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1. Introduction

In this paper, we shall develop a theory of the Hertz vector in elec-
tromagnetism which is based on the standard theory, but departs from
it by introducing two constraints. Consequently, the interpretation of
the Hertz vector is now quite different. It is no longer linked by the
wave equation to the charge and current sources, but rather it appears
as a quantity which relates to the familiar scalar and vector potentials
φ and A in essentially the same way that the fields E and B relate to
the charge and current densities ρ and j (Maxwell’s equations). We
first give a brief summary of the standard theory and then in the next
section introduce the modified approach.

Throughout, it is assumed that there are no polarisable or mag-
netisable media present, so D = ε0 E and B = µ0 H.

The Hertz vector was important in the early development of the
classical theory of electromagnetic fields from a radiating source. Since
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then, it has received surprisingly little attention in fundamental electro-
magnetism, is unknown to many physicists, and is not even mentioned
in several textbooks (notable exceptions being [1–2]). A thorough and
authoritative account has, however, been given in Ref. [3] and with
tensor formulation in Ref. [4]. A number of more recent articles have
been written to revive interest, including Refs. [5–7].

The most important points which emerge are as follows. The
(electric) Hertz vector Ze (sometimes denoted Πe ) is defined such
that the scalar and vector potentials are given respectively by

φ = −div Ze, A =
1
c2

∂Ze

∂t
(1a, b)

which automatically ensure that the Lorentz gauge condition

div A = − 1
c2

∂φ

∂t
(2)

is satisfied. Ze is then at the basis of a powerful method for calculating
radiation fields due to electric dipole and multipole distributions. If
there also exist sources of magnetic dipole and multipole radiation,
it is profitable to add a term curl Zm to the RHS of equation (1b)
[3]. Zm is called the magnetic Hertz vector. Since div curl Zm = 0,
equation (2) is still satisfied.

The equations of propagation of the Hertz vector are then(
1
c2
∂2

∂t2
−∇2

)
Ze =

p
ε0
,

(
1
c2
∂2

∂t2
−∇2

)
Zm = µ0m (3a, b)

where p and m, known as the stream potentials, are related to the
electric and magnetic dipole moments of the source. It is convenient
to regard Ze and Zm as having their origins in p and m respectively.
Thus for a given source (e.g. an oscillating electric dipole), one can
deduce Ze and/or Zm , and hence the fields E and B over space.

2. Alternative Approach

We shall here take a rather different approach to the interpre-
tation of the Hertz vector. The power of solving problems involving
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radiating sources will be sacrificed, but the role of the modified Hertz
vector in fundamental electromagnetism will be made manifest.

Following at first the previous section, we define a complex Hertz
vector Y which satisfies the Lorentz gauge condition (2),

φ = div Y, A = − 1
c2

∂Y
∂t

+ curl (any vector field) (4a, b)

and choose that the arbitrary field in the latter equation be −(i/c)Y .
Putting now Y = Ye + icYm , where Ye and Ym are both

real, we have

φ = div (Ye + icYm)

A = − 1
c2

∂

∂t
(Ye + icYm)− i

c
curl (Ye + icYm)

(5a, b)

the real and imaginary parts of which give

divYe = φ (6a)

divYm = 0 (6b)

− 1
c2
∂Ye

∂t
+curl Ym = A (6c)

curl Ye +
∂Ym

∂t
= 0 (6d)

These bear a striking similarity to Maxwell’s equations; indeed, the
latter are produced by the substitutions Ye → E , Ym → B , φ → ρ

ε0
and A → µ0j . To achieve this, it has been necessary to part com-
pany with tradition by changing the signs of Ye and Ym (compare
equations (4) with (1)). More significantly, two extra constraints (6b,d)
have been introduced which do not appear in the standard theory.

From (6) and the identity (curl curl = grad div - ∇2 ), the electric
field is given by

E = −grad φ− ∂A
∂t

= −grad div Ye +
1
c2

∂2Ye

∂t2
− ∂

∂t
curl Ym

=
1
c2
∂2Ye

∂t2
− grad div Ye + curl curl Ye

(7)
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so (
1
c2
∂2

∂t2
−∇2

)
Ye = E (8)

Also, the magnetic flux density is

B = curl A (9)

= − 1
c2
∂

∂t
curl Ye + curl curl Ym =

1
c2

∂2

∂t2
Ym + curl curl Ym

so (
1
c2
∂2

∂t2
−∇2

)
Ym = B (10)

Eqs. (8) and (10) are the equations of propagation for Ye and
Ym . They are quite different from Eqs. (3), and may be interpreted
that the fields Ye and Ym have as their sources the E and B fields,
whereas in the traditional approach, they originate in the dipole mo-
ments of the charge and current distributions.

The general solutions to (8) and (10) are found by appealing to
the well known result that the equation of propagation for the vector
potential (

1
c2
∂2

∂t2
−∇2

)
A = µ0j

has a solution at time t

A =
µ0

4πππ

∫
[j]
r
dτ

where [j] is the current density at time t− r/c .
It follows that

Ye =
1
4πππ

∫
[E]
r
dτ, Ym =

1
4πππ

∫
[B]
r
dτ (11a, b)
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3. The Equations of Electromagnetism

The equations of electromagnetism are elegantly formulated us-
ing a non-commutative but associative algebra, isomorphic with the
quaternion algebra, in which scalar and vector quantities may be added
to form a single entity. For further details, the reader is referred to an
earlier paper [8]. For convenience, we re-state in what follows some of
the more important results we shall use.

The general product of two vectors a and b is defined to be ab =
a.b + ia × b , hence ii = jj = kk = 1 , ij = ik etc. From these, the
result of ∇(= i ∂∂x + j ∂∂y + k ∂

∂z ) operating on the sum of a scalar α
and a vector a is

∇(α+ a) = grad α+ div a + i curl a (12)

From (12),(
1
c

∂

∂t
∓∇

)(
∓Ye+icYm

)

=∓ 1
c

∂Ye

∂t
+ i
∂Ym

∂t
+ div Ye + i curl Ye

∓ ic div Ym ± c curl Ym

which from (6), reduces to(
1
c

∂

∂t
∓∇

)(
∓Ye + icYm

)
= φ± cA (13a)

It is interesting to compare this result with the following, which
are readily proved. From (2), (7), (9) and (12), the potentials φ and
A are related to the fields E and B by(

1
c

∂

∂t
∓∇

)(
φ± cA

)
= ∓E + icB (13b)

Furthermore, (
1
c

∂

∂t
∓∇

)(
∓E + icB

)
=

1
εεε0

(
ρ± j

c

)
(13c)
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the real and imaginary, scalar and vector parts of which are Maxwell’s
equations. To these may be appended

S

{(
1
c

∂

∂t
±∇

) (
ρ± j

c

)}
= 0 (13d)

where S denotes the scalar part. This is the equation of continuity

∂ρ

∂t
+ div j = 0

Equations (13a-d) form a natural progression, with the vector
Ye+icYm as a natural description of the electromagnetic field, having
a time/space dimension which is one higher than the 4-vector φ+ cA ,
and having properties which are similar to those of E + icB .

4. Lorentz Transformation (LT)

The analogy between Ye+ icYm and E + icB allows us to write
down the LTs for the components of Ye and Ym immediately, by
comparison with the familiar LTs for E and B,

Y ′ex = Yex Y ′mx = Ymx

Y ′ey = γ
(
Yey − vYmz

)
Y ′my = γ

(
Ymy + v

c2Yez

)
Y ′ez = γ

(
Yez + vYmy

)
Y ′mz = γ

(
Ymz − v

c2Yey

)

where the primed frame is moving with a velocity v in the x direction
relative to the unprimed frame, and γ = (1− v2/c2)−

1
2 .

It is easily verified that these may be condensed into a single
equation

∓Y′e + icY′m = e±
1
2 iθ

(
∓Ye + icYm

)
e∓

1
2 iθ

where cosh θ = γ , sinh θ = βγ , β = v/c and e±
1
2 iθ = cosh1

2θ ±
isinh1

2θ.
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Similar contractions, which we have shown previously [8; also 9]
are

φ′ ± cA′ = e∓
1
2 iθ

(
φ± cA

)
e∓

1
2 iθ

∓E′ + icB′ = e±
1
2 iθ

(
∓E + icB

)
e∓

1
2 iθ

ρ′ ± j′

c
= e∓

1
2 iθ

(
ρ± j

c

)
e∓

1
2 iθ

5. Examples

We now deduce the Hertz vector Y for some specific cases:

(a) stationary point charge q at the origin of coordinates
Clearly here Ye and Ym should have no time dependence.

Therefore, from equations (6), div Ye = q/(4πε0r) , where r is the
distance from the origin, curl Ye = 0 and Ym = 0. In spherical polar
coordinates, Ye should depend only on r , hence

divYe =
1
r2

d
dr

(
r2Yer

)
=

q
4πε0r

giving

Ye =

(
q

8πε0
+
C

r2

)
r̂

where C is a constant of integration, and r̂ is the unit vector in the
r direction. It is interesting to note that (if C = 0 ), Ye has the same
magnitude at all points in space.

(b) uniform magnetic field
A uniform magnetic field B in the z direction may be represented

by φ = 0 , Ax = −1
2By , Ay = 1

2Bx , Az = 0 , since then curl A =
B. Again, Ye and Ym should have no time dependence, so equations
(6) give

Ye = 0, div Ym = 0, curl Ym = A

which are satisfied by

Ym = −1
4
B

(
x2 + y2

)
k
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where k is the unit vector in the z direction.

(c) plane electromagnetic wave
Consider now a plane sinusoidal electromagnetic wave travelling

in the positive z direction and polarised with its electric field in the
x direction. In the usual notation,

E = E0iej(ωt−kz), B = (E0/c)jej(ωt−kz)

For simplicity, we take the scalar potential φ to be zero, so there
are no free charges present. The vector potential is then

A = j(E0/ω)iej(ωt−kz)

which satisfies (2), (7) and (9).
Since E is everywhere in the x direction, then from (11a), so

is Ye ; similarly, Ym is in the y direction. The only non-vanishing
components are Yex and Ymy , for which (6a-d) give

∂Yex
∂x

=
∂Ymy
∂y

=
∂Yex
∂y

=
∂Ymy
∂x

= 0

−1
c2
∂Yex
∂t
− ∂Ymy

∂z
=
jE0

ω
ej(ωt−kz)

∂Yex
∂z

+
∂Ymy
∂t

= 0

Hence, Yex and Ymy depend only on t and z . Clearly the time
dependence should be ejωt , but the equations cannot be satisfied by
a spatial dependence e−jkz . A full analysis gives a solution

Yex =

{
E0

2k2

(
−1

2
− jkz

)
+
α

2

}
ej(ωt−kz) + βej(ωt+kz)

cYmy =

{
E0

2k2

(1
2
− jkz

)
+
α

2

}
ej(ωt−kz) − βej(ωt+kz)

where α and β are arbitrary constants. Putting α = β = 0 gives

Ye = i
E0

2k2

(
−1

2
− jkz

)
ej(ωt−kz)
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cYm = j
E0

2k2

(1
2
− jkz

)
ej(ωt−kz)

It is interesting to note that the amplitudes vary linearly with z .

(d) oscillating electric dipole
We now analyse an electric dipole with moment p0 cosωt oscil-

lating in the z direction with angular frequency ω . The equations for
the potentials are [10]

φ =
kp0 cos θ
4πε0r

(
1
kr

cosωt′ − sinωt′
)

A =
ωp0 sinωt′

4πε0c2r

(
− cos θr̂ + sin θ θ̂θθ

)

where ωt′ = ωt− kr , k = 2π/λ and r̂, θ̂θθ are the usual unit vectors
in spherical polar coordinates.

A full analysis, too detailed to give here, shows that the solutions
to (6) are

Ye =
kp0 sin θ

8πε0

(
1
kr

cosωt′ − sinωt′
)
θ̂θθ

Ym = − kp0
8πε0c

sin θ sinωt′ φ̂φφ

At large r , Ye ± icYm → − kp0
8πε0

sin θ sinωt′
(
θ̂θθ ± i φ̂φφ

)
The results for Ye and Ym are quite different from those of the

traditional approach [1], in which Ym = 0, and Ye falls off as 1/r .
These latter expressions would not be valid in our analysis, since (6d)
would not be satisfied.

(e) TE0n propagation in a waveguide
The final example for consideration concerns wave propagation in

a hollow rectangular waveguide with perfectly conducting walls. The
guide axis is taken as the z direction and the wall planes as x = 0
and a , y = 0 and b .

Consider a transverse electric (TE) wave propagating in the pos-
itive z direction with its electric field in the x direction. The fields
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for the TE0n mode are given in Ref. 10.

Ex = C sin
nπy

b
ej(ωt−kgz)

By =
Ckg
ω

sin
nπy

b
ej(ωt−kgz)

Bz =
Cnπ

jωb
cos

nπy

b
ej(ωt−kgz)

Ey = Ez = Bx = 0

where C is the maximum amplitude of the E field. The wavenum-
ber kg in the guide is given by k2 − k2

g = n2π2/b2 , where k is the
wavenumber in free space.

If the scalar potential φ is arbitrarily equated to zero, the vector
potential is given by

Ax =
jC

ω
sin

nπy

b
ej(ωt−kgz)

Ay = Az = 0

which satisfy equations (7) and (9).
To obtain Ye and Ym , we see from Eqs. (11) that since E is

in the x direction, then so is Ye ; similarly Ym has only y and z
components. This, together with equations (6a-d) gives

Yey = Yez = Ymx = 0

∂Yex
∂x

=
∂Ymy
∂x

=
∂Ymz
∂x

= 0

∂Ymy
∂y

+
∂Ymz
∂z

= 0

∂Yex
∂z

+
∂Ymy
∂t

= 0

−∂Yex
∂y

+
∂Ymz
∂t

= 0

− 1
c2
∂Yex
∂t

+
∂Ymz
∂y

− ∂Ymy
∂z

=
jC

ω
sin

nπy

b
ej(ωt−kgz)
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The solution of these equations is straightforward but rather te-
dious, and we merely quote one of the possible solutions

Yex =
Cb

2πn
y cos

nπy

b
ej(ωt−kgz)

Ymy =
Cbkg
2πnω

y cos
nπy

b
ej(ωt−kgz)

Ymz = − jCb

2πnω

(
cos

nπy

b
− nπ

b
y sin

nπy

b

)
ej(ωt−kgz)

Various other solutions exist, including one involving functions
like sin(nπy/b)z exp j (ωt− kgz) , but they will not be considered.

6. Gauge Transformation

It is well known [11] that φ and A are arbitrary to the extent
that the E and B fields are unaltered under a gauge transformation
φ → φ − ∂Λ/∂t,A → A + gradΛ , where Λ is any scalar field. The
Lorentz gauge (2) is also unaffected, provided that

1
c2
∂2Λ
∂t2

= ∇2Λ

Λ is customarily taken to be real, but we allow the freedom that
it be complex, so Λ = Λe + icΛm , where Λe and Λm are real.

Equations (5) may then be extended to read

φ = div (Ye + icYm)− ∂

∂t
(Λe + icΛm)

A = − 1
c2
∂

∂t
(Ye + icYm)− i

c
curl (Ye + icYm) + grad (Λe + icΛm)

so that equations (6) now become

div Ye −
∂Λe
∂t

= φ

div Ym −
∂Λm
∂t

= 0
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−1
c2
∂Ye

∂t
+ curl Ym + grad Λe = A

curl Ye +
∂Ym

∂t
− c2grad Λm = 0

With these modified equations, (7), (8), (9), (10) and (13b-d) are
of course unaltered, but it is a simple matter to show that (13a) is now

(1
c

∂

∂t
∓∇

)(
−cΛe ∓Ye ± ic2Λm + icYm

)
= φ± cA

Evidently cΛe and cΛm may be regarded as natural partners to
Ye and Ym respectively.

7. Quantum Mechanical Applications

The dimensions of Λe , Λm , Ye and Ym are simple combi-
nations of fundamental constants, being respectively [h/e] , [h/ce] ,
[ch/e] and [h/e] . This fact suggests that there may be applications in
quantum theory (and conceivably quantum electrodynamics).

It is well known that the role of the gauge transformation function
Λe is to introduce an undetectable phase factor into the wave function.
An interesting problem is therefore to write the Dirac equation for an
electron in a field using Λ and Y , and to enquire whether Λe , Λm ,
Ye and Ym can somehow be incorporated into exponential factors
multiplying the field-free wave function. A lengthy analysis reveals that
this can be done if Ye and Ym are constant in time and space, giving
a fairly simple version of the Dirac equation. However, this version
appears to be incorrect in the general case.

8. Conclusion

To summarise, it has been shown that this alternative formulation
leads to Hertz vectors Ye and Ym which have quite different proper-
ties from those of Ze and Zm which appear in the usual theory. The
role of Ye and Ym is essentially one of a description of the electro-
magnetic field, from which φ , A, E and B can be derived. Ye and
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Ym are also vector counterparts of the scalar gauge transformation
functions Λe and Λm . The space/time dimensions of Λ and Y, being
one step higher than those of φ and A, are closely related to those of
h/e , indicating that further investigations may reveal applications in
quantum mechanics.
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