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1. INTRODUCTION

Electromagnetic scattering from a cracked conducting plane is an im-
portant topic in the study of rough surface scattering, nondestructive
testing for metal fatigue, electromagnetic diffraction computation, etc.
The problem of plane wave scattering from a semicircular channel or
the one loaded by a single or multilayer concentric dielectric circular
cylinder as well as a dielectric coated conducting cylinder in a con-
ducting plane has been studied extensively by Sachdeva and Hurd [1],
Hinders and Yaghjian [2], Park et al. [3,4], and Ragheb [5]. However,
for some practical electromagnetic scattering problems, the effect of
the incident wave shape sometimes becomes significant, depending on
the antenna type, the target size, and the distance between the an-
tenna and the target. Therefore, a more realistic assumption of the
wave shape, such as a Gaussian beam or a spherical wave, is required
for the accurate prediction of scattering behaviors.
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With the problem of Gaussian beam scattering from a conducting
cylinder investigated, Kozaki [6] has derived a Gaussian beam approx-
imate expression in the simple form of a single series. Each term in
the series is a product of a well-known cylindrical harmonic wave func-
tion and a weighting coefficient. Recently, the problem of Gaussian
beam scattering from a semicircular boss above a conducting plane, a
structure analogous to the one studied in this paper, has been investi-
gated by Eom et al. [7] with the Kozaki’s Gaussian beam approximate
expression and the method of image superposition.

In this paper, a dual series solution to the problem of Gaussian
beam scattering from a semicircular channel in a conducting plane is
presented. The usual procedure used here is similar to that given in
[2]. However, since the incident wave is a Gaussian beam instead of
a plane wave, the Kozaki’s Gaussian beam approximate expression is
introduced. The present treatment is more general, while the plane
wave scattering is only its special case.

2. FORMULATION

Figure 1 shows the geometry of the two-dimensional problem. For the
sake of convenience, three coordinate systems, i.e., two rectangular co-
ordinate systems, (x, y, z) and (x1, y1, z) , and one cylindrical coordi-
nate system, (r, φ, z) , are defined. The origins of the three coordinate
systems are all located at the center of the semicircular channel, and
the coordinate system (x1, y1, z) rotates an angle φ0 clockwise with
respect to the coordinate system (x, y, z) . The radius of the semicir-
cular channel embedded along the z -axis in the conducting plane is
a . A Gaussian beam whose source is located at (x1 = −r0, y1 = 0)
is incident on it, making an angle φ0 (incident angle) clockwise with
respect to the negative x -axis. The whole space above the conduct-
ing plane is divided into two regions: region I (r ≥ a, 0 < φ < π)
and region II (r ≤ a) . Throughout this paper, the time dependence
exp(jωt) is assumed and suppressed.

A. TM case

For the TM case, the z -component of the electric field of the inci-
dent Gaussian beam source is assumed as

Einc
z (x1 = −r0, y1) = E0 exp

(
−β2y2

1

)
, (1)
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Figure 1. Geometry of the problem.

where

β2 = a2
0 + jb20, (2)

1/|β| corresponds to the beamwidth, and E0 is the arbitrary electric
field amplitude. The incident electric field from the beam source can
be approximately expanded as [6]

Einc
z (r, φ) = E0

∞∑
n=0

Anεnj
−nJn(kr) cosn(φ + φ0), (3)

where

An ≈
exp(−jkr0)√

1− jZ0
exp

[
−

(
nβ

k

)2 1
1− jZ0

][
1− 2

(
β

k
√

1− jZ0

)4

n2+

4
3

(
β

k
√

1− jZ0

)6

n4 + · · ·
]
, (4)
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Z0 =
2β2r0

k
, (5)

εn = 1 for n = 0 and 2 for n ≥ 1 , k = 2π/λ is the free space
wavenumber and λ is the free space wavelength, and Jn is the Bessel
function of the first kind and order n . Note that (3) is the approximate
expansion of the incident Gaussian beam, which is valid for |(βλ)2| <
0.3 [6].

The scattered electric field in region I can be decomposed into two
parts: the reflected and the diffracted fields, which are expanded as

Eref
z (r, φ) = −E0

∞∑
n=0

Anεnj
−nJn(kr) cosn(φ− φ0), (6)

Edif
z (r, φ) = E0

∞∑
n=1

BTM
n H(2)

n (kr) sinnφ, (7)

where BTM
n are the unknown mode coefficients, and H

(2)
n is the Han-

kel function of the second kind and order n .
In region II, the electric field is expanded as

Eint
z (r, φ) = E0

∞∑
n=0

Jn(kr)
(
CTM
n cosnφ + DTM

n sinnφ
) (

DTM
0 = 0

)
,

(8)
where CTM

n and DTM
n are the unknown mode coefficients.

From

Hφ(r, φ) =
1

jωµ

∂Ez(r, φ)
∂r

, (9)

the φ -component of the magnetic field can be derived.
In order to calculate the unknown mode coefficients, the boundary

conditions of the zero tangential electric field (i.e., Ez ) at r = a
and π < φ < 2π , and continuous tangential electric and magnetic
fields (i.e., Ez and Hφ ) across the imaginary aperture r = a and
0 < φ < π , are enforced, which yields

∞∑
n=1

DTM
n Jn(ka) sinnφ = −

∞∑
n=0

CTM
n Jn(ka) cosnφ (π < φ < 2π),

(10)
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∞∑
n=1

[
−4Anj−nJn(ka) sinnφ0 + BTM

n H(2)
n (ka)−DTM

n Jn(ka)
]

sinnφ

=
∞∑
n=0

CTM
n Jn(ka) cosnφ (0 < φ < π), (11)

∞∑
n=1

[
−4Anj−nJ ′n(ka) sinnφ0 + BTM

n H(2)′
n (ka)−DTM

n J ′n(ka)
]

sinnφ

=
∞∑
n=0

CTM
n J ′n(ka) cosnφ (0 < φ < π), (12)

where the prime denotes the derivative with respect to the argument.
Substituting π+φ (0 < φ < π) for φ in (10), (10)–(12) can be written
in the unified form

∞∑
n=1

fn sinnφ =
∞∑
n=0

gn cosnφ (0 < φ < π). (13)

Multiplying (13) by sinmφ (m ≥ 1) and integrating both sides with
respect to φ from 0 to π yields

fm =
4m
π

∞∑
n=0

n+m=odd

1
m2 − n2

gn (m ≥ 1), (14)

where
∞∑
n=0

n+m=odd

represents the summation with respect to n from 0

to infinite which satisfies n + m = odd. Employing (14) in (10)-(12)
with the necessary mathematical manipulation yields

∞∑
n=0

n+m=odd

1
m2 − n2

{
Jn(ka) +

jπka

2

[
Jm(ka)H(2)′

m (ka)Jn(ka)

− Jm(ka)H(2)
m (ka)J ′n(ka)

]}
CTM
n

=
−πAmj−mJm(ka) sinmφ0

m
(m ≥ 1), (15)
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BTM
m =

4

H
(2)
m (ka)

[
2m
π

∞∑
n=0

n+m=odd

Jn(ka)
m2 − n2

CTM
n

+ Amj−mJm(ka) sinmφ0

]
(m ≥ 1). (16)

Equation 15 can be solved numerically to obtain the CTM
n . In prac-

tical computation, the infinite series involved in the solution must be
truncated after a certain number of terms, under the prerequisite of
achieving the solution convergence. Once the CTM

n are obtained, the
BTM
n can then be calculated from (16).

B. TE case

For the TE case, in a similar fashion, the z -components of the incident,
the reflected, and the diffracted magnetic fields in region I are expanded
as

H inc
z (r, φ) = H0

∞∑
n=0

Anεnj
−nJn(kr) cosn(φ + φ0), (17)

Href
z (r, φ) = H0

∞∑
n=0

Anεnj
−nJn(kr) cosn(φ− φ0), (18)

Hdif
z (r, φ) = H0

∞∑
n=0

BTE
n H(2)

n (kr) cosnφ, (19)

where H0 is the arbitrary magnetic field amplitude, and BTE
n are the

unknown mode coefficients.
In region II, the magnetic field is expanded as

H int
z (r, φ) = H0

∞∑
n=0

Jn(kr)
(
CTE
n cosnφ + DTE

n sinnφ

) (
DTE

0 = 0
)
,

(20)
where CTE

n and DTE
n are the unknown mode coefficients.
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From

Eφ(r, φ) =
j

ωε

∂Hz(r, φ)
∂r

, (21)

the φ -component of the electric field can be derived.
In order to calculate the unknown mode coefficients, the boundary

conditions of the zero tangential electric field (i.e., Eφ ) at r = a
and π < φ < 2π , and continuous tangential electric and magnetic
fields (i.e., Eφ and Hz ) across the imaginary aperture r = a and
0 < φ < π , are enforced. Then following the same procedure as in the
TM case, it can be found eventually that

∞∑
n=1

n+m=odd

n

n2 −m2

{
J ′n(ka) +

jπka

2

[
J ′m(ka)H(2)′

m (ka)Jn(ka)−

J ′m(ka)H(2)
m (ka)J ′n(ka)

]}
DTE
n = πAmj−mJ ′m(ka) cosmφ0 (m ≥ 0),

(22)

BTE
m =

2εm
H

(2)′
m (ka)

[
2
π

∞∑
n=1

n+m=odd

nJ ′n(ka)
n2 −m2

DTE
n

−Amj−mJ ′m(ka) cosmφ0

]
(m ≥ 0). (23)

Equation 22 can be solved numerically to obtain the DTE
n . Once the

DTE
n are obtained, the BTE

n can then be calculated from (23).
The scattering properties of a two-dimensional cylindrical object of

infinite length are conveniently described in terms of the scattering
width W , which is defined as

W (φ) = lim
r→∞

2πr

∣∣∣∣∣∣
Edifz
Hdifz

(r, φ)
Eincz

Hincz
(a, π − φ0)

∣∣∣∣∣∣
2

.

(24)

Use of the large argument approximation of the Hankel function re-
duces (24) to
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W (φ) =
2λ
π

∣∣∣∣∣∣∣∣
P (φ)

∞∑
n=0

AnεnjnJn(ka)

∣∣∣∣∣∣∣∣

2

,

(25)

where

P (φ) =
∞∑
n=0

jn
BTM
n sinnφ

BTE
n cosnφ

(26)

is the scattered field pattern. The backscattering width Wb can be
obtained from (25) at φ = π − φ0 .

3. NUMERICAL RESULTS

In order to verify the above formulation, the plane wave incidence case
is first considered. For the plane wave incidence case, both a0 and
b0 are set to be zero, while r0/λ can be taken as an arbitrary value
greater than 0 , which has no influence on the result. Figure 2 shows
the backscattering width Wb versus incident angle φ0 with ka = 4π .
An excellent agreement is achieved between the results in this paper
and their correspondences in [5].

As mentioned above, the infinite series involved in the solution must
be truncated after a certain number of terms, under the prerequisite
of achieving the solution convergence. Table I lists the backscattering
width Wb versus the integer N which is the number of series terms
used in the computation for eight different combinations of TM, TE,
plane wave (denoted by P), Gaussian beam (denoted by G) incidence
cases, and two different values of ka , with φ0 = 90◦ , and r0/λ = 10 ,
(a0λ)2 = 0.053 , and (b0λ)2 = 0.236 for the Gaussian beam. Note that
the results for even N are not listed here since they are the same as
those for odd (N − 1) . The Gaussian beam beamwidth parameters
used here correspond to those of the X-band transmitter presented in
[6]. For ka = 5 , only 17 series terms are needed to achieve the solution
convergence for four different incidence cases, whereas for ka = 15 , 33
series terms are needed. In general, the number of the series terms used
in the computation depends on the value of ka (i.e., channel radius):
the larger ka is, the more series terms are needed in the computation
to achieve the solution convergence.
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(a)

(b)

Figure 2. Backscattering width Wb versus incident angle φ0 (plane
wave incidence case) with ka = 4π . (a) TM case. (b) TE case.
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Table I. Backscattering width Wb versus N with φ0 = 90◦ , and
r0/λ = 10 , (a0λ)2 = 0.053 , and (b0λ)2 = 0.236 for the Gaussian
beam. P and G denote plane wave and Gaussian beam incidence cases
respectively.

In order to further verify the formulation in Section II and the choice
criterion of the number of series terms used in the computation dis-
cussed above, another example is considered. Figure 3 shows the scat-
tered field amplitude |P (φ)| versus ka at three different scattering
angles for the plane wave normal incidence case. Once again, an excel-
lent agreement is achieved between the results in this paper and their
correspondences in [3] for TM case and [4] for TE case. Note that the
number of series terms used in the computation varies with the value
of ka .
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(a)

(b)

Figure 3. Scattered field amplitude |P (φ)| versus ka at three differ-
ent scattering angles (plane wave incidence case) with φ0 = 90◦ . (a)
TM case. (b) TE case.
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Figures 4 and 5 show the scattering width W versus scattering
angle φ for φ0 = 90◦ and φ0 = 60◦ respectively, for both Gaussian
beam and plane wave incidence cases, with ka = 9π , and r0/λ =
10 , (a0λ)2 = 0.053 , and (b0λ)2 = 0.236 for the Gaussian beam.
There is a significant difference between Gaussian beam and plane wave
scattering behaviors. This is because the Gaussian beam incident on
the semicircular channel is no longer as uniformly distributed as the
infinitely extended uniform plane wave. In addition, the Gaussian
beam backward scattering width is lower than the plane wave one.

Figures 6 and 7 show the backscattering width Wb versus inci-
dent angle φ0 for ka = 9π and ka = π respectively, for both
Gaussian beam and plane wave incidence cases, with r0/λ = 10 ,
(a0λ)2 = 0.053 , and (b0λ)2 = 0.236 for the Gaussian beam. For
ka = 9π , generally speaking, the Gaussian beam scattering behavior
is totally different from the plane wave one although they are about
the same for the TM case when the incident angle φ0 is less than 15◦ .
However, for ka = π , the Gaussian beam scattering behavior is nearly
all the same as the plane wave one. This is because for the semicircular
channel of smaller size, the incident Gaussian beam is nearly uniformly
distributed as the plane wave. This point can be further supported by
the following two examples.

Figures 8 and 9 show the scattering width W versus ka at two
different scattering angles for φ0 = 90◦ and φ0 = 30◦ respectively, for
both Gaussian beam and plane wave incidence cases, with r0/λ = 10 ,
(a0λ)2 = 0.053 , and (b0λ)2 = 0.236 for the Gaussian beam. When
ka (i.e., semicircular channel radius) is small, Gaussian beam and
plane wave scattering behaviors are nearly all the same, whereas the
difference between them becomes large gradually with ka increasing.

4. CONCLUSION

A dual series solution to the problem of Gaussian beam scattering
from a semicircular channel in a conducting plane was presented. The
problem was solved by the boundary value method together with the
Kozaki’s Gaussian beam approximate expression. Some numerical re-
sults were shown. Differences between Gaussian beam and plane wave
scattering behaviors were discussed. The present treatment could be
easily extended to the problem of Gaussian beam scattering from the
same structure loaded by a single or multilayer dielectric circular cylin-
der.
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(a)

(b)

Figure 4. Scattering width W versus scattering angle φ with φ0 =
90◦ , ka = 9π , and r0/λ = 10 , (a0λ)2 = 0.053 , and (b0λ)2 = 0.236
for the Gaussian beam. (a) TM case. (b) TE case.
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(a)

(b)

Figure 5. Scattering width W versus scattering angle φ with φ0 =
60◦ , ka = 9π , and r0/λ = 10 , (a0λ)2 = 0.053 , and (b0λ)2 = 0.236
for the Gaussian beam. (a) TM case. (b) TE case.
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(a)

(b)

Figure 6. Backscattering width Wb versus incident angle φ0 with
ka = 9π , and r0/λ = 10 , (a0λ)2 = 0.053 , and (b0λ)2 = 0.236 for the
Gaussian beam. (a) TM case. (b) TE case.



82 Shen et al.

(a)

(b)

Figure 7. Backscattering width Wb versus incident angle φ0 with
ka = π , and r0/λ = 10 , (a0λ)2 = 0.053 , and (b0λ)2 = 0.236 for the
Gaussian beam. (a) TM case. (b) TE case.
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(a)

(b)

Figure 8. Scattering width W (φ) versus ka at two different scat-
tering angles with φ0 = 90◦ , and r0/λ = 10 , (a0λ)2 = 0.053 , and
(b0λ)2 = 0.236 for the Gaussian beam. (a) TM case. (b) TE case.
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(a)

(b)

Figure 9. Scattering width W (φ) versus ka at two different scat-
tering angles with φ0 = 30◦ , and r0/λ = 10 , (a0λ)2 = 0.053 , and
(b0λ)2 = 0.236 for the Gaussian beam. (a) TM case. (b) TE case.
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