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1. Introduction

The need for accurate and convenient measurement of complex
permittivities of material media cannot be overemphasized. Besides
providing understanding of electromagnetic wave interaction with mat-
ter, complex permittivity information is desirable in many areas of
basic and applied research in science and engineering, including pro-
cess and quality control in industries, diagnostic and therapeutic ap-
plications of microwaves in biomedicine, government radiation policy
formulation, characterization of reservoir rocks in bore-hole formations
and prospecting in geophysical logging. Extensive work have been done
in microwave measurements of complex permittivity of biological sub-
jects, both in vivo and in vitro [1–5]. The open-ended coaxial line has
been the instrument of choice in these measurements because of the
nondestructive requirement. In these measurements the coaxial line is
terminated by the sample material and the reflection coefficient caused
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by the incident microwave signal is measured at any desired frequency.
These data are then related to the complex permittivity of the sam-
ple material. The last part of the problem, i.e. relating the reflection
coefficient to the complex permittivity, is not trivial and various at-
tempts have been made to devise an accurate scheme to perform this
task [6,7]. The usual procedure is to model the coaxial line and sam-
ple interface as an input impedance [8] or admittance [3,4, 9–13]. As
will be shown later the input admittance model for the coaxial-sample
interface is a natural result from our model. In cases where nondestruc-
tive testing is not a requirement, the coaxial line can be terminated by
any convenient waveguide as sample holder. In this present work, the
coaxial line is terminated with cylindrical waveguide. There are quite
a few mathematical models for the coaxial line terminated in cylindri-
cal waveguide [8,14–16]. Notable among them are the distinctive works
by Risley [15,16]. Our motivation to undertake this work stems from
the need to develop a full-wave general purpose model of a test cell
used in experimental complex permittivity measurements of saturated
reservoir rock samples. The goal of this particular measurement was
to generate a complex permittivity data base for saturated reservoir
rocks from bore-hole formations. We remark here that the complex
permittivity of saturated reservoir formations is frequency dependent.
In addition the real and imaginary parts are interdependent. The phe-
nomenon and mechanism of this dependency are well documented in
the works of Alvarez [17] and Sherman [18]. The expository works of
these two reveal the inherent difficulty of interpreting complex per-
mittivity logs without any realistic and comprehensive data base as
guide.

In the next section we present an analytical model of the prob-
lem and derive the differential equations that govern electromagnetic
wave propagation. Next we apply a Green’s function technique to pro-
duce solutions of the magnetic fields in terms of the aperture electric
field. An integral equation for the aperture electric field is solved for
zeroth order approximation and also by method-of-moments (MOM).
An expression for the reflection coefficient of the incident TEM mode
is derived for simulated test samples.

In section three, we accomplish the inverse problem solution via
Müller’ s method. We perform an initial error sensitivity investigation.
However for a complete analytical error analyses of this method, the
reader is referred to the comprehensive works of Yan-Zhen [13] and
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Nyshadham [19]. Finally we apply the inverse solutions to the reflection
coefficients obtained in the previous section to reconstruct the complex
permittivities of the simulated samples. Plots of relative percentage
error are presented to display the accuracy of the inverse solution.

The last section gives a summary of our accomplishments, draws
conclusions, and gives recommendations for future work.

2. Forward Problem

The geometry of our model is depicted in Figure 1. All dimensions
are given in the figure. The frequency of investigation is 1GHz . The
choice of our coordinate system as depicted in Figure 1 separates the
problem into two distinct regions, viz: coaxial guide (coax) for z ≤ 0
and cylindrical guide for z ≥ 0 . The regions are coupled through
the aperture at z = 0 . The coax is filled with material of dielectric
constant ε1 , teflon in this case, and the cylindrical guide houses the
test sample with complex permittivity ε2 . The model is excited with
an azimuthally symmetric magnetic current source located at z =
−d in the coaxial line. Because of the azimuthal symmetry for both
model geometry and excitation source, we have no φ -variation and
our problem becomes a two-dimensional one. Furthermore, Maxwell’s
equations decouple into TMz and TEz modes with excitation limited
to TMz modes only. We assume time harmonic source with ejωt time
dependence. The governing differential equations are then given by
(TMz)

∂Eρ

∂z
− ∂Ez

∂ρ
= −jωµHφ −Mφ

∂Hφ

∂z
= −jωεEρ

1
ρ

∂

∂ρ
(ρHφ) = jωεEz

(1)

We can eliminate Eρ and Eφ from the first equation of the set to
obtain
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LρzHφ = jεMφ

Eρ = − 1
jωε

∂Hφ

∂z

Ez =
1

jωε

1
ρ

∂

∂ρ
(ρHφ)

(2)

where

Lρz ≡
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

∂2

∂z2
+ k2 − 1

ρ2
(3)

is the Laplacian in cylindriacl coordinates and k =
√

ω2εµ. The above
set of equations govern the electromagnetic wave propagation in our
model with the perfectly conducting wall assumption imposing zero
tangential electric fields on the boundaries.

Figure 1. Coaxial waveguide coupled to cylindrical waveguide.

We now employ Greens function methods by taking the inner
product of the Green’s function G with the first of equations 2, to
obtain in general,

〈LρzHφ, G〉 = 〈Hφ,LρzG〉+
∫
S
(G∇Hφ −Hφ∇G) · n̂ds (4)

where S is the surface bounding the region of interest V, n̂ is the unit
outward normal to the surface S and

〈LρzHφ, G〉 ≡
∫
V

(GLρzHφ)dv
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In particular for region 1, we have

Hφ1 = −jωε
∫
V
G1Mφdv +

∫
S
(G1∇Hφ1 −Hφ1∇G1) · n̂ds (5)

where Hφ1 satisfies

Hφ1 + ρ
∂

∂ρ
Hφ1

∣∣∣∣
ρ=a, b

= 0

Hφ1 = Hφ2 on z = 0, a ≤ ρ ≤ b

lim
z→−∞

Hφ1 = 0 for k complex

and for region 2, we have

Hφ2 =
∫
S
(G2∇Hφ2 −Hφ2∇G2) · n̂ds (6)

where Hφ2 satisfies

Hφ2 + ρ
∂

∂ρ
Hφ2

∣∣∣∣
ρ=c

= 0

∂

∂z
Hφ2

∣∣∣∣
z=h

= 0

∂

∂z
Hφ2

∣∣∣∣
z=0

= 0 on b ≤ ρ ≤ c

lim
ρ→0

Hφ2 is finite

The Green’s functions are chosen such that G1 satisfies

LρzG1 = −δ(ρ− ρ′)
ρ

δ(z − z′) (7)

G1 + ρ
∂

∂ρ
G1

∣∣∣∣
ρ=a,b

= 0 (8)

∂

∂z
G1

∣∣∣∣
z=0

= 0 (9)

lim
z→−∞

G1 = 0 for k complex

and G2 satisfies
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LρzG2 = −δ(ρ− ρ′)
ρ

δ(z − z′) (10)

G2 + ρ
∂

∂ρ
G2

∣∣∣∣
ρ=c

= 0 (11)

∂

∂z
G2

∣∣∣∣
z=0,h

= 0

lim
ρ→0

G2 is finite

We note that the surface integrals in the solution for the magnetic
fields has no contributions from the radial surfaces since

(G1∇Hφ −Hφ∇G1) · n̂ = G1
∂

∂ρ
Hφ −Hφ

∂

∂ρ
G1 =

G1Hφ

ρ
− G1Hφ

ρ
= 0

where we have applied equation 8 and 11 and also n̂ = ρ̂ on the radial
surface. The Green’s function problems are displayed in Figure 2. When
we apply the Green’s functions as defined above to the magnetic field
solutions the expressions become

Hφ1 = −jωε1M0

∫ b

a
G1(ρ, z, ρ′,−d)dρ′ − jωε1

∫ b

a
G1(ρ, z, ρ′, 0)Ea(ρ′)dρ′

(12)

Hφ2 = jωε2

∫ b

a
G2(ρ, z, ρ′, 0)Ea(ρ′)dρ′ (13)

where Ea is the radial aperture electric field, defined by

Eρ|z=0 = − 1
jωε

∂Hφ

∂z

∣∣∣∣
z=0

= Ea

and
Mφ = Mo

δ(z + d)
ρ

We solve the Green’s problem by seeking eigenfunction expansion in
the ρ and a standard Green’s function solution in the z. We let

G1 =
∞∑
n=0

αn(z)B1(γnρ) (14)
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where B1(γnρ) = J1(γnρ)Y0(γna) − Y1(γnρ)J0(γna) and αn(z) satis-
fies a second order ordinary differential equation which can be solved
by standard Green’s function methods [20]. Imposing the boundary
conditions at ρ = a, b on G1 defines the characteristic equation

Y0(γna)
J0(γna)

=
Y0(γnb)
J0(γnb)

(15)

from which γn ’s are determined. A complete solution for G1 is then
obtained as

G1(ρ, z, ρ′, z′) =
−j

k1ρρ′ln(b/a)

{
ejk1z

′
cos(k1z) ; z > z′

ejk1z cos(k1z
′) ; z < z′

(16)

for n = 0 and
G1(ρ, z, ρ′, z′) =

−
∞∑
n=1


 B1(γnρ)B1(γnρ′)

2
(πγn)2

[
J2
0γna)

J2
0 (γnb)

− 1
]

 j

k1n

{
ejk1nz

′
cos(k1nz) ; z > z′

ejk1nz cos(k1nz
′) ; z < z′

(17)
otherwise. We note also that k2

1n = k2
1 − γ2

n.

Figure 2. Green’s problems.

Similarly we choose G2 as

G2 =
∞∑
n=1

J1(λnρ)Sn(z) (18)
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and obtain its solution as

G2(ρ, z, ρ′, z′) =−
∞∑
n−1

2J1(λnρ′)J1(λnρ)
c2J2

1 (λnc)k2n sin(k2nh)
×

{
cos(k2nz) cos[k2n(h− z′)] z < z′

cos(k2nz
′) cos[k2n(h− z)] z > z′

(19)

where J0(λnc) = 0 is the characteristic function for determining
λn ’s and k2

2n = k2
2 − λ2

n. This completes the formal solutions to the
Green’s function problems. It is instructive to note that this is only one
of many possible forms of solution. We could as well have produced so-
lutions using eigenfunctions in the z -domain instead of the ρ -domain
or eigenfunctions in both domains. The particular form adopted here
is conducive to the numerical computations for the problem at hand.

When we incorporate the Green’s function solutions into the Hφ

expressions and perform the integration over the source term, the re-
sults are

Hφ1 = −ωε1

k1ρ
I0 cos(k1z)− jωε1

∫ b

a
ρ′G1(ρ, z, ρ′, 0)Ea(ρ′)dρ′ (20)

Hφ2 = jωε2

∫ b

a
ρ′G2(ρ, z, ρ′, 0)Ea(ρ′)dρ′ (21)

where I0 = M0e
−jk1d and

G1(ρ, z, ρ′, 0) =− j
1

k1ρρ′ln(b/a)
ejk1z

− j

∞∑
n=1


 B1(γnρ)B1(γnρ′)

k1n
2

(πγn)2

[
J2
0γna)

J2
0 (γnb)

− 1
]

 ejk1nz

G2(ρ, z, ρ′, 0) =−
∞∑
n=1

2J1(λnρ′)J1(λnρ)
c2J2

1 (λnc)k2n sin(k2nh)
cos[k2n(h− z)]

We can normalize Hφ by dividing through with ωε1I0 to obtain

H̄φ1 = − 1
k1ρ

cos(k1z)− j

∫ b

a
ρ′G1(ρ, z, ρ′, 0)Ēa(ρ′)dρ′ (22)

H̄φ2 = jεr

∫ b

a
ρ′G2(ρ, z, ρ′, 0)Ēa(ρ′)dρ′ (23)
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where εr = ε2/ε1 and H̄ = (Hφ1/ωI0) , etc. We shall now drop the
bar with the understanding that these quantities are normalized as
shown above. Next we demand continuity of the fields in the aperture,
i.e, Hφ1 = Hφ2 at z = 0 to produce an integral equation for Ea as

− 1
k1ρ

= −j
∫ b

a
ρ′(G1(ρ, 0, ρ′, 0) + εrG2(ρ, 0, ρ′, 0))Ea(ρ′)dρ′ (24)

The above integral equation can be solved analytically or numerically
depending on the functional form assumed for Ea. In this work we
present two types of solutions, a zeroth order solution which is ana-
lytical and a numerical solution via method of moments.

2.1. Zero th order solution

We let the functional form of Ea be given by

Ea(ρ) = E0
1
ρ

+
∞∑
n=1

E1nB1(γnρ). (25)

where E0 and E1n are modal constants. In the zeroth order solution
we assume a dominant TEM model and approximate Ez by Eo/ρ .
Substituting this approximation into the integral equation allows us to
perform the ρ′ integration immediately, to give

− 1
k1ρ

= E0
1
k1ρ

+ j2εrE0

∞∑
n=1

(
J0(λnb)− J0(λna)

c2λnJ2
1 (λnc)k2n tan(k2nh)

)
J1(λnρ)

(26)
Integrating equation 26 on ρ from a to b yields an average value for
E0 as

E0 = −1

/(
1− j2εr

1
ln(b/a)

∞∑
n=1

(J0(λnb)− J0(λna))2

c2λ2
nJ

2
1 (λnc)k2rn tan(k2nh)

)
(27)

where k2rn = k2n/k1 . Equation 27 can be evaluated numerically to
obtain an approximation for Ea. Higher order approximations for Ea

could be obtained by taking more terms in equation 25. Indeed using
the full expression in equation 25 is the usual modal expansion solu-
tion as it is known in the literature. However we prefer the method of
moments solution presented next.



118 Adopley et al.

Figure 3. Aperture subintervals

2.2. Method of moments

We begin by partitioning the aperture into N subintervals as
shown in Figure 3. We progressively refine the subintervals intervals
towards both edges in other to simulate the edge-singularity of the
aperture field while limiting the number of unknowns. We define the
subintervals starting from ρ = a as

∆p+1 =
(
N − 1

p

)m

∆(
N − 1

p

)
=

(N − 1)!
(N − p− 1)!p!

∆ = (b− a)

/
N−1∑
p=0

(
N − 1

p

)m

where m is an edge refining factor. Increasing m refines the subin-
tervals at the edges. In this particular work, m = 2 in all results
presented. We next approximate the aperture electric field Ea with a
set of pulse functions defined by

Ea(ρ) =
N∑
n=1

ep
fp(ρ)
ρ

(28)

fp(ρ) =
{

1 on pth subinterval
0 otherwise

(29)

When we insert, Ea(ρ) as defined in 28 into the integral equation, we
obtain

− 1
k1ρ

= j

N∑
n=1

ep

∫ ∆p

ρ′(G1(ρ, ρ′) + εrG2(ρ, ρ′))dρ′ (30)

where the integration is restricted only to the pth element. In order
to avoid the instabilities due to the edge singularities, we apply delta
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weighting functions given by

Wq(ρ) =
δ(ρ− ρq)

ρ
(31)

where ρq is the midpoint of the qth element. An inner product of
equation 30 with Wq yields

− 1
k1ρq

= j

N∑
n=1

ep

∫ ∆p

ρ′(G1(ρq, ρ′) + εrG2(ρq, ρ′))dρ′ (32)

which is an N×N matrix equation. An explicit expression for equation
32 is

1
k1ρq

= − 1
k1ρq

N∑
p=1

ep

(
ln(ρp/ρp−1)

ln(b/a)

)

+
1
2
π2

N∑
p=1

ep



∞∑
n=1

γn
k1n


B1(γnρq)[Bo(γnρp)− B0(γnρp−1)][

J2
0 (γna)

J2
0 (γnb)

− 1
]







− j2εr
N∑
p−1

ep

{ ∞∑
n=1

(
J1(λnρq)[J0(λnρp)− J0(λnρp−1)]

c2λnk2nJ2
1 (λnc)(tan(k2nh)

)}

(33)
This completes the general N - element method of moments solution.
Specializing the above result to N = 1 , we obtain

1
k1ρq

= − 1
k1ρq

e1 − j2εre1

∞∑
n=1

(
J1(λnρq)[J0(λnb)− J0(λna)]
c2λnk2nJ2

1 (λnc) tan(k2nh)

)
(34)

where ρq = (a + b)/2 . Results presented later will show that using
one element (N = 1) is sufficient to obtain reasonable accuracy in the
reconstruction. We therefore restrict the solutions in all cases except
for Ea computation, to zeroth order and the one-element method of
moments.

2.3. Asymptotic analysis

This section considers asymptotic techniques that aid in an ef-
ficient computation of the matrix coefficients in equation 33 and 34
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above. An attempt to evaluate these matrix coefficients directly is in-
efficient. This is a consequence of the oscillatory behavior of Bessel’s
functions. The method we propose here exploits the rapid rate at which
Bessel’s functions approach their asymptotic limits. The technique [22]
is to find the asymptotic limit of the individual terms in the summation
with the hope that we can sum the series of the asymptotic limits into
an analytical closed form expression. Then we only need to add the dif-
ference between each individual term and the asymptotic limit to the
closed form expression obtained. Because of the rate at which these
terms approach their asymptotic limits, only a few terms are needed
in the difference computation for accuracies of practical interest. We
begin by finding the asymptotic limits of the various terms in equation
33 as follows:

lim
n→∞

λn =
π

c
(n− 1/4) (35)

lim
n→∞

γn =
πn

(b− a)
(36)

lim
n→∞

(
J2

0 (γna)
J2

0 (γnb)
− 1

)
=

(
b

a

)
− 1 (37)

Since most of the asymptotic limits can be derived by direct substitu-
tion, we will only quote the results. It is convenient to note the simple
form of these asymptotic limits of such seemingly complicated func-
tions. These simple asymptotic forms are instrumental in the success
of this method. The asymptotic forms of the various terms in the ma-
trix equation are:

lim
n→∞

(
2J1(λnρq)J0(λnρq)

c2λnk2nJ2
1 (λnc) tan(k2nh)

)
= c

cos(θ2(n− 1
4)) + sin(θ1(n− 1

4))
2π2(n− 1

4)2√ρqρp
(38)

lim
n→∞

γn
k1n


 B1(γnρq)B0(γnρp)

2
(πγn)2

[
J2
0 (γna)

J2
0 (γnb)

− 1
]

 = −j 4q( ba − 1)

π4n2√ρqρp
cos(nψ1) sin(nψ2)

(39)
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θ1 =
π

c
(ρp − ρq)

θ2 =
π

c
(ρq + ρp)

ψ1 = π
(ρq
a
− 1

)/ (
b

a
− 1

)

ψ2 = π
(ρp
a
− 1

)/ (
b

a
− 1

)
We remark that even though these result are derived for n approach-
ing infinity, the difference between theses limits and exact terms is
already of order 10−3 for n = 2 . In order to exploit fully these sim-
ple asymptotic forms, we must be able to find closed form or rapidly
converging expressions for the following infinite series:

∞∑
1

ej(nθ)

n2

∞∑
1

ej(n−α)θ

(n− α)2

(40)

This is possible for the first series [21, 24]. In case of the second series,
we are not aware of any useful expressions except for the special case
when α = 1/2 . However, we can improve their convergence by writing

1
(n− α)2

as
1
n2

+
α

n3
+

3α2

n2(n− α)2
− 2α3

n3(n− α)2

The process produces series of the first type and accelerates the con-
vergence from n−2 to n−4 . Further increase in the rate of convergence
can be achieved by extending this process to higher orders. However
to what extent, becomes a choice between mathematical complexity
and computational expediency. The closed form or rapidly converging
expressions for the various series employed in the analysis are given
below as:

∞∑
1

sin(nθ)
n2

= −
(
θlnθ − θ +

∞∑
1

|B2n|θ2n+1

2n(2n + 1)!

)

∞∑
1

sin(nθ)
n3

=
π2

6
θ − π

4
θ2 +

1
12

θ3

∞∑
1

sin(nθ)
n4

= ζ(3)θ +
1
6
θ3ln(θ)− 11

36
θ3 +

∞∑
1

|B2n|θ2n+1

2n(2n + 3)!
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∞∑
1

cos(nθ)
n2

=
π2

6
− π

2
θ +

1
4
θ2

∞∑
1

cos(nθ)
n3

= ζ(3) +
1
2
θ2ln(θ)− 3

4
θ2 +

∞∑
1

|B2n|θ2n+2

2n(2n + 2)!
∞∑
1

cos(nθ)
n4

=
π4

90
− π4

12
θ2 +

π

12
θ2 − 1

48
θ4

where Bm and ζ(x) are the Bernoulli-Euler number and Riemann
Zeta functions respectively. The mechanics of the computation process
is to subtract from the individual terms in the series, the asymptotic
limits, sum the resulting difference series and then add the summations
of the asymptotic series. The net effect is accelerated convergence.
Symbolically, the above process can be described as

∞∑
1

(Tn) =
∞∑
1

(Tn − Tlim) + Tlim−sum (41)

where Tn is the N th term in the series, Tlim = limn→∞Tn and
Tlim−sum =

∑∞
1 (Tlim) . Figure 4 shows the plots of Ea for different

number of elements. We note the well defined edge singularities of the
aperture electric field Ea . In the next section we derive expressions
for the reflection coefficient of the incident TEM mode.

Figure 4. Effect of number of elements on aperture electric field: a =
0.32652mm, b = 1.0922mm, c = 10.000mm, h = 37.5mm, σ = 1.0s/m,

εr = 20.00.
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2.4. Reflection coefficient

One of the most important scattering parameters in microwave
measurements is the reflection coefficient. In this section we derive
an expression for the TEM mode reflection coefficient in the coaxial
waveguide. We can rewrite Hφ1 as

Hφ1(ρ,z) = − 1
2k1ρ

[
e−jk1z +

(
1 +

2
ln(b/a)

∫ b

a
Ea(ρ′)dρ

)
ejk1z

]

− j
∞∑
n=1


 B1(γnρ)

2
(πγ)n)2

[
J2
0 (γna)

J2
0 (γnb)

− 1
]

 ejk1nz

∫ b

a
B(γnρ′)Ea(ρ′)dρ′.

(42)
When Hφ1 is written in terms of the electric field TEM mode reflection
coefficient, i.e.

Hφ1(ρ, z) = − 1
2k1ρ

(e−jk1z − Γejk1z)

−j
∞∑
n=1


 B1(γnρ)

2
(πγn)2

[
J2
0 (γna)

J2
0 (γnb)

− 1
]

ejk1nz

∫ b

a
B(γnρ′)Ea(ρ′)dρ′.

(43)

the reflection coefficient Γ for the TEM mode is readily identified as

Γ = −
(

1 +
2

ln(b/a)

∫ b

a
Ea(ρ′)dρ′

)
(44)

Generalizing this concept, we may express Hφ1(ρ, z) as

Hφ1(ρ, z) = − 1
ak1ρ

(e−jk1z − Γejk1z)−
∞∑
n=1

fn(ρ)Γnejk1nz (45)

where Γn and fn(ρ) are defined as

 j

2
(πγn)2

[
J2
0 (γna)

J2
0 (γnb)

− 1
]

 ∫ b

a
B1(γnρ′)Ea(ρ′)dρ (46)

and
B1(γnρ) (47)
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respectively. The Γn ’s are the reflection coefficients of the higher order
modes generated in the aperture. These evanescent higher order modes
are restricted mainly to the immediate neighborhood of the aperture.
Explicit expressions of Γ for the zeroth and MOM solutions are

Γ = −(1 + 2E0) (48)

and

Γ = −


1 +

2
ln(b/a)

N∑
p=1

epln
(

ρp
ρp − 1

)
 (49)

respectively. Even though the reflection coefficient is defined for the
coaxial waveguide TEM mode, the solution contains a superpositon of
all the higher order modes generated in the aperture. A reflection co-
efficient contour plot of some text samples is shown in Figure 5. As ex-
pected, the magnitude of the reflection coefficient varies inversely with
conductivity and directly with dielectric constant at low conductivities.
This is due to greater energy dissipation at higher conductivities and
higher energy propagation for larger values of dielectric constants. But
at very high conductivities, the magnitude of the reflection coefficient
increases with conductivity. This is because at very high conductivities,
the aperture appears as a short to the incident wave. We note in later
plots that the guide resonates for text samples with relative dielectric
constant (εr) values of 63 and 70 approximately. Figure 6 displays the
same information in figure 5 using a zeroth order approximation.

Figure 5. Contour map of reflection coefficient of simulated test samples

for 1 - element MOM: a = 0.32652mm, b = 1.0922mm, c = 10.000mm,

h = 37.5mm.



Analytical models for the determination of complex permittivity 125

Figure 6. Contour map of reflection coefficient of simulated test sam-

ples for zeroth order: a = 0.32652mm, b = 1.0922mm, c = 10.000mm,h =
37.5mm.

For a cylindrical cavity the TM and TE resonant frequencies are
define respectively by

(fr)TMnpq =
1

2πc
√
εµ

√
λ2
np +

(qπc
h

)
(50)

(fr)TEnpq =
1

2πc
√
εµ

√
λ′2np +

(qπc
h

)
(51)

where c is the cylinder radius, h is the height, λnp is the pth root
of Jn(λc) and λ′np is the pth root of J ′n(λc) . Numerical computa-
tions show the cavity resonates at (fr)TM010 = 1.0GHz for dielectric
constant (εr) value of 62.70 and (fr)TM011 = 1.0GHz for dielectric con-
stant (εr) value of 70.31. These values agree very well with resonant
points observed form later plots in the inverse problem.

The quality factor Q which is defined by

Q =
ω × energy stored

average power dissipated
(52)

reduces in case of dielectric losses only to

Q =
ωε′

∫ ∫ ∫
|E|2dr

ωε′′
∫ ∫ ∫

|E|2dr
=

ε′

ε′′
(53)
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where ε′ and ε′′ are the real and imaginary parts of the complex
permittivity. High Q ’s, which signal well defined resonant points imply
that resonant points can be observed at low σ and high εr .

3. Inverse Problem

In this section we produce a formulation for the inverse prob-
lem based on Müller’s method [23]. This is then applied to the reflec-
tion coefficients from the forward problem to reconstruct sample com-
plex permittivities. The concept is to approximate a nonlinear function
f(x) = 0 with a quadratic function ax2 +bx+c by the Lagrangian in-
terpolation formula. A solution is accomplished by locating the zero ’s
of f(x) using a variation of the standard quadratic formula. From
earlier expression for the TEM mode reflection coefficient, we derive
expression for normalized aperture input admittance Y0 for the zeroth

order as

Y0 = −j2εr
1

ln(b/a)

∞∑
n=1

(J0(λb)− J0(λna))2

c2λ2
nJ

2
1 (λnc)k2rm tan(kwnh)

(54)

where k2rn and k2n are function of εr and the normalized aperture
input admittance is defined by

Y =
1− Γ
1 + Γ

In the case of 1 - element MOM, we obtain

Y1 = j2εrρq
∞∑
n=1

(J0(λnb)− J0(λna))J1(λn(a− b)/2)
c2λnJ2

1 (λnc)k2rn tan(k2nh)
. (55)

In order to apply Ml̈ler’s formula we define an implicit function f(εr)
for εr such that f(εr) = 0 . The root of f(εr) then yields the complex
permittivity of the medium. For the zeroth order f(εr) is given by

f(εr) = −Y0 − j2εr
1

ln(b/a)

∞∑
n=1

(J0(λb)− J0(λna))2

c2λ2
nJ

2
1 (λnc)k2rn tan(k2nh)

(56)



Analytical models for the determination of complex permittivity 127

or

f(εr) =
Γ− 1
Γ + 1

− j2εr
1

ln(b/a)

∞∑
n=1

(J0(λb)− J0(λna))2

c2λ2
nJ

2
1 (λnc)k2rn tan(k2nh)

(57)

A similar expression derived for the 1 - element MOM is

f(εr) = −Y1 + j2εrρq
∞∑
n=1

(J0(λnb)− J0(λna))J1(λn(a− b)/2)
c2λnJ2

1 (λnc)k2rn tan(k2nh)
. (58)

or

f(εr) =
Γ− 1
Γ + 1

+j2εrρq
∞∑
n=1

(J0(λnb)− J0(λna))J1(λn(a− b)/2)
c2λnJ2

1 (λnc)k2rn tan(k2nh)
. (59)

Figure 7 and 8 show relative errors in 1 - element MoM reconstruction
of simulated samples from reflection coefficients of the forward problem
We observe a high degree of accuracy except near resonant points at εr
values of 63 and 70 approximately. Figures 9 and 10 are surface plots
of the same data for Figures 7 and 8 respectively. Figures 11 through
14 are the zeroth order versions of Figures 7 through 10 respectively.

Figure 7. Contour map of reflection coefficient percent relative error in

dielectric constants reconstruction for 1 - element MoM: a =
0.32652mm, b = 1.0922mm, c = 10.000mm,h = 37.5mm.
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Figure 8. Contour map of reflection coefficient percent relative error in

conductivities reconstruction for 1 - element MoM: a = 0.32652mm, b =
1.0922mm, c = 10.000mm,h = 37.5mm.

Figure 9. Relief map of percent relative error in dielectric constants

reconstruction for 1 - element MoM: a = 0.32652mm, b = 1.0922mm, c =
10.000mm,h = 37.5mm.
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Figure 10. Relief map of percent relative error in conductivities re-

construction for 1 - element MoM: a = 0.32652mm, b = 1.0922mm, c =
10.000mm,h = 37.5mm.

Figure 11. Contour map of percent relative error in dielectric constants

reconstruction for zeroth order: a = 0.32652mm, b = 1.0922mm, c =
10.000mm,h = 37.5mm.
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Figure 12. Contour map of percent relative error in conductivities recon-

struction for zeroth order: a = 0.32652mm, b = 1.0922mm, c =
10.000mm,h = 37.5mm

Figure 13. Relief map of percent relative error in dielectric constants re-

construction for zeroth order: a = 0.32652mm, b = 1.0922mm, c =
10.000mm,h = 37.5mm
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Figure 14. Relief map of percent relative error in conductivities recon-

struction for zeroth order: a = 0.32652mm, b = 1.0922mm, c =
10.000mm,h = 37.5mm

3.1. Noise sensitivity

We have performed error (noise) sensitivity by contaminating the
input data. In order to quantize the accumulative effect of the input
uncertainties [7] for the inverse problem, uniformly generated random
errors are superimposed on the computed Γ ’s. We let α be the max-
imum random error, and Γmax the maximum of the magnitude of the
Γ ’s. Then we impose a limit on the α such that

x% ≥ xmin% = τ
α

Γmax
× 100 (60)

where τ is a scaling factor for the generated random noise and xmin is
a chosen percentage limit relative to Γmax . We note that with reference
to the minimum of the magnitude of Γ , the percentage noise imposed
will be greater than xmin% . The maximum noise introduced therefore
is bounded by

x% ≤ xmax% = τ
α

Γmin
× 100 (61)

where τ is computed from equation 60. Figures 15 through 22 repre-
sent the same information in Figures 7 through 14 but with contam-
inated input data. We observe higher values of relative errors in εr
reconstruction at high conductivities and in σ reconstruction at high
dielectric constants. We also note noise attenuation in εr reconstruc-
tion and noise amplification in σ reconstruction from these plots.
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Figure 15. Contour map of percent relative error in dielectric constants

reconstruction for 1 - element MoM: a = 0.32652mm, b = 1.0922mm, c =
10.000mm, h = 37.5mm, (xmin%− xmax%).

Figure 16. Contour map of percent relative error in conductivities re-

construction for 1 - element MoM: a = 0.32652mm, b = 1.0922mm, c =
10.000mm,h = 37.5mm



Analytical models for the determination of complex permittivity 133

Figure 17. Relief map of percent relative error dielectric constants re-

construction for 1 - element MoM: a = 0.32652mm, b = 1.0922mm, c =
10.000mm,h = 37.5mm, (xmin%− xmax%)

Figure 18. Relief map of percent relative error in conductivities re-

construction for 1 - element M0M: a = 0.32652mm, b = 1.0922mm, c =
10.000mm,h = 37.5mm, (xmin%− xmax%)
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Figure 19. Contour map of percent relative error in dielectric constants

reconstruction for zeroth order: a = 0.32652mm, b = 1.0922mm, c =
10.000mm, h = 37.5mm(xmin%− xmax%)

Figure 20. Contour map of percent relative error in conductivities recon-

struction for zeroth order: a = 0.32652mm, b = 1.0922mm, c =
10.000mm,h = 37.5mm
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Figure 21. Relief map of percent relative error in dielectric constants re-

construction for zeroth order: a = 0.32652mm, b = 1.0922mm, c =
10.000mm, h = 37.5mm, (xmin%− xmax%)

Figure 22. Relief map of percent relative error in conductivities recon-

struction for zeroth order: a = 0.32652mm, b = 1.0922mm, c =
10.000mm,h = 37.5mm, (xmin%− xmax%)
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4. Conclusion

We have performed herein Zeroth order and MOM solutions of
the integral equation describing our problem. To ensure practical appli-
cability of our model, asymptotic techniques were employed to dramat-
ically accelerate the summations of the infinite series. Plots presented
show the edge singularities in the MOM solution.

We have derived an expression for the coaxial line reflection coeffi-
cient Γ of the TEM mode for both Zeroth order and MOM solutions.
It was observed that, even though Γ was defined only for the coaxial
TEM mode, it had contribution from the higher order modes generated
in the aperture. At low losses ( σ → 0 or high Q) , resonance of the
shorted waveguide is well defined, but diminishes for higher loss since
the excited modes in the cavity are quickly dissipated.

We have solved the inverse problem using Müller’s Method. An im-
plicit equation was derived for εr , the relative complex permittivity of
the test samples as a function of Γ and model parameters. Reconstruc-
tion of the simulated complex permittivities with Muller’s algorithm
shows exceptional accuracies, except at resonant points. In addition,
a noise study of the algorithm was performed using corrupted input
data. Overall, the scheme presented has been very successful in mod-
eling the physics of wave propagation in the media and reconstruction
of the media from its wave propagation properties. Caution must be
exercised to avoid resonant points of the model.

An important limitation of our method is the fact that test sam-
ples have to be prepared to fit the geometry of the model. For geo-
physical logging this may not present any real problem. But in medical
applications, where in vivo measurements are a requirement, this be-
comes a major limitation. Also in nondestructive testing this model is
unsuitable. However, the model could be modified in these cases by let-
ting dimensions c and h approach infinity. This will result in an open
ended coaxial line into a half-space with perfectly conducting flanges.
Stuchly’s et al. [1, 3] and Delecki [25] have done extensive work in this
area using an equivalent circuit model.

Another limitation of our method is restriction to homogeneous
complex permittivity media. For many areas of application, the me-
dium is inherently heterogeneous and must be modeled with variable
εr .
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