.524 mm,
Lp = 18 mm, Wp = 15 mm, xos = 0 mm, yos = 0 mm, Lap = 9
mm, Wap = 0.5 mm, εrl = 2.54 , h1 = 1.524 mm, Lf = 55 mm,
Wf = 1.2 mm, Ls = 10 mm, (tan δ1 = tan δ2 = 0.001) . No. of cells
on feedline = 55. Frequency range: 4.5 GHz–5.0 GHz (0.5 GHz step).
− − Measured - - ◦ - - Calculated

Gzx
A with reasonable accuracy and a closed-form approximation can

similarly be obtained for ∂Gzx
A /∂dx . Fig. 4 shows the numerical re-

sults for these two Green’s functions. It is observed that the closed-
form results for ∂Gzx

A /∂dx is less accurate than the other Green’s
functions. However, this has only negligible effect on the accuracy of
our overall results because the coupled field is more dominated by the
term ∂Gxx

A /∂z .
From these curved, we notice that accuracy of the closed-form

Green’s functions begin to break down as the distance between source
and field points exceeds certain limits; this was pointed out in [7].
However, this error has only insignificant effects on our overall result
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Figure 6. Smith chart plot of input impedance of the aperture coupled
patch antenna. Antenna parameters: εrl = 2.54 , h1 = 1.524 mm,
Lp = 18 mm, Wp = 15 mm, xos = 0 mm, yos = 0 mm, Lap = 8
mm, Wap = 0.5 mm, εrl = 2.17 , h1 = 0.787 mm, Lf = 55 mm,
Wf = 1.2 mm, Ls = 10 mm, (tan δ1 = tan δ2 = 0.001) . No. of cells
on feedline = 58. Frequency range: 4.6 GHz–5.1 GHz (0.5 GHz step).
− − Measured - - ◦ - - Calculated

because in reality the size of antenna structure is such that the source-
field distance always lies within the range of accurate approximations.

3.2 Results for Input Impedance

In our analysis the reference plane is at the center of the excitation cell
which is located at the end of the feedline, so that it is not appropriate
to compare our theoretical results with those of [2, 3] which assume the
feedline is of infinite length. Two antennas with operating frequency
of about 5 GHz were tested. Measurements were taken by a HP8510C
network analyser. In these tests the numbers of charge cells on the
patch in x and y directions are 9 an 7 respectively with 5 charge
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cells on the aperture. Fig. 5 and Fig. 6 show on the Smith chart
plots of the two antennas. The antenna’s substrates for the radiating
patch and feeding network are the same in the first case, and different
in the second. It can be seen that the calculations agree very well
with measurements with only a slight shifts in the prediction resonant
frequency. Numerical convergence test on our algorithm has shown
that the rate of convergence of resonant frequency against the number
of basis functions in x -direction is relatively slow, and the predicted
resonant frequency converges to the measured value as more cells are
added along the resonant length of the patch. The discrepancy could
also be due to error introduced to the measurement by the small air-
gaps between the two layers of dielectric.

The calculated results of these plots were computed by the IBM Pen-
tium 100 MHz PC. The run time required in the computation of input
impedance for each frequency is approximately 30 seconds. Further
increase in speed can be achieved if the approximation of the matrix
elements discussed in previous section is utilised to a greater extent.

4. CONCLUSION

The validity of the proposed model using MPIE has been confirmed
by showing the good agreement between theory and experiment. Most
important is the sole use of closed-form Green’s function in our analysis
that enable us to compute the result with considerably less numerical
effort in much higher speed than the spectral domain approach.
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