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1. Introduction

Recently it was shown that the velocity of light in a strongly
scattering medium can be an order of magnitude smaller than the ve-
locity of light in vacuum because of the Mie resonance scattering [1].
It appears that the light resonates for awhile within the dielectric mi-
crospheres of which the medium is made so the light takes longer to
travel through the sample. A velocity of light in the experiments [1]
defined by the diffusion condtant D and the transport mean free path
ltr was neither phase nor group velocity, but the energy transport ve-
locity vE = c20/(1 + a)cph where c0 and cph are the phase velocity in
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a background and in the random medium, respectively and the quan-
tity “a” characterizes an efficiency of the resonance. The time domain
experiments were conducted to present additional confirmation of the
slow sppeed of electromagnetic waves in a dense strongly scattering
medium [2]. A wide-band microwave signal was propagated through
randomly distributed glass spheres and the speed was measured di-
rectly, by the time at which 50% of the pulse energy arrives (so called
“arrival time”).

To consider the phenomenon of slowing down of a light or mi-
crowave pulse travel through a strongly scattering medium in detail
a modified radiative transfer equation (MRTE) with weak time dis-
persion was derived for non-stationary electromagnetic wave multiple
scattering in dense media near Mie resonance scattering at a heuristic
level [3], semi-heuristic level [4], and using the Bethe-Salpeter equa-
tion in the two-frequency domain, i.e. “from the first principles” [5]
(this paper is referred further as I). The tensor MRTE of I for the
case of vector waves was derived on the basis of a generalized extinc-
tion theorem (two-frequency Ward-Takahashi indentity) [5–7] accord-
ing to which the extinction of a pulse by propagation through a discrete
random medium is conditioned by the incoherent scattering, the real
absorption and by the change in time of the electromagnetic energy ac-
cumulated inside scatterers. This extinction theorem of principle was
verified recently [8] in connection with the discussion [9,10] (especially
p.92) and [11,12].

The MRTE of I enables one to describe not only the phenomenon
of a pulse speed reduction but also the effects of the time delay and the
electromagnetic energy accumulation inside scatterers on a pulse prop-
agation through a strongly scattering medium. The tensor MRTE of I
takes into account the dispersion in the time or frequency domain of
both the mass and intensity operators. These two types of the disper-
sion give, respectively the coherent v−1

coh and incoherent v−1
incoh(s, s

′)
components of the inverse tensor-operator v−1

E (s, s′) of the energy
transport velocity with the matrix elements

[
v−1
E (s, s′)

]
αβ,α′β′

=
(
v−1
coh

)
αβ,α′β′

· δ(s− s′)+
[
v−1
incoh(s, s

′)
]
αβ,α′β′

(1)

in accordance with equation (96) of I (from here on the references on
equations of I are denoted as (I.96) and so on). The coherent component
of (1) being diagonal in the space of unit vectors s and s′ is given
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by equation (I.96a) and defined roughly in the case of non-absorptive
scatterers by the inverse value of the group velocity. The incoherent
component of (1) being non-diagonal in the the space of unit vectors is
given by equation (I.96b) and characterizes the quantity of the effect of
the time delay on a pulse propagation. The same incoherent component
makes also a principal contribution to the quantity “a” of the resonance
efficiency in accordance with the sum rule (I.90) in the form∫

ds′
[
v−1
E (s′, s)

]
αα,ββ

=
2
vE

(2)

and therefore to the energy accumulation inside scatterers which is
characterized by the ratio a/(1 + a) in the region of the diffusion
regime. The last result is a particular consequence of the general equa-
tion

< w >=< woutside > + < winside > (3)

where < w(R, ω) > , < woutside(R, ω) > and < winside(R, ω) > are
the mean spectral components of the electromagnetic energy density
in anpoint R of a random medium, in a point R outside scatterers
and in a point R inside scatterers, respectively. It is of substantial
importance that all three quantities of (3) can be calculated, actually
with the aid of the same operator of the energy accumulation inside
scatterers A+ in accordance with equation (I.42a) for < w > and
also the following equation for the mean spectral component of the
electromagnetic energy density inside scatterers

< winside >= −1
2
εbac · ε1

ε′
·
(
A+ < E1 ⊗ E2 >

)
αα

(4)

As one can see from equation (1), the energy transport velocity in a
dense random medium near resonance is in general an operator quan-
tity in the space of unit vectors and indices of polarization but not
a scalar quantity as in Reference 1. And only at large optical depth
from field source in the random medium where the diffusion regime of
a pulse propagation is established does the energy transport velocity
become the scalar quantity vE in accordance with the sum rule (2).

The aim of this paper is to demonstrate the above mentioned
properties of the operator energy transport velocity of a pulse in a
dense random medium near resonance scattering as well as the distri-
bution of the mean electromagnetic energy density outside and inside
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scatterers by consideration of two simple solutions for the MRTE (I.87).
First we find a solution for (I.87) in the single scattering approxima-
tion for the case of an optically thin random medium slab with the
thickness L much less the transport mean free path, L � ltr . This
simple solution appears as physically meaningful by reveling an angu-
lar time delay of the pulse transmission through and reflection from
the slab which is similar to the known angular time delay in the quan-
tum mechanical scattering theory of particles [13]. The angular time
delay being a microscopic quantity is defined in our case by the matrix
elements of the incoherent component of the inverse tensor-operator
of the energy transport velocity (1). It is worthwhile to note that this
microscopic time delay is connected with such an energetic quantity as
arrival time [2] and therefore can be measured experimentally.

Secondly we construct a solution for the MRTE (I.87) in the dif-
fusion approximation for a pulse propagation in an unbounded random
medium at large optical depth R� ltr from a field source. In this case
the energy density of the pulse is propagated with the reduced diffusion
constant D defined by the scalar energy transport velocity vE and the
transport mean free path. This solution in the diffusion approximation
gives also simple formulas for the mean electromagnetic energy density
distribution outside and inside scatterers during the pulse propagation.

The plane of the paper is as follows. In Section 2 the MRTE (I.87)
is transformed to the integral form in the space and time domain. In
Section 3 the iterative method is applied to the MRTE in the integral
form that gives a solution in the single scattering approximation. The
diffusion approximation is applied to find a solution for the MRTE in
Section 4. It is helpful to mention that in these three sections only
general propeties of the mass and intensity operators are used such as
two trequency Ward-Takahashi identity (I.36). Accordingly, only gen-
eral roperties of the coefficients in the MRTE (I.87) are used in the
form of the sum rule (2) for the inverse tensor-operator of the energy
transport velocity (1) and the optical theorem (I.82) connection the
phase tensor Wαα,α′β′(s, s0) and the extinction length l defined by
equations (I.75) and (I.83), respectively. In Section 5 the obtained solu-
tions for the MRTE are analyzed in the low-density limit and compared
with results of the experiments [2]. Section 6 gives our conclusions and
discussions. In particular, this section discusses briefly the problem of
finding either experimentally or theoretically a concrete form for the
integral kernels of the MRTE that should be considered in detail sep-
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arately. Appendices contain the technical details. Some preliminary
results of Sections 3 and 5 are presented in reports [14,15].

2. Modified Radiative Transfer Equation in an Integral
Form

The MRTE (I.87) is written in the space-time Fourier trans-
form representation with the wave vector q and frequency ω for
the tensor-propagator Fαβ,α′β′(s, s′; q, ω) of the radiance where s, s′

are unit vectors and α, β and α′β′ are indices of polarization of the
field and source, respectively. This equation was derived in I from the
Bethe-Salpeter equation in kinetic form (I.53) by using the weak time-
dispersion approximation along with the transeverse fields approxi-
mation ad quasi- far wave zone approximation. Let us introduce the
space-time representation for the tensor-propagator of the radiance by
the equation

F(s, s′; q, ω) =
∫ ∞

0
dt

∫
dRei(ωt−q·R) · F(s, s′; R, t) (5)

and substitute

F(s, s′; R, t) =
1

(4π)2
· keff
k0neff

Φ(s, s′; R, t) (6)

Then the MRTE (I.87) takes the form

∂

∂t

∫
ds′′ v−1

E (s, s′′) Φ(s′′, s′; R, t) +
(
s · ∇R +

1
l

)
Φ(s, s′; R, t)

∫
ds′′W (s, s′′)Φ(s′′, s′; R, t) + δ(s− s′)δ(R)δ(t)Ptr(s)⊗ Ptr(s)

(7)

In this equation the matrix notation is used according to which the
product, e.g., of two tensors WΦ is equal to Wαβ,α′′β′′ Φα′′β′′,α′β′ and
repeated subscripts iimply the summation. The space-time representa-
tion of equation (I.88) gives
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I(s; R, t) =
1

(4π)2
· keff
k0neff

·
∫ t

0
dt′

∫
ds′

∫
dR
′Φ(s, s′;R−R

′
, t− t′) · J(s′;R′, t′)

(8)
where the radiance tensor Iαβ(s; R, t) and the source tensor
Jαβ(s; R, t) are expressed in terms of the tensor quantities Iαβ(s; q, ω)
and Jαβ(keffs; q, ω) similar to equation (5). The application of the
same transform (5) to equations (I.77), (I.78), and (I.79) gives the ex-
pressions of the mean electromagnetic energy density < w(R, t) > ,
Poynting’s vector < S(R, t) > , and field energy absorption because
of conductivity < Qcon(R, t) > , respectively in terms of the radiance
tensor (8). In particular, the mean Poynting’s vector is given by

< S(R, t) >=
1
2
εbac · c

2
0

cph

∫
ds · sIαα(s; R, t) (9)

All these energetic quantities in the space-time representation R, t
characterize the electromagnetic field of a quasi-monochromatic pulse
in a random medium with a middle frequency Ω being some functions
of Ω as in the traditional radiative transfer theory [16]. Strictly speak-
ing, for example the expression (9), becomes the true mean Poynt-
ing’s vector after additional integration with respect to the middle fre-
quency Ω in accordance with the complex convolution (I.7) resolved
for f(t)h(t) .

The coherent component v−1
coh of the inverse tensor-operator of the

energy transport velocity (1) can be written on the base of equation
(I.96a) in the case of isotropic (in average) and non-absorptive random
medium as

v−1
coh(s) = v−1

cohPtr(s)⊗ Ptr(s) (10)

here a scalar velocity vcoh is defined by

c20
cphvcoh

= 1− ∂�Mtr(keff )
∂E

(11)

where Mtr(k) = Mtr(k, Ω+ i0) and the partial derivative with respect
to the quantity E = Ω2/c20 or frequency Ω is taken. The represen-
tation (10) enables one to transform equation (7) to an integral form.
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This integral equation is derived in Appendix I and may be written as
follws

Φ̂(s, s′; R, t) =e−tδ(s− s′)δ(R− st)Ptr(s)⊗ Ptr(s)

− ∂

∂t

∫ t

0
dt′

∫
dR
′
∫

ds′′e−(t−t′)

· δ
(
R−R

′ − s(t− t′)
)
v̂−1
incoh(s, s

′′) · Φ̂(s′′, s′; R′, t′)

+
∫ t

0
dt′

∫
dR
′
∫

ds′′ e−(t−t′)

· δ
(
R−R

′ − s(t− t′)
)
Ŵ (s, s′′) · Φ̂(s′′, s′; R′, t′)

(12)
Here the optical units are used for: (a) the space and time variables
R̂ = R/l and t̂ = vcoht/l which are denoted for simplicity again R and
t , (b) the incoherent component of the ivnerse tensor-operator of the
energy transport velocity v̂−1

incoh(s, s
′) = vcohv

−1
incoh(s, s

′ , (c) the phase
tensor Ŵ (s, s′) = lW (s, s′) , and (d) the tensor propagator according
to Φ = (vcoh/l3)Φ̂ .

A solution for equation (12) has the form of the sum Φ̂ = Φ̂coh +
Φ̂incoh of the coherent and incoherent components. The ;coherent com-
ponent Φ̂coh is given by the first term of the right hand side (r.h.s.)of
equation (12). The incoherent component Φ̂incoh is given by

Φ̂incoh = Φ̂delay + Φ̂scat (13)

where a “time delay” teimr Φ̂delay and “scattering term” Φ̂scat de-
note the second and third terms of the r.h.s. of (12), respectively. It
is worthwhile to note here that equation (12) describes a delta-pulse
propagation in a strongly scattering medium near resonance scatter-
ing in accordance with (8) and differs from the traditional radiative
transfer equation [16] by the time delay term Φ̂delay .

One can see that this term has equalitatively the form of the
time derivative of the scattering term with a minus sign multiplied
by a quantity tdelay of order of the microscopic time delay near res-
onance scattering defined below by equation (28), i.e. Φ̂delay(t) ∼
(−1)tdelay∂Φ̂scat(t)/∂t . Let us suppose that the scattering term
Φ̂scat(t) has a form similar to the typical detected time-dispersion curve
when picosecond laser pulse is propagated through a highly scattering
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medium (see, e.g., Reference 17). In this case the time delay term will
be negative and positive for the front and back parts of the scattering
term, respectively with the same area between the curve Φ̂delay(t) adn
t axis as it follows from equation∫ ∞

0
dtΦ̂delay(t) = 0 (14)

In Fig. 1 the quantity tdelay is given by tdelay = 1 nsec and it is shown
qualitatively that the curve of the incoherent component Φ̂incoh(t) by
multipl scattering near resonance goes lower and higher of the curve
of the scattering term Φ̂scat(t) for the front and back parts of the
scattering term, respectively. A non-physical negative part of the in-
coherent component in Fig. 1 related to the first time-interval from
t = 0.0 nesc to t = 0.8 nesec appears because the MRTE (12) is un-
able to describe correctly this first small time interval of order of the
microscopic time delay. In conclusion of this section one may say that
the effect of resonance scattering on a pulse propagagted in a strongly
scattering medium is similar to the effect of inductivity on a signal in
an electrical circuit (see, e.g., Reference 18).

Figure 1. Qualitative illustration of equation (13) assuming Φ̂scat (solid

line) has a form similar to the time dispersion curve in Ref. 17. The time

delay term (dashed line) is proportional to the negative time deriva-

tiove of Φ̂scat and the incoherent component (dotted line) does lower

and higher than Φ̂scat for the front and back parts of the scattering

term.
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3. Solution for MRTE by Iterative Method

Equation (12) is suitable for application of the iterative method.
In this method the first iteration is obtained by substituting the co-
herent component Φ̂coh into the second and third terms of the r.h.s.
of (12) instead of the tensor popagtor Φ̂ that gives a solution for (12)
in the single scattering approximation.

We will calculate further the mean transmitted and reflected en-
ergy flux of the field for an incident plane delta pulse radiated by an
instantaneous source with tensor

Jαβ(s; R̂, t̂) = Jαβδ(ẑ)δ(̂t)δ(s− s0) (15)

on the boundary z = 0 of the random medium slab 0 < z < l in
the direction of the unit vector s0 with the projection S0z > 0 in the
principal coordinate system of the problem X, Y, Z. The polarization
tensor Jαβ is given by

Jαβ = (4π)2
2neffc2ph
εbacc30l

S0j0
αβ (16)

where S0 is a magnitude of the mean Poynting’s vector (9) for the
coherent component of a solution for equation (12) in accordance with

< Sz(τ, t̂) >coh= µ0S
0 · e−t̂ · δ(τ − µ0t̂) (17)

and a tensor J0
αβ has the unit trace, J0

αα = 1 . In equation (17) τ = z/l
is the optical depth in the random medium and the denotation µ0 = s0z

is used. We are interested in the quantity

Φ̂(s, s0; τ, t̂) =
∫

dR̂⊥Φ̂(s, s0; R̂, t̂) (18)

where integration is performed along a plane τ = const . Straightfor-
ward calculations in the single scattering approximation give for the
time delay and scattering terms of equation (13) the following expres-
sions

Φ̂delay(s, s0; τ, t̂) = −v̂−1
incoh(s, s0) ·

∂

∂t̂
e−t̂ · f(τ, µ, t̂) (19)
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and
Φ̂scat(s, s0; τ, t̂) = Ŵ (s, s0) · e−t̂ · f(τ, µ, t̂) (20)

Here the scalar function f(τ, µ, t̂) is defined by

f(τ, µ, t̂) =
∫ t̂

0
dt̂′H(τ − µ(̂t− t̂′); 0, τ0)δ(τ − µ(̂t− t̂′)− µ0t̂

′) (21)

where H(τ ; a, b) is a step function equal to 1 for a < τ < b and
equal to zero for all another τ . The quantity τ0 = L/l denotes the
optical thickness of the slab and µ = sz . Function (21) for the mean
transmitted f(τ0, µ > 0, t̂) and reflected f(0, µ < 0, t̂) energy flux
takes the form

f(τ0, µ > 0, t̂) =
1

|µ− µ0|
H

(
t̂;

τ0
µ0

,
τ0
µ

)
(22)

and

f(0, µ < 0, t̂) =
1

|µ|+ µ0
H

(
t̂; 0,

|µ|+ µ0

|µ|µ0
· τ0

)
(23)

Here in the r.h.s. of (22) as well as further in the r.h.s. of (26) and (31)
µ < µ0 , and µ and µ0 are inverted if µ > µ0 .

Equations (19)-(23) give the incoherent component (13) of the
solution for equation (12) in the single scattering approxmiation for
the case of the delta pulse transmitted through or reflected from the
random medium slab. To characterize this solution we will introduce,
following Reference 2, an “arrival time” t̂∆ at which a ∆ part, 0 <
∆ < 1 , of the pulse energy is transmitted through or reflected from the
random medium slab. In accordance with equation (9) for the mean
Poynting’s vector the arrival time, e.g. of the pulse transmission, may
be defined by equation

∫ t̂∆

0
dt̂

(
Φ̂incoh

)
αα,α′β′

(s, s0; τ0, t̂)Jα′β′ =

= ∆ ·
∫ ∞

0
dt̂

(
Φ̂incoh

)
αα,α′β′

(s, s0; τ0, t̂)Jα′β′

(24)
Substituting (22) into (19) and (20) and remembering (13), one can
find for the arrival time of the pulse transmission through the slab the
expression [14, 15]

t̂∆ = t̂0∆ + δt̂ (25)
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where
t̂0∆ = Ln

1

(1−∆)exp
(
− τ0
µ0

)
+ ∆exp

(
− τ0

µ

) (26)

and
δt̂ = Ln(1 + t̂delay) (27)

The meaningful quntity of angular time delay tdelay appearing in the
r.h.s. of (27) is given by

t̂delay(s, s0) =
1

Ŵαα,α′β′(s, s0)J0
α′β′

·
[
v̂−1
incoh(s, s0)

]
αα,α′β′

J0
α′β′ (28)

In the case of azimuthal symmetry of reception of the transmitted radi-
ation the numerator and denominator of the r.h.s. of (28) are averaged
additionally with respect to the azimuth of the s unit vector in the
principal spherical coordinate system with polar axis Z along normal
to the slab. In Reference 2 an “arrival velocity” vA is considered which
may be defined in our theory by vA/vcoh = τ0/t̂∆ and obeys in the
single scattering approximation the equation

vcoh
vA
− vcoh

v0
A

=
δt̂

τ0
(29)

where vcoh/v
0
A = t̂0/τ0 . The arrival time of the pulse reflection is

defined by equation (24) with τ0 replaced by zero and has the form
(25) where t̂0∆ is given by

t̂0∆ = Ln
1

1−∆ + ∆exp
(
− |µ|+µ0
|µ|µ0

· τ0
) (30)

and δt̂ is given by the same equations (27) and (28).
As one can see, in the equality (25) for the arrival time of the delta

pulse transmitted through and reflected from a random medium slab
the first term t̂0∆ corresponds to the traditional radiative transfer the-
ory [16]. The second term δt̂ defined by equations (27) and (28) takes
into account the effect of the time delay by resonance scattering and
is connected directly because of equations (I.75) and (I.96b) with the
scattering properties of the scatterers and their correlation functions.
Similarly, the second term of the left hand side (l.h.s.) of equation (29)
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for the arrival velocity corresponds to the traditional radiative transfer
theory and the term of the r.h.s. takes into account the effect of the
time delay. An analysis of the expression (28) for the time delay is
given in Section 5.

To characterize the physical meaning of the time delay (28) it is
useful to write the solution (19) and (20) for a small time when the
process of the pulse transmission through or reflection from the slab is
not finished yet, respectively. One finds for the pulse transmission

∫ t̂

0
dt̂(Φ̂incoh)αα,α′β′(s, s0; τ0, t̂)Jα′β′ =

=
1

|µ− µ0|
Ŵαα,α′β′(s, s0)J ′αβ

′ ·
[
t̂− τ0

µ0
− t̂delay(s, s0)

] (31)

for
τ0
µ0

< t̂ <
τ0
µ
� 1

and for the pulse reflection
∫ t̂

0
dt̂(Φ̂incoh)αα,α′β′(s, s0; 0, t̂)Jα′β′ =

=
1

|µ|+ µ0
Ŵαα,α′β′(s, s0)Jα′β′ ·

[̂
t− t̂delay(s, s0)

]
(32)

for
0 < t̂ <

|µ|+ µ0

|µ|µ0
· τ0 � 1

The formulas (31) and (32) show that the quantity (28) defines really
a time delay during the pulse transmission through or reflection from
an optically thin slab. Comparsion shows the r.h.s. of (31) and (32)
is similar to an expression for the average position at time t of the
portion of the wave function for scattered particles found inside the
given scattering cone (see equation (1.6) of Reference 13).

4. Diffusion Asymptotics of Solution for MRTE

Let us return to the MRTE (I.87) in the space-time Fourier trans-
form representation and rewrite this one in the matrix notation as
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follows

(iκ− is · q)Φ(s, s′; q, ω)−
∫

ds′′U(s, s′′; ω)Φ(s′′, s′; q, ω) = −E(s,s′)
(33)

Here the tensor-propagator Φαβ,α′β′(s, s′; q, ω) is defined by equation
(6), a quantity κ = ωcph/c

2
0 , a tensor-operator Uαβ,α′β′(s, s′; ω) is

given by

U =
1
l
E −W + iκD (34)

with
Eαβ,α′β′(s, s′) = P tr

αα′(s)P
tr
ββ′(s)δ(s− s′) (35)

and the tensor-operator of dispersion in frequency domain
Dαβ,α′β′(s, s′) is defined by equation (I.86) and connected with the in-
verse tensor-operator of the energy transport velocity (1) by equation
(I.85). Construct a solution for equation (33) following the method
of References 6,7 in terms of the tensor-eigenfunctions Φ(n)

αβ (s; q, ω)
wich satisfy the homogeneous equation (33) for the eigenvalues iκ =
λn(q, ω) and obey the orthogonality and completeness condition given
by (

Φ(n),Φ(m)
)

=
∫

dsΦ(n)
αβ (s; q, ω)Φ(m)

αβ (s; q, ω) = δnm (36)

and ∑
n

Φ(n)
αβ (s; q, ω)Φ(n)

α′β′(s
′; q, ω) = Eαβ,α′β′(s, s′) (37)

We denote Φ(n)
αβ the left tensor-eigenfunction related to Φ(n)

αβ and sat-
isfies the transposed homogeneous equation (33) for iκ = λn and with
the tensor-operator

Ũαβ,α′β′(s, s′; ω) = Uα′β′,αβ(s′, s; ω) (38)

A general solution for equation (33) has the form of the series

Φαβ,α′β′(s, s′; q, ω) = −
∑
n

Φ(n)
αβ (s; q, ω)Φ(n)

α′β′(s
′; q, ω)

iκ− λn(q, κ)
(39)

that is verified by direct substitution.
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We seek further the singular part of the solution (39) as q, ω → 0
the existence of which can be established with the help of the optical
theorem (I.82). Indeed, combining (33) and (I.82) at q = 0 one can
show that the integral of Φαβ,α′β′(s, s′; 0, ω) over s behaves as 1/ω
as ω → 0 in the case of non-absorptive scatterers. On the other hand,
from the optical theorem (I.82) it is seen that the tenso-eigenfunctions

Φ(0)
αβ(s; 0, 0) = Φ(0)

αβ(s; 0, 0) =
1√
8π

P tr
αβ(s) (40)

corresponding to the eigenvalue λ0(0, 0) = 0 responsible for the above
singularity in the case of non-absorptive scatterers.

As it was shown, the 1/ω singularity is closely connected to the
energy conservation law which is unique in the problem considered.
Therefore we shall assume that there is an unique tensor-eigenfunction
Φ(0)
αβ(s; q, ω) related to the eigenvalue which behaves as λ0(q, ω) → 0

as q, ω → 0 , and moreover that for sufficiently small q and ω there
exists a finite gap between this and other eigenvallues, i.e. |λ0(q, ω)−
λn(q, ω)| > 0 for n �= 0 . It is worth noting that this is exactly the
properties of the spectrum of the traditional non-stationary radiative
transfer equation [16].

These assumptions allow one to separate the singular part of the
spectral decomposition (39) of Φαβ,α′β′ and then to obtain λ0(q, ω)

and Φ(0)
αβ(s; q, ω), Φ(0)

αβ(s; q, ω) with the aid of perturbation method
with respect to q, ω . As a result the following diffusion asymptotics of
(39) is derived (see details in Appendix II)

Φαβ,α′β′(s, s′; q, ω) � − c20
cph
· Φαβ(s; q)Φα′β′(s′; q)

iω −Dq2 − 1
tabs

(41)

Here the tensor-function Φαβ(s; q) is given by√
8π(1 + a)Φαβ(s; q) = P tr

αβ(s)− iΦ̃αβ(s; q) (42)

with
Φ̃αβ(s; q) = lim

ω→0

∫
ds′Φαβ,γγ(s, s′; 0, ω)(s′ · q) (43)

The diffusion constant D takes the form

D =
1

8π(1 + a)
· c

2
0

cph
· 1
q2
·
∫

ds(s · q)Φ̃αα(s; q) =
vEltr

3
(44)



Poynting’s theorem and single scattering near resonance 41

where the scalar energy transport velocity vE was discussed in the
Introduction. The transport mean free path is written as usual as ltr =
l/(1− < cos θ >) with mean cosine defined by equation∫

dssαWγγ,α′β′(s, s′) =
1
l
< cos θ > s′αP

tr
α′β′(s

′) (45)

For the mean absorption time tabs one finds

1
tabs

= Ω
�ε̂1
ε′
· a

1 + a
(46)

where ε̂1 is the complex dielectric permittivity of a conducting scat-
terer and ε′ = ε1 − εbac is deviation of the real part of one from a
background constant.

Substitute the asymptotics (41) into equation (8) to obtain the
radiance tensor and further the mean energetic quantities (I.77 - I.79)
in the diffusion approximation. These straightforward calculations lead
to the following physically transparent relations

< S(R,ω) >= −D∇ < w(R,ω) > (47)

and
< Qcon(R,ω) >=

1
tabs

< w(R,ω) > (48)

Equation (47) is the Fick’s law for the electromagnetic energy transport
which relates the mean spectral component of the Poynting’s vector
< S(R,ω) > with the mean spectral component of the electromag-
netic energy density < w(R,ω) > . Similarly, equation (48) relates
the mean spectral component of the field energy absorption because
of conductivity < Qcon(R,ω) > with the mean spectral component of
the electromagnetic energy density. Direct verification shows that the
mean energetic quantities in the diffusion approximation satisfy the
mean Poynting’s theorem (I.11) in the form(

−iω −D∆ +
1
tabs

)
< w(R,ω) > + < Qsrc(R,ω) >= 0 (49)

Here the mean spectral component < Qsrc(R,ω) > of the work of field
source in an unit volume is given in accordance with equation (I.46)
and (I.66) by

< Qsrc(R,ω) >= − 1
(4π)2

·
k2
eff

2Ωµk0neff
·
∫

ds

∫
q
eiq·RJαα(keffs; q, ω)

(50)



42 Barabanenkov et al.

To obtain further the mean spectral component of the electromagnetic
energy density inside scatterers (4) it is more simple to use the following
relationshi between this quantity and the mean spectral component of
the field energy absorption because of conductivity

< winside >=
ε1

Ω�ε̂1
< Qcon > (51)

Combining this relation with (48), one finds

< winside(R,ω) >=
ε1
ε′
· a

1 + a
< w(R,ω) > (52)

and therefore the mean spectral component of the electromagnetic en-
ergy density outside scatterers is given in accordance with (3) by

< woutside(R,ω) >=
(

1− ε1
ε′
· a

1 + a

)
< w(R,ω) > (53)

Equations (52) and (53) show that (ε1/ε′)a/(1 + a) part of the mean
electromagnetic energy of a pulse during its propagation through a
random medium is distributed inside scatterers and (1−(ε1/ε′)a/(1+a)
part of the mean energy distributed outside scatterers.

5. Low-Density Limit and Comparison with Experi-
ments

In the lowest order of the number density of scatterers n the mass
and intensity operators in the space Fourier transform representation
are given by (see, e.g., Reference 19)

Mαβ(k,Ω) = nTαβ(k, k; Ω) (54)

and

Kαβ,α′β′(p, p′; 0, ω) = nTαα′(p, p′; Ω +
ω

2
+ i0)T ∗ββ′(p, p

′; Ω− ω

2
+ i0)

(55)
Here Tαβ(k, k

′; Ω) is the single scattering tensor-operator (T-matrix
of one scatterer) in the jFourier transform representation

Tαβ(k, k
′; Ω) =

∫
dr

∫
dr′exp

[
−i(k · r − k

′ · r′)
]
Tαβ(r, r′; Ω) (56)
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where the scattering tensor-operator in the space domain Tαβ(r, r′; Ω)
obeys a tensor Lippman-Schwinger equation T = V + V G0T with the
scattering potential V and the retarded Green tensor-function in a
background medium G0 defined by equation (I. 22) and equation (I.24)
at V = 0 , respectively. The physical meaning of the single scattering
tensor-operator (56) is characterized by that the scattering electric field
E
S(r) in the Fraunhoffer zone of a scatterer has the form

E
S(r) = a(s, s0)G0(r) (57)

where s = r/r determines the scattering direction and the scattering
vector-amplitude a(s, s0) is expressed through the scattering tensor-
amplitude (I. 92) and the electric field E

0 of an incident monochro-
matic plane wave propagated in the direction s0, E

0
s0 = 0 , by equa-

tion
aα(s, s0) = aαα′(s, s0)E0

α′ (58)

In the r.h.s. of (57) G0(r) = exp(ik0r)/(−4πr) is the scalar Green
function in a background medium.

Let us consider equation (57) in the coordinate system x, y, z
natural to the scatterer as a dielectric sphere (see Reference 20, p.82,
Fig. 3.3). In this coordinate system one can find the representation for
the scattering tensor-amplitude (I. 92) in the form

aαβ(s, s0) = S̃1êφαêφβ + S̃2êθαêβ (59)

Here the quantities S̃1,2 = (4π/ik0)S∗1,2 where S1,2 = S1,2(θ) are
the scattering amplitude functions [21] of the copolarized and cross-
polarized channels, θ is the scattering angle, êθ and êφ are the unit
vectors of the natural spherical coordinate system with the polar axis
z along the unit vector s0 , and the unit vector ê , denoted by ê‖|i in
the Reference 20, is placed in an intersection of the x,y-plane and the
scattering plane defined by the angle φ .

The representation (59) enables one to write all quantities of I
which are needed to calculate the time delay (28) in terms of the scat-
tering amplitude function S1,2 and their partial derivatives with re-
spect to the quantity E of frequency Ω . The transverse component
Mtr(k) of the mass operator at k = k0 is given in the lowest order of
the number density of scatterers by equality Mtr(k0) = nS̃(00) where
S̃(00) = S̃1(00) = S̃2(00) corresponds to the forward direction θ = 00
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of scattering. Therefore equation (I. 83) for the extinction length l
takes the form 1/l � −(n/k0)�S̃(00) = nσex where σex is the ex-
tinction across section of single scattering which coincides in the case
of non-absorptive scatterers with its scattering cross section σsc . For
the phase velocity cph = Ω/keff in the random medium where the
effective wave number keff is a root of equation (I.70) one finds

c0
cph

=
keff
k0
�

√
1− �Mtr(k0)

E
(60)

In the same low density limit one can replace keff by k0 in the r.h.s.
of equation (11) for the scalar coherent component vcoh of the energy
transpport velocity in the case of non-absorptive spherical scatterers.
Similarly one may replace Mtr(k) by Mtr(k0) in the r.h.s. of equation
(I. 65a) for the transverse component Gtr(k) of the averaged Green-
tensor function. The last approximation gives for the transverse com-
ponent of the averaged Green-tensor function an expression which can
be obtained from the transverse component of the Green-tensor func-
tion in a background medium by formal replacing the wave number k0

in the background medium with the complex effective wave number
k1 in the random medium defined by equation k2

1 = k2
0 −Mtr(k0) . In

particular one finds

∫
P

∂�Gtr(p)
∂E

=
1
4π
· ∂�k1

∂E
(61)

where the imaginary part of the complex effective wave number is
given approximately by �k1 � 1/2l . The phase velocity vph = Ω/�k1

is connected with the phase velocity cph , defined by equation (60), as
follows

cph
vph

=
�k1

keff
=

√
1 +

(�k1

keff

)2

(62)

In the lowest order of the density of scatterers the second term of the
square root of (62) with the fraction �k1/keff � 1/2k0l � 1 may
be ignored and the phase velocity vph coincides approximately with
cph, vph � cph . The group velocity vg = ∂Ω/∂�k1 obeys the equation

c20
vphvg

= 1− ∂�Mtr(k0)
∂E

+ 2(�k1)
∂�k1

∂E
(63)
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The third term in the r.h.s. of this equation is the second-order of
the density of scatterers and therefore may be omitted. After that
the group velocity vg practically coincides with the scalar coherern
commponent vcoh of the energy transport velocity defined by equation
(11). The phase tensor (I. 75) in the lowest order of the density of
scatterers takes the form

Wαβ,α′β′(s, s0) �
1

(4π)2
naαα′(s, s0) · a∗ββ′(s, s0) (64)

and for the incoherent component (I. 96b) of the inverse tensor-
operator of the energy transport velocity one finds

c20
cph

[
v−1
incoh(s, s0

]
αβ,α′β′

�

�− 1
(4π)2

k0ni

[
∂aαα′(s, s0)

∂E
a∗ββ′(s, s0)− aαα′(s, s0)

∂a∗ββ′(s, s0)
∂E

]
+

+
∂�k1

∂E
Wα,β,α′β′(s, s0)

(65)
Deriving the last equality, one replaced approximatedly in the integral
term of the r.h.s. of (I. 96b) the tensor Kαβ,α′β′(ps, keffs0; 0, 0) by its
value at p = k0 and keff � k0 and used (61). The double trace of
(65) on the base of the representation (59) is given by

c20
cph

[
v−1
incoh(s, s0)

]
ααββ

=
1

(4π)2
· 2k0n�

(
∂S̃1

∂E
S̃∗1 +

∂S̃2

∂E
S̃∗2

)
+

+
1

(4π)2
· ∂�k1

∂E
· n

(
|S̃1|2 + |S̃2|2

) (66)

Substituting this euqality together with the double trace of the co-
herent component (10) of the inverse tensor-operator of the energy
transport velocity into the sum rule (2) and using the optical theorem
(I. 82) in the case of non-absorptive scatterers

1
(4π)2

· n
∫

ds
(
|S̃1|2 + |S̃2|2

)
=

2
l

(67)

one can obtain the following expression for resonance efficiency “a” in
the scalar energy transport velocity

a = −n∂�S̃(00)
∂E

+
k0

(4π)2
·n

∫
ds�

(
∂S̃1

∂E
S̃∗1 +

∂S̃2

∂E
S̃∗2

)
+

1
l
·∂�k1

∂E
(68)
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The sum aLag of the first two terms in the r.h.s. of eq. (68) is trans-
formed to the form

aLag = a− 1
l
∂
�k1

∂E
=

3f
4x2

∞∑
n=1

(2n+ 1)
(
∂αn
∂x

+
∂βn
∂x

)
− 1

2
fC(x) (69)

Here x = k0r0 and f = n4πr3
0/3 are the size parameter and

packing fraction of spherical scatterers with radius r0 , respectively.
The phases αn(x) and βn(x) of the different partial waves are defined
in terms of Mie coefficients an(x) and bn(x) by well known equations
(see Reference 21, p.161). The parameter C(x) defines the phase veloc-
ity cph in accordance with equation (60) by c0/cph = (1 + fC(x))1/2 .

A version of formula (68) for scalar waves witout the “extra” third
(last) term in the r.h.s. has been first obtained in the pioneering work
[1]. There has been some confusion and contraversy in the literture
about the origin and contribution of this “extra” term to the reso-
nance efficiency “a”. The existence of the “extra” term was connected
directly with a corresponding term of the generalized Ward-Takahashi
identity whcih was derived for multiple scattering of classical scalar
waves in [6], confirmed in [8] and extended to the case of vector elec-
tromagnetic waves in [5,7]. Some later a version of formula (68) for
scalar wave with “extra” term appeared in Reference 22. A contribu-
tion of the “extra” term to the resonance efficiency “a” is formally of
the first order in density of scatterers according to [9] and as one can
see also from the integral term in the r.h.s. of (I. 96b). The “extra”
term of the second order in density is obtained in the r.h.s. of (68)
within the “Wigner” approximation employd in Reference 22. By defi-
nition this approximation is obtained if p -dependence of the intensity
operator in the integral term of the r.h.s. of (I. 96b) is ignored (com-
pare with a sentence after equation (65)). The formula (69) has been
first obtained in References 10 and 19 by a heuristic generalization of
a result for the diffusion constant D of the scalar waves in a random
medium near resonance scattering on the case of the vector waves and
was used in Reference 2. The same problem of a diffusion constant D
in a random medium near resonance scattering of vector waves was
considered in Reference 3 by a similar to [10, 19] heuristic method but
with a different from (69) result for resonance efficiency “a”. The result
of [3] for resonance efficiency which we denote akav coincides with the
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second term in the r.h.s. of equation (68) and has the form

akav = aLag + n
∂�S̃(00)

∂E

=
3f
2x2

∞∑
n=1

(2n + 1)
(
∂αn
∂x

sin2 αn +
∂βn
∂x

sin2 βn

) (70)

Perhaps it would be helpful to note concluding this paragraph that
exact formulas for resonance efficiency “a” were derived without using
any perturbative expansion with respect to density of scatterers or their
potential in References 9 and 7 for classical scalar and vector waves, re-
spectively. From these exact formulas one may see in particular that in
the case of quantum mechanical scattering (electron-impurity system)
with energy-independent real scattering potential, when for example in
equation (I. 22) a function g(Ω) is constant, the resonance efficiency
“a” becomes equal to zero because the term in the Ward-Takahashi
identity (I. 36) including a difference of values of this functions of two
frequencies disappears.

Let us turn to the definition (28) of the time delay. in the case
of completely polarized source the polarization tensor has the form
J0
αβ = J0

α(J0
β)
∗ where J0

α is a complex unit vector. In the coordi-
nate system natural to the scatterers this unit polarization vector
can be characterized by its parallel J0

‖ = J
0 · ê and perpendicular

J0
⊥ = −J0 · êφ components relatively to the scattering plane. In par-

ticular, for the linearly polarized source the parallel and perpendicular
components of its unit polarization vector directed along X axis of
the natural coordiante system are given by J0

‖ = cosφ and J0
⊥ = sinφ

where φ is the azimuthal angle of the scattering plane in the natural
coordinate system. In this case the deffinition (28) of the time delay
can be transformed in the lowest order of the density of scatterers on
the basis of equations (59), (64) and (65) to the following form

tdelay(θ, φ)/t0 = − 3f
4πx2

· σsc
σsc(θ, φ)

�
(
∂S1

∂x
S∗1 sin2 φ+

∂S2

∂x
S∗2 cos2 φ

)
(71)

Here t0 is a scattering mean free time defined by 1/t0 = c20/lcph and
σsc(θ, φ) = (1/E)(|S1|2 sin2 φ + |S2|2 cos2 φ) is differential scattering
cross section of spherical scatterer. A contribution of the last term in
the r.h.s. of (65) to (71) is omitted. The time delay (71) satisfies the
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norm condition

1
t0

∫ π

0
sin θdθ

∫ 2π

0
dφ

σsc(θ, φ)
σsc

· tdelay(θ, φ) =
1
t0

< tdelay(θ, φ) >= akav

(72)
where < tdelay(θ, φ) > is the time delay averaged over all scattering
directions θ, φ and the quantity akav is defined by equation (70).
Comparison shows that averaged time delay < tdelay(θ, φ) > may be
thought of approximately as introduced in Reference 19 by heuristic
approach a time ∆tw needed for incoming plane wave to “charge” the
volume of a scatterer to a portion of electromagnetic energy. Actually,
if one replace in equation (72) the scattering mean free time t0 by
l/c0 and replace also in the r.h.s. of (70) the quantities sin2 αn and
cos2 αn by 1/2 then < tdelay(θ, φ) > will become ∆tw in accordance
with [19] (see equations (31) and (35) of this reference). We suppose
further the incident plane delta pulse being radiated by the source is
normal to the slab boundary direction, s0z = 1 , when the principal
and natural coordinate systems are the same. This supposition enables
one to obtain easily a time delay tdelay(θ) for the case of azimuthal
symmetry of a reception of the transmitted or reflected radiation by
averaging the numerator and denominator in the r.h.s. of (71) with
respect to the angle φ that gives

tdelay(θ)/t0 = − 3f
4πx2

· σsc
σsc(θ)

�
(
∂S1

∂x
S∗1 +

∂S2

∂x
S∗2

)
(73)

where σsc(θ) = (1/E)(|S1|2 + |S2|2) .
Before going over to the actual computation of the time delay, let

us stress that the r.h.s. of equations (71) and (73) involves the partial
derivatives of the scattering amplitudes S1,2 or because of the repre-
sentation (59) and definition (I. 92) the partial derivatives of the single
scattering tensor-operator (56) with respect to frequency Ω at con-
stant wave number k = k0s and k

′ = k0s0 on the shel k = k′ = k0 .
As such it does not seem to be of any numerical use since text books
provide the scattering amplitudes only. To resolve this problem approx-
imately one could use for the first time the observation of Reference 10
(see p.92) that partial derivatives of (56) with respect to wve numbers
k and k

′ are small in comparison with partial derivative with respect
to frequency Ω near resonance of scattering where the Ω -dependence
of (56) is expected to be large. This leads one to replace the partial
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derivatives with repsect to Ω by total derivatives in the r.h.s. of equa-
tions (71) and (73). For the exact resolution of the problem under
consideration one can try to apply equations whcih connect the partial
and total derivatives of the sacttering amplitudes with respect to Ω .
Such equations can be derived by using the key indentity

2E
∂

∂E
exp

[
−ik0(s · r − s0 · r′)

]
=

=
(
s
∂

∂s
+ s0

∂

∂s0

)
exp

[
−ik0(s · r − s0 · r′)

] (74)

and for the scattering amplitude S1 of the copolarized channel giveing
(Appendix III)

�
(
dS̃1

dE
S̃∗1

)
= �

(
∂S̃1

∂E
S̃∗1

)
+

cos θ
E
�

(
dS̃1

d cos θ
S̃∗1

)
(75)

The same formula for the scattering amplitude S2 of the cross polar-
ized channel seems more complicated and is not discussed here. Fig
2. shows the numerical evaluation of equations (72) and (73) for the
averaged time delay < tdelay(θ, φ) > and the time delay tdelay(θ) in
the case of azimuthal symmetry of a reception for Mie scatterers with
index of refraction m = 2.28 + i ∗ .007 , pakcing fraction f = 10.9%
angle θ = 10 degree, and slab thickness L = 62.5 mm relevant for
the time domain experiments [2]. The same figure displays the exper-
imental time delay tdelay(θ) obtained from experiments [2] by help of
equations (25) and (26). All time delays are given in Fig. 2 in units of
t0 . In accordance wtih Introduction the single scattering approxima-
tion is applied under condition that parameter ltr/L in Fig. 3 is more
than one, ltr/L > 1 . Fig. 4 shows the numerical evaluation of equation
(71) for the time delay tdelay(θ, π/2) in units of t0 in the case of copo-
larized scattering φ = π/2 when the scattering plane is perpendicular
to the polarization plane of the incident pulse and using exact equa-
tion (75) for the partial derivative of the scattering amplitude S1 . This
figure displays a small difference between exact and approximate eval-
uation of (71) by using equatiion (75) and by replacing of the partial
derivative of S1 with the total derivative of one, respectively.
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Figure 2. Top graph shows < tdelay(θ, φ) > in units of t0 for Mie scatterers

with index of refraction m = 2.28+i∗.007, packing fraction f = 10.9% and

slab thickness L = 62.5mm relevant for the time domain experiments.

Bottom graph shows tdelay(θ) for the same medium sample, azimutal

symmetry of a reception, and angle θ = 10 degree with experimental

data shown as o’s. For both graphs the x-axis is frequency in GHz.

Figure 3. Ratio of transport mean free path ltr to slab thickness L =
62.5mm for experimental data with fractional volume 0.109.
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Figure 4. Numerical evaluation of equation (71) for the time delay

tdelay(θ, π/2) in the units of t0 in the case of copolarized scattering φ = π/2
with θ = 100 when the scattering plane is perpendicular to the polariza-

tion plane of the incident pulse. Evaluations using equation (75) for the

partial derivative (solid line) and by replacing of the partial derivative

with the total derivative (dashed line) are virtually indistinguishable for

this case.

6. Conclusion and Discussion

In this paper two simple solutions for modified radiative transfer
equation (MRTE) (7) are considered. The MRTE is more complicated
than the traditional radiative transfer equation [16] due to the operator
nature of the energy transport velocity (1) in the space of unit vectors
and indices of polarization. The MRTE is transformed to the inte-
gral form (12) whcih enables one to conclude that effect of resonance
scattering on a pulse propagation in a strongly scattering medium is
similiar to the effect of inductivity on a signal in an electrical circuit
in accordance with Fig. 1. The integral equation (12) is suitable for
application of the iterative method. The first iteration gvies a solution
for the problem of the delta pulse transmission through and reflec-
tion from an optically thin slab in the single scattering approximation.
This solution shows that the “arrival time” (25) introduced according
to Reference 2 which can be measured experimentally is simple con-
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nected with the angular time delay (28) of microscopic nature. The
revealed possibility to measure the microscopic time delay (28) by in-
coherent reflection of a pulse from a random medium slab is especially
worthwhile for the problems of remote sensing.

The time delay (28) is transformed in the low-density limit to the
form (71) written in terms of well known scattering amplitude func-
tions [21] and their partial derivatives with respect to frequency. The
time delay(41) is an anisotropic quantity as a function of the scatter-
ing direction and only after averraging over all scattering directions
in the form (72) conincides approximately with an isotropic time de-
lay introduced earlier in Reference 19 by a heuristic approach. Fig 2
shows a qualitative agreement (in units of t0 ) between the time delay
obtained from experiment [2] on a pulse transmission through an opti-
cally thin random medium slab using equations (25-27) and the time
delay obtained by evaluation of equation (73) in the interval from 10
GHz to 15 GHz of the middle frequency Ω of the pulse where the con-
dition of application of the single scattering approximation is satisfied
in accordance with Fig. 3. Nev ertheless, the accuracy of the single
scattering approximation gets worse for the more frequencies Ω , in
particular near Mie resonance frequency about 23 GHz in experiment
[2]. A solution for MRTE (33) in diffusion approximation gives a result
(41) consistent with general theory [6, 7] of wave diffusion in strongly
scattering media. In the diffusion approximation simple formulas (52),
(53) describe the distribution of the electromagnetic energy inside and
outside scatterers, respectively which may be a subject of interest for
photo-chemistry [23] and the medical laser tissue interaction [24].

There is an important problem concerning a way to obtain some
idea of what the integral kernels in the MRTE (7) are like for concrete
dense media cases. This problem may be resolved in principle either
experimentally or theoretically.

One can see that the MRTE (7) being integrated with respect to
time variable in the limits from zero to infinity coincides in its form
with a traditional (conventional) radiative transfer equation for vec-
tor electromagnetic stationary radiation [25]. Therefore the problem
to find a concrete form for the phase tensor and the extinction length
in the MRTE (7) from experimental data or Monte Carlo simulations
is the same with a conventional radiative transfer equation. This prob-
lem in part of Monte Carlo simulations for a conventional radiative
transfer equation with a dense medium kernels was discussed recently
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in Reference 26. It is more difficult to determine from experimental
data or Monte-Carlo simulations the inverse tensor - operator of the
energy transport velocity (1). The formulas derived in Section 3 and
including the angular time delay (28) may be a basis to resolve this
problem.

The low-density limit (54), (55) is, of course not very interesting
approximation to calculate the integral kernels of the MRTE (7). To
calculate these kernels in some realistic form for dense media theoret-
ical models one should use in accordance with definitions (I. 75) and
(I. 96 a,b) the appropriate approximations for the mass and intensity
operators which are energetically consistent with the two-frequance
Ward-Tkahashi identity (I.36). In a next paper we intend to utilize
a nonlinear (selfconsistent) generalization to the single-group approx-
imation (NSGA) which was introduce in References 27 and 28 for a
stationary problem The NSGA has got several advantages: it corre-
sponds to a selfconsistent treatment of [29] for a generalized scattering
operator or a dependent-scattering correction of [30] to this one, it
includes as a consequence the quasi-crystalline approximation with co-
herent potential and a modified ladder approximation of [31], it gives
a generalized Lorentz-Lorenz formula for the effective dielectric tensor
to the cases of terers within the Lorentz cavity does not vanish. The
NSGA could give an additional information to study the experimental
results [34, 35] which have shown that as the packing fraction f of scat-
terers increase towrds clos packing (f =∼ 0.60) there is no structure
in the diffusion coefficient versus frequency and therefore according
to [36] in the energy transport velocity too. This effect was consid-
ered recently in [36, 37] by applying some extentions of the well-known
coherent-potential approximation. Having got advantages mentioned
above the NSGA cannot nevetheless describe such effects as a space
group resonance of [38] due to dipole-dipole interaction inside pairs of
scatterers. For this purpose one may use a two-group approximation of
[39] that was actually applied recently in [40] to study of the diffusion
of scalar waves.
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Appendix I

Integrate equation (7) with respect to t in the limits from t = 0
to any t > 0 and take into account that Φ(s, s′; R, t) = 0 for t < 0 .
This gives an equation for the initial condition Φ(s, s′; R, 0 + 0) =
Φ0(s, s′; R) which has the form∫

ds′′v−1
E (s, s′′)Φ0(s′′, s′; R) = δ(R)δ(s− s′)Ptr(s)⊗ Ptr(s′) (aI1)

Now the tensor Φ(s, s′; R, t) may be found as a soultion for the ho-
mogeneous equation (7) with the initial condition Φ0(s, s′; R) . This
initial problem for the homogeneous equation (7) can be written in the
tensor-operator denotations as follows(

v−1
coh

∂

∂t
+ s · ∇+

1
l

)
Φ(t) =

(
−v−1

incoh

∂

∂t
+W

)
Φ(t) (aI2)

with Φ(0) = Φ0 .
Let us introduce the tensor Φcoh(s, s′; R, t) which satisfies the

equation (
v−1
coh

∂

∂t
+ s · ∇+

1
l

)
Φcoh(t) = 0 (aI3)

with the initial condition

Φcoh(s, s′; R, 0 + 0) = δ(R)δ(s− s′)Ptr(s)⊗ Ptr(s′) (aI4)

A solution for the last initial problem is given on the base of (10) by

Φcoh(s, s′; R, t) = exp(−vcoht/l) · δ(R− vcohst)δ(s− s′)Ptr(s)⊗ Ptr(s′)
(aI5)

With the aid of the tensor (aI5) the initial problem (aI2) is transformed
to equation which in the tensor-operator denotations has the form

Φ(t) = Φcoh(t)Φ0 + vcoh

∫ t

0
dt′Φcoh(t− t′)

(
−v−1

incoh

∂

∂t′
+W

)
Φ(t′)

(aI6)
It is a subject of matter that initial tensor Φ0 can be excluded

from this equation by using the identity

∂

∂t

∫ t

0
dt′Φcoh(t− t′)v−1

incohΦ(t′) =

= Φcoh(t)v−1
incohΦ0 +

∫ t

o
dt′Φcoh(t− t′)v−1

incoh

∂Φ(t′)
∂t′

(aI7)
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Applying this identity together with (aI1) to (aI6) gives equation (12).

Appendix II

We seek a solution for equation (33) in a space of transverse
tensor-functions of unit vector s with scalar product defined by equa-
tion (36). The diffusion asymptotics (41) is obtained by successive ap-
proximations.

1. The case of q = 0, κ = 0 and B(s) = 0 where B(s) is the
absorption tensor defined by equation (I. 82) and (I. 84). In this case
the tensor-operator (34) takes the form U(0) = (1/l)E −W . Using the
optical theorem (I. 82) for non-absorptive scatterers one finds∫

ds′Uαβ,α′β′(s, s′; 0)P tr
α′β′(s

′) = 0 (aII1)

that gives (40).
2. The case of q = 0, κ = 0 and B(s) �= 0 . In the first order

of the perturbation theory with respect to absorption the eigenvalue
λ0(0, 0) is given by

λ0(0, 0) =
(
Φ(0), U(0)Φ(0)

)
=

1
2
Bαα,ββ(s) =

k2
0

keff
· �ε̂1
ε′
· a (aII2)

where equation (I. 91) has been used
3. The case of q = 0, κ �= 0 and B(s) = 0 . In the first order of

the perturbation theory with respect to κ a correction δλ0(0, κ) to
the eigenvalue λ0(0, 0) is given by

δλ0(0, κ) =
(
Φ(0), iκDΦ(0)

)
= iκ

1
8π

∫
ds

∫
ds′Dαα,ββ(s, s′)

= iκ
1
8π

∫
ds′A+

αα,ββ(s
′) = −iκa

(aII3)

where the sum rule (I. 81) has been used.
4. The case of q �= 0, κ = 0 and B(s) = 0 . In the lowest order

of the perturbation theory with respect to q a correction δλ0(q, 0) to
the eigenvalue λ0(0, 0) is given by

δλ0(q, 0) =
(
Φ(0), i(s · q)δΦ(0)

)
(aII4)
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Here δΦ(0) is a correction to the eigenfunction (40). This correction
satisfies equation

U(0)δΦ(0) = −i(s · q)Φ(0) (aII5)

and the orthogonality condition(
δΦ(0), Φ(0)

)
= 0 (aII6)

A solution for equation (aII5) can be written in terms of solution for
equation (33) as follows

δΦ(0)
αβ(s; q, 0) = − i√

8π
Φ̃αβ(s; q) (aII7)

where tensor Φ̃αβ(s; q) is defined by (43). Substituting (aII7) in the
r.h.s. of (aII4), one finds

δλ0(q, 0) = (1 + a)
cph
c20
·Dq2 (aII8)

where D is the diffusion constant (44).
After the successive approximation 1-4 the diffusion asymptotics

(41) is obtained by substituting the eigenvalue λ0(0, 0) + δλ0(0, κ) +
δλ0(q, 0) and the eigenfunction Φ(0) + δΦ(0) into the term n = 0 of
the r.h.s. of equation (39).

Appendix III

The scattering amplitudes S̃1 and S̃2 are written in terms of the
single scattering tensor-operator (56) on the base of (59) and (I. 92) in
accordance with

S̃a = êφαTαβ(k0s, k0s0)êφβ (aIII1)

and
S̃2 = êθαTαβ(k0s, k0s0)êβ (aIII2)

where Tαβ(k, k
′) = Tαβ(k, k

′; Ω+ i0) . The total derivative for example
of S̃1 with respect to E is defined by

dS̃1

dE
=

∂S̃1

∂E
+

[
∂S̃1

∂E

]
|space (aIII3)



Poynting’s theorem and single scattering near resonance 57

Here the second term in the r.h.s. takes into account the effect of finite
size of the scatterer (space dispersion) and is given according to the
key identity (74) by

[
∂S̃1

∂E

]
|space =

1
2E

êφα

[
N̂Tαβ(k0s, k0s0)

]
êφβ (aIII4)

where N̂ denotes the operator

N̂ = s
∂

∂s
+ s0

∂

∂s0
(aIII5)

Apply further this operator to (aIII1) to obtain the equation of the
form

N̂ S̃1 = êφα(N̂Tαβ)êφα + (N̂ êφα)Tαβ êφβ + êφαTαβ(N̂ êφβ) (aIII6)

Because the scattering amplitude S1 is a function of cos θ one can
write

N̂ S̃1 = 2 cos θ
dS̃1

d cos θ
(aIII7)

Now one needs to calculate Nêφ . There is the following equation

N̂ êφ =
2

sin2 θ
êφ (aIII8)

On the base of (aIII4) and (aIII6)-(aIII8) one finds

[
E
∂S̃1

∂E

]
|space = cos θ

dS̃1

d cos θ
− 2

sin2 θ
· S̃1 (aIII9)

that after substituting in the r.h.s. of (aIII3) gives (75).
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