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1. INTRODUCTION

For analysis of large-scale electromagnetic scattering problems, high-
frequency asymptotic methods are fast but approximate, whereas low-
frequency numerical methods are accurate but slow. Neither can pro-
duce an efficient and accurate solution to scattering by large bodies
containing small structures. A promising approach is to combine the
best features of both types of methods to produce a hybrid technique
that is sufficiently fast, reasonably accurate, and applicable to a class
of unsolvable problems such as the scatterers mentioned above. There
are two extremes for this type of hybridization. One is simply to su-
perimpose solutions from asymptotic and numerical methods. While
this approach is most widely used in practical applications, it neglects
the interactions between the two solutions, which can be significant in
many problems. The other extreme is to combine an asymptotic and
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a numerical method in an exact manner, such as the classical work of
combining the method-of-moments (MoM) with the geometrical the-
ory of diffraction (GTD) by Thiele et al. [1]–[3]. In this approach, the
effect of a large body is included by incorporating its diffraction into
the Green’s function in the integral equation for the small structures,
which accounts for all interactions. The approach is particularly at-
tractive for analyzing the radiation of an antenna placed on a large
body, and it has recently been extended to scattering by finned convex
objects [4]. While this approach is accurate, it is difficult to implement
in a general-purpose computer code because of its complexity.

A more practical approach is to develop a technique that can include
all significant interactions and neglect all trivial interactions. A suc-
cessful example is given in [5] and [6] where the shooting-and-bouncing-
ray (SBR) method is combined with the finite-element method (FEM)
to solve for the scattering and radiation by a large body with cracks
and cavities on its surface. The resulting hybrid technique can produce
sufficient accuracy and can be implemented in a general-purpose com-
puter code. In this paper, we employ the same philosophy to develop a
technique that combines the SBR method and the MoM to solve for the
scattering by large conducting bodies with small structures mounted
on their surfaces. We note that since the nature of this problem is
different from that in [5], the formulation is also different.

To be more specific, in the proposed technique, an integral equa-
tion is first derived for the currents in the entire object, including the
large body and the small structure. By choosing a proper Green’s
function that satisfies certain boundary conditions on the surface of
the large body, the integral equation is reduced to an integral equation
over the surface or volume of the small structure, depending on its
material composition. Application of the MoM to this equation with
an approximate Green’s function yields an admittance matrix, which
characterizes the small structure. When multiplied by the incident field
on the small structure, which is calculated using the SBR method, the
admittance matrix yields the currents on the small structure, which ra-
diate in the presence of the large body. The radiated field from these
currents, or the scattered field contributed by the small structure, is
then calculated using the SBR method with the aid of the reciprocity
theorem.

For most problems, the formulation described above can yield a
satisfactory solution. However, for some problems, an approximate
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Green’s function can be difficult to obtain and the resultant solution
can be rather inaccurate. In this case, the accuracy of the approx-
imate solution can be improved using an iterative approach, similar
to the methods employed in [7]–[9]. This iterative approach can also
be applied to the case of multiple small structures having mutual in-
teractions. As a result, although the hybrid technique presented is
approximate, its accuracy can be improved systematically when neces-
sary. In this paper, we implement this technique for two-dimensional
scattering to evaluate its accuracy, efficiency, and capability.

2. FORMULATION

Consider the problem of wave scattering by a large, perfectly con-
ducting body with a small protruding structure, whose cross-section is
illustrated in Fig. 1. The protruding structure can be a perfect con-
ductor or a dielectric/magnetic material or any combination of these.
For transverse magnetic (TM) incidence, the electric field Ez satisfies
the wave equation

∇ ·
[

1
µr(ρ)

∇Ez(ρ)
]

+ k2
0εr(ρ)Ez(ρ) = jωµ0Jz(ρ) (1)

where k0 is the free-space wavenumber, (εr, µr) are the relative per-
mittivity and permeability, respectively, and Jz is the source.

To formulate an integral equation for Ez , we multiply (1) with a
Green’s function GE(ρ,ρ′) , which satisfies

∇2GE(ρ,ρ′) + k2
0GE(ρ) = −δ(ρ− ρ′) (2)

and integrate over the entire region. Following the procedure described
in [10], we obtain

1
µr(ρ)

Ez(ρ) = Eincz (ρ) + k2
0

∫∫
Ω

[
εr(ρ′)−

1
µr(ρ′)

]
Ez(ρ′)GE(ρ,ρ′)ds′

+
∫∫

Ω
∇′

[
1

µr(ρ′)

]
·
[
Ez(ρ′)∇′GE(ρ,ρ′)

]
ds′

+
∫

Γd

[
1

µr(ρ′+)
− 1
µr(ρ′−)

]
Ez(ρ′)

∂GE(ρ,ρ′)
∂n′d

dl′

− jωµ0

∫
Γc

Jz(ρ′)GE(ρ,ρ′)dl′ (3)
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Figure 1. Original problem: A large PEC body with a small
protrusion.

where Ω denotes the dielectric region, Γd denotes the interface where
µr changes abruptly, and Γc denotes the conducting surface. The
normal unit vector points from the “–” side to the “+” side on Γd and
outward on Γc . The incident field Eincz (ρ) is given by

Eincz (ρ) = −jωµ0

∫∫
Ωs

Jz(ρ′)GE(ρ,ρ′)ds′ (4)

where Ωs denotes the source region.
Since Γc includes the entire surface of the conductor, a numeri-

cal solution of (3) requires the discretization of the entire scatterer.
However, if we choose the Green’s function to satisfy the boundary
condition

GE(ρ,ρ′) = 0 ρ on Γb (5)

where Γb is the surface of the scatterer without the protruding struc-
ture (see Fig. 2), the integral on the surface of the large object disap-
pears, and (3) becomes

1
µr(ρ)

Ez(ρ) = Eincz (ρ) + k2
0

∫∫
Ω

[
εr(ρ′)−

1
µr(ρ′)

]
Ez(ρ′)GE(ρ,ρ′)ds′

+
∫∫

Ω
∇′

[
1

µr(ρ′)

]
·
[
Ez(ρ′)∇′GE(ρ,ρ′)

]
ds′
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Figure 2. Equivalent problems: One for high-frequency method and
the other for numerical method.

+
∫

Γd

[
1

µr(ρ′+)
− 1
µr(ρ′−)

]
Ez(ρ′)

∂GE(ρ,ρ′)
∂n′d

dl′

− jωµ0

∫
Γ′c

Jz(ρ′)GE(ρ,ρ′)dl′ (6)

where Γ′c denotes the conducting surface of the protruding structure.
Note that when (5) is used, the incident field Eincz is the field radiated
by Jz in the presence of the large body.

Equation (6) can be solved using the MoM described in [11] provided
that we know the expression of GE(ρ,ρ′) . The discretization will be
limited to the dielectric region and the surface of the conductor in the
protrusion. If the protrusion is on a locally flat surface, GE(ρ,ρ′) can
be written into two parts

GE(ρ,ρ′) = GEhalf (ρ,ρ′) +GEdiff (ρ,ρ′) (7)

where the first part corresponds to that for a half-space, and the sec-
ond part is due to the diffraction and reflection seen by the protrusion.
Whereas the expression for GEhalf (ρ,ρ′) is readily available, the ex-
pression for GEdiff (ρ,ρ′) is often difficult, if not impossible, to obtain.
Although the effect of GEdiff (ρ,ρ′) can still be included in the MoM
solution, as was done in [1]–[4], its numerical implementation is compli-
cated and dependent on the geometry of the large object. To simplify



30 Ling and Jin

the MoM solution and effectively decouple the MoM and SBR com-
putations, we neglect GEdiff (ρ,ρ′) in the MoM solution of (6), and,
doing so, we neglect the field scattered by the protrusion, diffracted
and/or reflected back to the protrusion by the large object, and scat-
tered by the protrusion again. In most cases, this field is unimportant.
However, when necessary it can be recovered by using an iterative
approach discussed later.

The MoM discretization of (6) is straightforward, and it results in
a matrix equation

[Z]



EΩ

Ed

Jc


 =

{
Einc

}
(8)

where EΩ and Ed denote the discretized fields in Ω and on Γd ,
respectively, Jc denotes the current on the conducting surface of the
protrusion, and Einc denotes the incident field on the protrusion in
the presence of the large object. The incident field can be calculated
effectively using the SBR method [12]–[14].

Because of the simplification of GE(ρ,ρ′) , the calculation of [Z]
is independent of the geometry of the large body. Thus, [Z] can be
computed and inverted beforehand. Once this is done, the field and
current in the protrusion can be obtained by



EΩ

Ed

Jc


 = [Z]−1 {

Einc
}
. (9)

Once the fields and currents are computed, we then have to evaluate
the scattered field in the far zone. Theoretically, we can employ (6) to
calculate this field. However, the expression for GE(ρ,ρ′) is usually
unknown and replacing it by GEhalf (ρ,ρ′) here would neglect the field
scattered by the protrusion and diffracted and/or reflected to the ob-
servation point, resulting in an error whose magnitude is comparable
to the field scattered directly to the observation point. There are two
approaches to alleviate this problem. One approach is to first compute
the field scattered by the protrusion over a small half circle enclos-
ing the protrusion. This field is then converted into many rays which
shoot along the radial directions. Each ray is traced as it bounces
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around the large object and the bounces are governed by geometrical
optics (GO). At the last hit point, or at each and every hit point, a
physical-optics (PO) type integration is performed to determine the ray
contribution to the scattered field. The final result is the summation
of the contribution from all the rays. This approach has the advantage
of simultaneously computing the scattered field in all directions. How-
ever, to obtain accurate results, the field on the half circle enclosing
the protrusion must be divided into many rays and to trace each ray,
its divergence factor must be calculated and tracked. Moreover, the
process has to be repeated for each element in the protrusion.

In this work, we use a second approach which employs reciprocity
theorem. In this approach, we place an infinitely long current filament
at the observation point. The electric field radiated by this current
satisfies the equation

∇2E′z(ρ) + k2
0E
′
z(ρ) = jωµ0J0δ(ρ− ρo) (10)

where ρo denotes the observation point. This equation has a well-
known solution given by

E′z(ρ) = −ωµ0J0

4
H

(2)
0 (k0 |ρ− ρo|). (11)

If ρo is far away from ρ and ρ is near the origin of the chosen
coordinates, E′z(ρ) becomes

E′z(ρ) = −η0J0

√
jk0

8πρo
e−jk0ρoejk0(x cos θ+y sin θ) (12)

where η0 is the free-space intrinsic impedance. Apparently, if we
choose

J0 = − 1
η0

√
8πρo
jk0

ejk0ρo (13)

E′z(ρ) then becomes

E′z(ρ) = ejk0(x cos θ+y sin θ) (14)

which is recognized as a plane wave incident from the direction of the
observation point. If the current filament is placed at the observation
point in the presence of the large object without the protrusion, the
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resulting fields can be calculated conveniently using either PO or the
SBR method. Denoting these fields as Esbr and Hsbr , multiplying
Esbrz with (1), and integrating over the entire region yields

Ez(ρo) =

Esbrz (ρo)−
1

jωµ0J0

{
k2

0

∫∫
Ω

[
εr(ρ′)−

1
µr(ρ′)

]
Ez(ρ′)Esbrz (ρ′)ds′

+ jωµ0

∫∫
Ω

[
ẑ ×∇′ 1

µr(ρ′)

]
·
[
Ez(ρ′)Hsbr(ρ′)

]
ds′

− jωµ0

∫
Γd

[
1

µr(ρ′+)
− 1
µr(ρ′−)

]
Ez(ρ′)Hsbr

t (ρ′)dl′

− jωµ0

∫
Γ′c

Jz(ρ′)Esbrz (ρ′)dl′
}

(15)

which is similar to (6). Since Ez and Jz have already been computed,
the integrals in (15) can be readily evaluated. In particular, if the
monostatic radar cross section (RCS) is of interest, Esbrz is the same
as Eincz in (6).

For the transverse electric (TE) incidence, the derivation is similar.
The integral equation corresponding to (6) becomes

1
εr(ρ)

Hz(ρ) = H inc
z (ρ) + k2

0

∫∫
Ω

[
µr(ρ′)−

1
εr(ρ′)

]
Hz(ρ′)GH(ρ,ρ′)ds′

+
∫∫

Ω
∇′

[
1

εr(ρ′)

]
·
[
Hz(ρ′)∇′GH(ρ,ρ′)

]
ds′

+
∫

Γd

[
1

εr(ρ′+)
− 1
εr(ρ′−)

]
Hz(ρ′)

∂GH(ρ,ρ′)
∂nd′

dl′

+
∫

Γ′c

Jt(ρ′)
∂GH(ρ,ρ′)

∂n′c
dl′ (16)

and the expression for the far field is

Hz(ρo) =

Hsbr
z (ρo)−

1
jωε0M0

{
k2

0

∫∫
Ω

[
µr(ρ′)−

1
εr(ρ′)

]
Hz(ρ′)Hsbr

z (ρ′)ds′

− jωε0
∫∫

Ω

[
ẑ ×∇′ 1

εr(ρ′)

]
·
[
Hz(ρ′)Esbr(ρ′)

]
ds′
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Figure 3. Effects included in the formulation: Direct and indirect
incident fields and, by reciprocity, direct and indirect scattered fields.

+ jωε0

∫
Γd

[
1

εr(ρ′+)
− 1
εr(ρ′−)

]
Hz(ρ′)Esbrt (ρ′)dl′

+ jωε0

∫
Γ′c

Jt(ρ′)Esbrt (ρ′)dl′
}

(17)

where M0 is given by

M0 = −η0

√
8πρo
jk0

ejk0ρo . (18)

3. ITERATVE IMPROVEMENT

Because of the use of the SBR method, Eincz in (6) and H inc
z in (16)

include not only the direct incident field, but also the fields reflected
and multiply-bounced by the large body, as shown in Fig. 3. Generally
speaking, the magnitude of the indirect incident field is comparable to
that of the direct field, so neglecting either of them will result in a
significant error in the calculation of Eincz and H inc

z . Similarly, since
Esbrz in (15) and Hsbr

z in (17) are calculated using the SBR method,
the reflection and multiple bounces are also included in the scattered-
field calculation. Therefore, all major interactions between the SBR
and MoM have been included.
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Figure 4. Effects not included in the formulation: Field scattered by
the protrusion, diffracted and/or reflected back to the protrusion by
the large object, and scattered by the protrusion again. These effects
can be recovered using an iterative approach when necessary.

The only approximation in the hybrid technique is introduced by the
approximate Green’s function, formed by neglecting the second term
in (7). As pointed out earlier, this neglects the field scattered by the
protrusion, reflected and/or diffracted back to the protrusion by the
large object, and scattered by the protrusion again, as illustrated in
Fig. 4. In most problems, this contribution is insignificant. However,
when the protrusion is very close to edges and reflecting surfaces, the
contribution can become significant and its omission can cause a sub-
stantial error in the solution. Here, we describe an iterative approach,
similar to those in [7]–[9], to reduce the error systematically.

In this iterative approach, we use the current on the protrusion ob-
tained from (9) as the initial value and then calculate the field produced
by this current in the presence of the large body. This field can be con-
sidered as the secondary incident field, which, when superimposed to
the Eincz and H inc

z , yields a new incident field on the protrusion. Us-
ing this as the incident field in (9), we obtain a new, improved current
on the protrusion. This process is repeated N times until a stable
value for the current is reached. The process can be expressed as

{Jn} = [Z]−1 {
Einc + E({Jn−1})

}
(19)

where n denotes the number of iteration, E({Jn−1}) denotes the field
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on the protrusion produced by the current Jn−1 on the protrusion,
which can be calculated using either PO or the SBR method.

A similar approach can be employed for large bodies with multiple
protrusions. When each protrusion is characterized using the MoM, the
interaction between them is neglected. To recover this interaction, we
can first analyze protrusions separately and obtain the current on each
protrusion. We then choose the current on one of the protrusions as the
excitation to obtain the secondary incident fields on other protrusions,
which then yield new currents. This process can be repeated until the
convergence is reached. For the case with two protrusions, the process
can be expressed as

{J1,n} = [Z1]
−1 {

Einc1 + E1({J2,n−1})
}

(20)

{J2,n} = [Z2]
−1 {

Einc2 + E2({J1,n−1})
}

(21)

Ei({Jj,n−1}) denotes the field on the i th protrusion produced by the
current on the j th protrusion, which can again be calculated using
either PO or the SBR method.

4. NUMERICAL RESULTS

To demonstrate the accuracy of the proposed hybrid technique, we
present some examples, in which the incident wave is assumed to be a
plane wave and the pulse basis functions and point matching are used
for the MoM computations.

The first example is a small conducting protrusion at the center
of the surface of a large perfectly electric-conducting (PEC) cylinder.
The monostatic radar echo width (REW) for the TM and TE cases is
shown in Fig. 5. As can be seen, the results by the hybrid technique
are in good agreement with those computed by the MoM alone. In this
case, the contribution of Gdiff is much smaller than that of Ghalf ,
and its omission does not introduce a noticeable error in the scattered-
field computation. Therefore, no iteration is necessary. Also presented
are the results without the protrusion to demonstrate the significance
of the small protrusion.

To show the capability of handling inhomogeneous protrusions, the
scatterer in Fig. 5 is reconsidered and this time the protrusion is coated
with a layer of material having the relative permittivity εr = 2.5−j1.0 ,
the relative permeability µr = 1.5−j1.0 , and thickness t = 0.2λ . The
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results are shown in Fig. 6. Again, good agreement is observed between
the hybrid and MoM solutions, and no iteration is necessary.

The next two examples show the effectiveness of the iterative ap-
proach. The first has two protrusions closely spaced on a large PEC
cylinder. First, we analyze the two protrusions independently and,
hence, no interaction between them is included. As can be seen in Fig.
7, the results have a significant error when the incident angle is less
than 35 degrees. This error is, however, reduced significantly when the
iterative approach is applied with 8 iterations.

The second example is an L-shaped conducting body with a protru-
sion on the surface. This problem differs from the former ones in that
both incident and scattered fields can have multiple bounces. First, we
neglect the contribution of Gdiff , and the results obtained are given
in Fig. 8 where a noticeable error is observed. This is expected because
the protrusion is close to the reflecting surface. The results obtained
using the iterative approach with 10 iterations are shown in Fig. 9,
which demonstrates clearly that the iterative approach is an effective
method to improve the accuracy for such a problem. Finally, we note
that the L-shape is chosen here because it represents the worst con-
figuration. If the wall parallel to the protrusion is slanted, the initial
solution would have better accuracy and the iteration would converge
even more quickly.

To illustrate the efficiency of the hybrid method, let us first exam-
ine its complexity as compared to that of the MoM. Assume that the
largest dimension of the large body is L and the largest dimension
of the small protrusion is l . The MoM solution would require oper-
ational count proportional to L3 and memory proportional to L2 .
The hybrid solution without iteration would require operational count
proportional to l3+L and memory proportional to l2 . The hybrid so-
lution with iteration would then require operational count proportional
to l3 + l2L and memory proportional to l2 . As a result, the comput-
ing time, compared to that of the MoM, is reduced to (l3 +L)/L3 for
the hybrid solution without iteration and (l3 + l2L)/L3 with iteration.
The memory requirement is reduced to (l/L)2 of that for the MoM.
For example, the MoM solution in Fig. 5 has 2560 unknowns and takes
1714.4 seconds on a workstation whereas the SBR/MoM solution has
200 unknowns and takes only 3.4 seconds on the same workstation for
all incidence angles. The MoM solution in Figs. 8 and 9 has 3520 un-
knowns and takes 4071.8 seconds whereas the SBR/MoM solution has
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Figure 5. Comparison of the monostatic echo-width calculated by
the hybrid SBR/MoM and the MoM for a body with a conducting
protrusion.
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Figure 6. Comparison of the monostatic echo-width calculated by the
hybrid SBR/MoM and the MoM for a body with a coated protrusion.
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Figure 7. Comparison of the monostatic echo-width calculated by the
hybrid SBR/MoM and the MoM for a body with two protrusions.
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Figure 8. Comparison of the monostatic echo-width calculated by
the hybrid SBR/MoM and the MoM for an L-shaped body with a
protrusion.



Hybridization of SBR and MoM for large body scattering 41

Figure 9. Comparison of the monostatic echo-width calculated by the
hybrid SBR/MoM in conjunction with the iterative approach and the
MoM for an L-shaped body with a protrusion.
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360 unknowns and takes 16.1 seconds without iteration (Fig. 8) and
183.4 seconds with 10 iterations (Fig. 9).

4. CONCLUSION

A hybrid technique was presented for scattering by large bodies hav-
ing small protruding structures. The technique combined the SBR
method with the MoM in such a manner that the SBR and MoM
computations could be carried out separately and yet all significant in-
teractions were included. The technique calculated the scattered fields
with the aid of the reciprocity theorem, which eliminated the need to
resort to a complicated, time-consuming tracing of diverging rays. For
problems which require higher accuracy than the hybrid solution would
give, an iterative approach was designed to systematically improve the
accuracy. The accuracy, efficiency, and capability of the hybrid tech-
nique were demonstrated using two-dimensional scattering examples.
The technique is currently being extended to more challenging three-
dimensional scattering problems.
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