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1. Introduction

The use of short radio waves to achieve long-distance communi-
cation and broadcasting has had a long history. There are however
still some vague ideas about the mode of long-distance ionospheric
propagation of short radio waves. With regard to long-distance propa-
gation between two points on the ground, the distance obtained by the
“reflection” of the F2 layer of the ionosphere at grazing incidence,
which is about 4000km, is considered the maximum span of a single
hop. If the communication distance is longer than the maximum span
of a single hop, it is usually considered that the propagation has to be
effected by multiple hops with the assistance of the reflection by the
earth’s surface. But the multiple-hop propagation can not be the only
mode of propagation for distances longer than about 4000km. If the
multiple-hop propagation were the only mode, then, supposing that
we increase the distance from a value less than the maximum span
of a single hop to higher values, we would find that the maximum
usable frequency (MUF) of the communication circuit first increases
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with the distance as it should but would suddenly drop to a lower
value while the maximum span of a single hop is being crossed, since
according to the multiple-hop hypothesis, the mode of propagation
would change from a single hop to a double hop. The same situation
would occur as the distance increases from a double hop to higher val-
ues, and so on. Such phenomena have not been observed in practice.
The multiple-hop mode of propagation can not be the predominant
mode of long-distance propagation because practice has shown that
the actual MUF values of long-distance short radio-wave communi-
cation circuits are generally higher than the values predicted by the
multiple-hop hypothesis. An empirical method of MUF prediction, the
so-called control-point method which has long been in use, has been
found to yield results agreeing fairly well with practice, but no expla-
nation has been found in the literature. Apparently, the predominant
mode must be one which depends solely on ionospheric refraction with-
out the assistance of ground reflection. In the early fifties, the author
of the present paper proposed a theory called the theory of gliding
mode propagation (unpublished) which can explain the control-point
method of MUF prediction [1,2]. As to the long-distance ionospheric
propagation of short radio waves between a point on the ground and an
orbiting satellite, it is usually considered infeasible or impractical. In
1961, the first manned satellite was successfully launched by the former
Soviet Union. It was noticed that the manned satellite carried a trans-
mitter with a frequency of about 20MHz, apparently for the purpose
of utilizing or of testing the possibility of utilizing the ionospheric re-
fraction to achieve long-distance ionospheric propagation between the
ground station and the manned satellite. The author realized that such
propagation is feasible, and that it can also be explained by the theory
of gliding mode propagation. To assess the implications of the Soviet
pioneering event, a symposium was organized by the Bureau of New
Technology of the Chinese Academy of Sciences. The author attended
the symposium and presented a report (now unclassified), a part of
which gave an exposition of the theory of gliding mode propagation.
In the present paper, the relevant part of that report is reviewed and
further research results are introduced.

2. Solution by the Ray Treatment

For the sake of simplicity and for the purpose of quick grasping the
main aspects of the problem, we assume for the time being that the



Unified Theory of Ionospheric Propagation 89

effect of the earth’s magnetic field can be neglected and that the re-
fractive index of the ionosphere can be regarded as a function of the
radial distance r alone. Under such conditions, the refractive index n
is given by

Figure 1. Depiction showing an element ds of the ray trajectory.

n2 = 1− N

Nmax

f2
o

f2
(1)

where N is the electron density, Nmax the maximum value of N , f
the wave frequency and fo the plasma frequency of the ionosphere. In
Figure 1, an element of the ray trajectory is

ds =
√
dr2 + r2dΘ2 =

√
r2 + r′2dΘ (2)

where r′ = dr
dΘ . According to the Fermat principle,

∫
nds =

∫
n(r)

√
r2 + r′2dΘ = extremum (3)

Let
F (r, r′) = n(r)

√
r2 + r′2 (4)

Applying the variational principle, we have

d

dΘ
∂F

∂r′
=
∂F

∂r
(5)
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From (5), it can easily be shown that

r
dn

dr
+ n

[
2− r(r + r′′)

r2 + r′2

]
=
d

r
(nr) + n

r′2 + rr′′

r2 + r′2
= 0 (6)

If r′ �= 0 , by multiplying (6) by rr′√
r2+r′2

, we get

d

dΘ

(
nr2

√
r2 + r′2

)
= 0 (7)

That is, along the ray trajectory,

nr2

√
r2 + r′2

= const (8)

Since
sin i = r

dΘ
ds

=
r√

r2 + r′2
(9)

Eq. (8) is equivalent to the familiar Snell’s law

nr sin i = const. = a sin i0 (10)

where i is the angle of incidence formed at an arbitrary point P on
the ray trajectory between the radial vector �OP and the ray element
vector d�s , as shown in Figure 1, i0 the angle of incidence at the
earth’s surface. For the ionosphere, nr generally has at least one min-
imum. Suppose that there are no discontinuous surfaces. In the layer
considered, there are three possible modes of propagation:
(1) If r′ �= 0 and

a sin i0
(nr)min

> 1 (11)

we have ‘reflection’, that is, bending back toward the earth by refrac-
tion.
(2) If r′ �= 0 and

a sin i0
(nr)min

< 1 (12)

we have penetration.
(3) If r′ = 0 , that is r = const , from (6) we have,

d

dr
(nr) = 0 (13)



Unified Theory of Ionospheric Propagation 91

Therefore, nr is an extremum, either a minimum or a maximum.
According to (10), we should have i = π

2 at the extremum of nr .
Here we have to distinguish between two different cases. If the condi-
tion r′ = 0 were stable, then it would remain to be true and would get
perpetual roundearth propagation. If the condition r′ = 0 were un-
stable, then, supposing that the round-earth ray trajectory is slightly
disturbed, it would deviate further with the result that the outcome
would become chaotic. It is therefore interesting to examine whether
nr being a maximum and being a minimum are respectively stable or
unstable. Suppose that the round-earth ray trajectory at the altitude
r = rm of nr extremum such that



r =rm + δr

dn

dr
=(

dn

dr
)rm + (

d2n

dr2
)rmδr

r′ =r′m + δr′ = δr′

r′ =r′′m + δr′′




(14)

Neglecting small quantities of the second and higher orders, we have[
d2

dr2
(nr)

]
m

δr =
n(rm)
rm

δr′′ (15)

At the altitude of (nr)max, [ d
2

dr2 (nr)]rm < 0 , and therefore δr′′ and δr
have opposite signs, consequently, once the round-earth ray trajectory
is slightly deviated from the altitude of round-earth propagation, it
tends to bend toward this altitude, and as a result the propagation is
stable. On the other hand, at the altitude of (nr)min, [ d

2

dr2 (nr)]rm > 0 ,
and therefore δr′′ and δr have the same sign, consequently, once the
round-earth ray trajectory is slightly deviated from the altitude of
the round-earth propagation, it tends to bend away from this alti-
tude, and as a result, the propagation is unstable. The (nr)max and
(nr)min are respectively associated with the trough and the peak of the
electron-density profile of the ionosphere. The trough of the ionosphere
is usually not pronounced and therefore the attempt to use (nr)max
to achieve round-earth propagation is not advisable. We are interested
in the (nr)min associated with the peak of the F2 layer. If an incident
beam has a very narrow portion the component rays of which just reach
the close vicinity of the altitude of (nr)min , r = rm , essentially tan-
gential to the circular curve r = rm , these rays tend to propagate along
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this circular curve for long distances, and at the same time they tend
to diverge from this curve both upward and downward as they travel
along like in a leaking waveguide. The author, therefore, called such
propagation gliding mode propagation. The same problem can also be
attacked more in detail in the following way, when ground reflection
is not involved, we have for the following three cases the expressions
for the angles subtended at the earth’s center by the transmitting and
receiving points. From Figure 1,

dΘ = tan i
dr

r
= a sin i0

1√
n2r2 − a2 sin2 i0

dr

r
(16)

Case 1: For propagation between two points on the ground, the angle
subtended by the two end points at the earth’s center is given by

ΘD = 2a sin i0
∫ r1

a

1√
n2r2 − a2 sin2 i0

dr

r
(17)

where the upper limit of integration r1 is the value of r which makes
the denominator of the integrand

√
n2r2 − a2 sin2 i0 equal to 0 , i.e.,

n(r1)r1 − a sin i0 = 0 (18)

Case 2: For propagation between a point on the ground and an orbiting
satellite which is below the altitude of (nr)min , the angle subtended
is given by

Θs1 = 2a sin i0
∫ r1

a

1√
n2r2 − a2 sin2 i0

dr

r

− a sin i0
∫ rs

a

1√
n2r2 − a2sin2i0

dr

r

(19)

where rs is the radial distance of the satellite.
Case 3: For propagation between a point on the ground and an orbiting
satellite which is above the altitude of (nr)min , the angle subtended
is given by

Θs2 = a sin i0
∫ rs

a

1√
n2r2 − a2 sin2 i0

dr

r
(20)

All the integrals (17), (19) and (20) have the common integrand
the denominator of which is 0 at r = r1 as shown in (18). The portion
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of the integration path in the vicinity of r = r1 gives the main contri-
bution to the value of the integrals, the flatter the portion of the ray
trajectory in the vicinity of r = r1 , the greater the contribution. If the
angle of incidence i0 is such that the ray trajectory reaches the alti-
tude of (nr)min , i.e., at r = rm , and becomes tangential to the curve
of nr , then, letting i0m denote this particular angle of incidence, we
have

n(rm)rm − a sin i0m = 0 (21)

and in the vicinity of r = rm

nr − a sin i0m = n(rm)rm − a sin i0m +
[
d

dr
(nr)

]
rm

(r − rm)

+
1
2

[
d2

dr2
(nr)

]
rm

(r − rm)2 + . . .

=
1
2

[
d2

dr2
(nr)

]
rm

(r − rm)2 + . . .

(22)

If the path of integration contains the point r = rm , the integral∫
1√

n2r2 − a2 sin2 i0

dr

r
is infinite. Infinite subtended angle at the

earth’s center means round-earth propagation, but since the propa-
gation is unstable, the rays diverge and become chaotic. From (17),
(19) and (20), we can show that ΘD , Θs1 , and Θs2 , can attain any
finite positive number greater than 2π if nr has a minimum without
requiring to know the specific electron-density profile. For this purpose,
we need to consider only the gliding portion of the ray trajectory.

(1) For the case of propagation between two points on the ground and
the case of propagation between a point on the ground and an orbiting
satellite below r = rm. Remembering that n2(r1)r2

1 − a2 sin2 i0 = 0
and n2(rm)r2

m - a2 sin2 i0m = 0 , let i0 be an arbitrary positive value
which is very close to but slightly greater than i0m so that

0 < a(sin i0 − sin i0m)� 1 (23)

In the neighborhood of r = rm with r ≤ rm ,

√
n2r2 − a2 sin2 i0 �

√
2a sin i0

√
1
2

[
d2(nr)
dr2

]
rm

(rm−r)2− a(sin i0 − sin i0m)
(24)
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where
[
d2(nr)
dr2

]
rm

is a positive quantity. We know that

0 = n(r1)r1 − a sin i0 �
1
2

[
d2(nr)
dr2

]
rm

(rm − r1)2 − a(sin i0 − sin i0m)

(25)
hence,

r1 = rm(1− ε) (26)

where

ε =
1
rm

√√√√√2a(sin i0 − sin i0m)[
d2(nr)
dr2

]
rm

(27)

is an arbitrary small positive number. Let p be an arbitrary finite
positive number such that p� 1

ε and at the same time p < 1
ε (1− a

rm
) .

In (17) and (19), the integral concerned is
∫ r1

a

1√
n2r2 − a2 sin2 i0

dr

r
and let us divide it into two parts as

∫ r1

a

1√
n2r2 − a2 sin2 i0

dr

r
=

∫ rm(1−pε)

a

1√
n2r2 − a2 sin2 i0

dr

r

+
∫ rm(1−ε)

rm(1−pε)

1√
n2r2 − a2 sin2 i0

dr

r

(28)

The second integral on the right is the one which is relevant to the
gliding portion of the ray trajectory. This integral can be written

∫ rm(1−ε)

rm(1−pε)

1√
n2r2 − a2 sin2 i0

dr

r
�

1

rm

√
a sin i0

[
d2(nr)
dr2

]
rm

×
∫ (1−ε)

(1−pε)

d( r
rm

)√
(1− r

rm
)2 − ε2

(29)

Letting 1− r
rm

= ε sec ξ , d( r
rm

) = −ε sec ξ tan ξdξ , we have
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∫ (1−ε)

(1−pε)

d( r
rm

)√
(1− r

rm
)2 − ε2

=
∫ sec−1 p

0
sec ξdξ

= ln (sec ξ + tan ξ)|sec−1 p
0

= ln(p+
√
p2 − 1)

(30)

This can be any finite positive number according to value of ε which
in turn depends on the choice of i0 with respect to i0m .

(2) For the case of propagation between a point on the ground and
an orbiting satellite above r = rm . In this case, i0 ≤ i0m . In the
neighborhood of r = rm with r ≥ rm , it can easily be shown that

√
n2r2 − a2 sin2 i0 �

√
2a sin i0

√
1
2

[
d2(nr)
dr2

]
rm

(rm−r)2+a(sin i0m−sin i0)

= rm

√
a sin i0

[
d2(nr)
dr2

]
rm

√
(
r

rm
− 1)2 + ε2

(31)
where

ε =
1
rm

√√√√√2a(sin i0m − sin i0)[
d2(nr)
dr2

]
rm

(32)

The integral of (20) can be divided into three parts as

∫ rs

a

1√
n2r2 − a2 sin2 i0

dr

r
=

∫ rm(1+ε)

a

1√
n2r2 − a2 sin2 i0

dr

r

+
∫ rs

rm(1+qε)

1√
n2r2 − a2 sin2 i0

dr

r

+
∫ rm(1+qε)

rm(1+ε)

1√
n2r2 − a2 sin2 i0

dr

r

(33)

where q � 1
ε and at the same time q <

1
ε
(
rs
rm
− 1) . The last integral

on the right is the one which is relevant to the gliding portion of the
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ray trajectory. To evaluate this integral, letting r
rm
− 1 = ε tan ξ ,

d( r
rm

) = ε sec2 ξdξ , we have

∫ rm(1+qε)

rm(1+ε)

1√
n2r2 − a2 sin2 i0

dr

r

� 1
rm

1√
a sin i0

[
d2(nr)
dr2

]
rm

∫ rm(1+qε)

rm(1+ε)

d( r
rm

)√
( r
rm
− 1)2 + ε2

=
1
rm

1√
a sin i0

[
d2(nr)
dr2

]
rm

∫ tan−1 q

π
4

sec ξdξ

=
1
rm

1√
a sin i0

[
d2(nr)
dr2

]
rm

[
ln(q +

√
q2 + 1)− ln(1 +

√
2)

]

(34)

This can be any finite positive number according to the value of ε
which in turn depends on the choice of i0 with respect to i0m .

It is interesting to examine what range of frequency is suitable for
gliding mode propagation, we know that at r = rm ,

d

dr
(nr) =

d

dr

[
r

√
1− f2

0

f2

N(r)
Nmax

]

=
1√

1− f2
0
f2

N(r)
Nmax

[
1− f2

0

f2

N(r)
Nmax

− f2
0

f2

r

2
d

dr

(
N(r)
Nmax

)]

= 0

(35)

i.e.,
d

dr

(
N(r)
Nmax

)
+

2
r

N(r)
Nmax

=
2
r

f2

f2
0

(36)

This equation was derived specifically for r = rm , but generally it can
be approximately applied to the close vicinity of r = rm . To solve the
equation, let

N(r)
Nmax

=
1
r2
u(r) (37)
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then,
du

dr
= 2

f2

f2
0

r (38)

so that

u =
f2

f2
0

r2 + C (39)

and
N(r)
Nmax

=
f2

f2
0

+
C

r2
(40)

Let r = rp be the radial distance of the peak of N , then,

C = −r2
p

(
f2

f2
0

− 1
)

(41)

so that, at r = rm

N(rm)
Nmax

=
f2

f2
0

−
r2
p

r2
m

(
f2

f2
0

− 1
)

=
r2
p

r2
m

− f2

f2
0

(
r2
p

r2
m

− 1
)

(42)

From (21) and (42), we have

n2(rm)r2
m =

(
1− f2

0

f2

N(rm)
Nmax

)
r2
m = (1− f2

0

f2
)r2
p = a2 sin2 i0m (43)

Therefore,

f =
f0√

1− a2

r2p
sin2 i0m

(44)

In order to achieve gliding mode propagation, from practical consider-
ations, the angle of inclination 90◦− i0 � 90◦− i0m should not be less
than 5◦ , say, i.e., i = i0m not greater than 85◦ , and at the same time,
i0 � i0m should not be less than 20◦ , say. Suppose that a = 6370 km
and rp = 6370 + 300 = 6670 km, then for i0 � i0m = 85◦ , we have
sin i0m = 0.9962 and f � 3.25f0 , and for i0 � i0m = 20◦ , we have
sin i0m = 0.3420 and f � 1.06f0 . Then, according to the above crite-
ria, the frequency chosen should be in the range

3.25f0 ≥ f ≥ 1.06f0 (45)
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approximately, preferably near the higher end.
The discussions given above are chiefly concerned with long-

distance gliding mode propagation which is main theme of the present
paper. Our theory, however, is a universal one and the gliding mode
propagation is an important special case. The basic equations (17),
(19) and (20) are applicable to all cases and all distances, under the
assumption that n is real and a function of r alone. Let us consider
the general problem of oblique incidence, and imagine that we decrease
the angle of incidence i0 from grazing incidence to nearly vertical inci-
dence. The frequency has a fixed value situated in the range as shown
in (45). At grazing incidence, by eq. (17), we have the maximum span
of a single hop between two points on the ground. As the angle of inci-
dence i0 is decreased, it can be seen from (17) that, with D = aΘD ,

∂D

∂D(−i0)
= −2a2 cos i0

∫ r1

a

1√
n2r2 − a2 sin2 i0

dr

r

− 2a4 sin2 i0 cos i0
∫ r1

a

1

(n2r2 − a2 sin2 i0)
3
2

dr

r

− 2a2 sin i0

[
1
r1

1√
n2(r1)r2

1 − a2 sin2 i0

]
∂r1
∂i0

(46)

Now, 


n(r1)r1 − a sin i0 = 0
∂

∂i0
[n(r1)r1] =

∂

∂r1
[n(r1)r1]

∂r1
∂i0

= a cos i0

∂r1
∂i0

=
a cos i0

∂
∂r1

[n(r1)r1]




(47)

∂D

∂(−i0)
= 2a2 cos i0

{
−

∫ r1

a

n2rdr

(n2r2 − a2 sin2 i0)
3
2

− a sin i0
r1

d
dr1

[n(r1)r1]
1√

n2(r1)r2
1 − a2 sin2 i0

} (48)

With the decrease of i0 , there are two opposite tendencies co-existing,
the first term on the right of Eq. (47) is negative, tending to cause
D to decrease, while the second term on the right is positive since
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d
dr1

[n(r1)r1] is negative, tending to cause D to increase. At first, the
former tendency predominates so that D decreases, with the decrease
of i0 , until a certain value of i0 is reached when the two tendencies just
balance and D attains its minimum value called the skip distance, and
thereafter the latter tendency predominates so that D increases with
the further decrease of i0 as another certain value of i0 is reached, D
equals the initial Dmax obtained at grazing incidence, so that between
Dmin and Dmax , for every D there are two different rays correspond-
ing to two different angles of incidence. One of the rays corresponds to
the larger angle of incidence i0 or equivalently to the smaller angle of
inclination 90◦− i0 and is usually called the low-angle (of inclination)
ray, and the other corresponds to the smaller angle of incidence i0 or
equivalently to the larger angle of inclination 90◦ − i0 and is usually
called the high-angle (of inclination) ray, also often called Pedersen ray.
While the low-angle (of inclination) rays have a limit of distance due to
the earth’s obstruction, namely, the maximum span of a single hop, the
high-angle (of inclination) rays can travel to greater distance by fur-
ther decrease of i0 . If i0 is further decreased to become very close to
i0m as given by (21), we get the gliding mode propagation with the re-
sulting extremely wide coverage of the rays. After having i0 decreased
beyond the gliding mode regime, the rays penetrate deeper into the
ionosphere with steeper and steeper slope. From the above discussion,
we see that our theory is a universal one and the gliding mode propa-
gation is an important special case with both theoretical and practical
interest. It is characterized by the mathematical property of the inte-
grals of the basic equations (17), (19) and (20) which have the same
integrand. The main contribution to the values of the integrals is given
by the small portion of the integration path with r lying in the close
vicinity of r1 which is the zero of the denominator of the integration,
i.e.,

√
n2r2 − a2 sin2 i0 . We have already known that if i0 = i0m then,√

n2r2 − a2 sin2 i0m is 0 at r = rm and also d
dr (nr) = 0 at r = rm ,

and then all the three integrals become infinite. Therefore, when i0
lies in the close vicinity of i0m , we have the gliding mode propagation,
and only a very thin bundle of component rays of the incident beam
is relevant. If the electron-density profile is given, from (17), (19) and
(20), we can calculate the ray trajectories at a specific frequency in the
appropriate range for different values of i0 as shown qualitatively in
Figure 2. When Pederson found the high angle (of inclination) ray, he
was actually on the verge of being able to discover the gliding mode
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propagation. Apparently, due to the fact that the gliding mode propa-
gation depends very critically on the parameter, the angle of incidence,
it is liable to escape being noticed and also to elude the discovery by
computer numerical computation. From the discussions, we see that
the gliding mode long-distance ionospheric propagation is actually an
example of a type of chaos, now an important wide frontier sphere of
scientific investigation.

Figure 2. Different ray trajectories for different angles or incidence.

The main difficulty in the application of the gliding mode prop-
agation is that the loss is in general large and the field intensity is in
general low, except under a few special situations mentioned below.
The loss consists of two categories, one is the loss due to spatial di-
vergence and the other the loss due to absorption, the former being
usually more important. Here, we shall discuss only the loss due to
spatial divergence. Supposing that the point A on the ground is the
transmitting point as above and consider a beam forming an angle
∆i0 in the plane of incidence and an angle ∆φ perpendicular to the
plane of incidence as shown in Fig. 3. At a unit distance away from
the transmitting point along the trajectory, the cross-sectional area is
|∆i0∆φ| and at the receiving point P (rs,Θs) ,the cross-sectional area
is

|rs
dΘs

di0
∆i0 cos isrs

∆φ

sin is
sin Θs| = |r2

s

cos is sin Θs

sin i0
dΘs

di0
∆i∆φ| (49)

By comparing the two cross-sectional areas, we get the loss due
to spatial divergence

Γ = ln
∣∣∣∣r2
s

cos is sin is
sin i0

dΘs

di0

∣∣∣∣ nepers (50)
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For gliding mode propagation, |dΘsdi0
| is in general large and therefore

the field intensity is in general low, but detailed analysis requires the
consideration of the various kinds of focusing phenomena, when∣∣∣∣r2

s

cos is sin Θs

sin i0
dΘs

di0

∣∣∣∣ < 1 (51)

Γ is negative and we would get gain due to focusing instead of loss due
to spatial divergence. Focusing occurs at the following three points:
(1) is = π

2 , (2) Θs = π , and (3) |dΘsdi0
| = 0 . At a focusing point,

Γ theoretically become minus infinity. The first focusing point corre-
sponds to the situation that the ray becomes horizontal at P , the
second focusing point corresponds to antipodal propagation, and the
third focusing point corresponds to the situation of a single hop at skip
distance, not belonging to the gliding mode propagation. For gliding
mode propagation, the closer the point P to the altitude of (nr)min ,
the less the value |π2 − is| , so that the loss due to spatial divergence
will not be too large to the benefit for the reception of the signal.

Figure 3. Depiction showing the divergence and focusing effect of a

narrow beam.

ln the above discussion, it was assumed that n is a function of
r alone. In the actual case, n may be a slowly varying function of
Θ and the azimuthal angle ϕ as well, so that the (nr)min surface is
somewhat warped. This situation arises if the ionosphere is tilted and
if the effect of the earth’s magnetic field is taken into consideration,
either for the ordinary wave or for the extraordinary wave. Under the
condition of a warped (nr)min surface, for a specific long-distance
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short-radio wave circuit, we can divide the relevant strip of the warped
(nr)min surface into a few sections, each of which can be approximately
regarded as a portion of a spherical surface with its.center duly shifted.
Let us suppose that the transmitter emits a beam propagating to the
right and the first section of the relevant strip of the (nr)min surface
contains the point which is to the right of the transmitting point by a
distance along the earth’s surface equal to half of the maximum span of
a single hop. This point is termed the control point for the transmitter
end. The frequency used must not be greater than the MUF of a single
hop of maximum span based on the characteristics of the ionosphere
above the control point in the first section to avoid the obstruction
of the earth. The transmitted beam consists of a multitude of rays.
These rays reach the vicinity of the altitude of (nr)min , both slightly
above and slightly below this altitude, and thence they continue to
propagate in the gliding mode, causing the rays more widely spread.
Among these rays, there is always a thin bundle of rays which will
reach the vicinity of the altitude of (nr)min of the second section,
both slightly above and slightly below this altitude, and so on. Finally,
the rays covering almost the whole space both above and below the
altitude of (nr)min are obtained. As far as the ray treatment for the
propagation between a point on the ground and an orbiting satellite is
concerned, no matter whether above or below the altitude of (nr)min ,
the problem can be considered solved by the above discussion. However,
for propagation between two points on the ground with the receiving
point specified, we have to be sure that the frequency used besides
fulfilling the requirement that the incident rays at the transmitting
end are not obstructed by the earth, similarly, the returning rays in the
last section should also be not obstructed by the earth. The last section
should contain the point which is to the left of the receiving point by a
distance along the earth’s surface equal to half of the maximum span
of a single hop, where the characteristics of the ionosphere ensures that
the frequency used is also not greater than the MUF of a single hop
of maximum span, and the MUF of the whole communication circuit
is chosen to be the smaller of the two MUF values calculated for the
transmitting end and for the receiving end, as required by the control-
point method of MUF prediction.
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3. Solution by Full-Wave Treatment

The ray treatment method is an approximate one. The approximation
becomes poor as n2r2 − a2 sin2 i0 approaches zero at the altitude of
(nr)min . But this may not be important because the field distribution
is chaotic anyway. To be complete, in this section, a more exact full-
wave treatment is given for the neighboring region of (nr)min . To make
the problem tractable, we transform the spherical coordinates (r,Θ, ϕ)
as shown in Figure 4 to a new pseudo-rectangular coordinate system
(x, y, z) such that (2) 


x = rmΘ cosϕ
y = rmΘ sinϕ

z = rm ln
r

rm


 (52)

Hence 


r = rm exp(
z

rm
)

dr = exp(
z

rm
)dz

rmΘ =
√
x2 + y2

rmdΘ =
xdx+ ydy√
x2 + y2

tanϕ =
y

x

dϕ =
xdy − ydx

x2 + y2




(53)

and

ds2 =dr2 + r2dΘ2 + r2 sin2 Θdϕ2

= exp (
2z
rm

)
[
dz2 +

(xdx+ ydy)2

x2 + y2
+

sin2 Θ
Θ2

(xdy − ydx)2

x2 + y2

]

= exp (
2z
rm

)
[
dx2 + dy2 + dz2 −

(
1− sin2 Θ

Θ2

)(xdy − ydx)2

x2 + y2

]

= exp (
2z
rm

)[dx2 + dy2 + dz2 − (1− sin2 Θ
Θ2

)r2
mΘ2dϕ2]

(54)
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Figure 4. Nomenclature of the spherical coordinate system.

Since by symmetry we have ∂
∂φ = 0 and since the wavelengths of

interest are much smaller than the earth’s radius, it is reasonable to
assume that the deviation from the plane of incidence is much smaller
than the deviation in the plane of incidence, so that we can write
approximately even in the whole plane of incidence,


ds2 = η2(dx2 + dz2)

∂

∂y
= 0


 (55)

where

η = exp (
z

rm
) (56)

The curl of any vector function �F is approximately given by


× �F =
1
η3

∣∣∣∣∣∣
ηx̂ ηŷ ηẑ
∂
∂x 0 ∂

∂z

ηFx ηFy ηFz

∣∣∣∣∣∣
= −x̂ 1

η2

∂

∂z
(ηFy) + ŷ

1
η2

[
∂

∂z
(ηFx)−

∂

∂x
(ηFz)

]
+ ẑ

1
η2

∂

∂x
(ηFy)

(57)
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Hence, the Maxwell equations in the ionosphere can be written as



∂z(ηEy)− iω(ηµ0)(ηHx) = 0

∂z(ηEx)− ∂x(ηEz)− iω(ηµ0)(ηHy) = 0

∂x(ηEy)− iω(ηµ0)(ηHz) = 0


 (58)



− ∂z(ηHy) + iω(ηε0)(ηEx) = η2Jx = −eηN(ηvx)

∂z(ηHx)− ∂x(ηHz) + iω(ηε0)(ηEy) = η2Jy = −eηN(ηvy)

∂x(ηHz) + iω(ηε0)(ηEz) = η2Jz = −eηN(ηvz)


 (59)

where −e is the charge of the electron, N the electron density, �v the
velocity of the electron, and exp (−iωt) is the time dependence con-
vention adopted with the effect of the earth’s magnetic field assumed
to be negligible. The equations of motion of the electrons are


−iωm(ηvx) = −e(ηEx)
−iωm(ηvy) = −e(ηEy)
−iωm(ηvz) = −e(ηEz)


 (60)

where m is the mass of the electron. From (59) and (60), we have



− ∂z(ηHy)− iω(ηε0)n2(ηEx) = 0

∂z(ηHz)− ∂x(ηHz) + iω(ηε0)n2(ηEy) = 0

∂x(ηHy) + iω(ηε0)n2(ηEz) = 0


 (61)

where n2 = 1− Ne2

mε0ω2 . Let us consider the following cases.
Case 1: Ey �= 0, Hx �= 0, Hz �= 0, Ex = Ez = Hy = 0 , then



− ∂z(ηEy)− iω(ηµ0)(ηHx) = 0
∂x(ηEy)− iω(ηµ0)(ηHz) = 0

∂z(ηHx)− ∂x(ηHz) + iω(ηε0)n2(ηEy) = 0


 (62)

from which it can be shown that

∂2Ey
∂z2

+
∂2Ey
∂x2

+ k2
0η

2n2Ey +
1
rm

∂Ey
∂z

= 0 (63)
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where k2
0 = ω2ε0µ0 . Neglecting the last small term, we have approxi-

mately
∂2Ey
∂z2

+
∂2Ey
∂x2

+ k2
0η

2n2Ey = 0 (64)

Case 2: Hy �= 0, Ex �= 0, Ez �= 0, Hx = Hz = Ey = 0 , then



− ∂z(ηHy) + iω(ηε0)n2(ηEx) = 0

∂x(ηHy) + iω(ηε0)n2(ηEz) = 0
∂z(ηEx)− ∂x(ηEz)− iω(ηµ0)(ηHy) = 0


 (65)

from which it can be shown that

∂2Hy

∂z2
+
∂2Hy

∂x2
+k2

0η
2n2Hy+(

1
rm
− 2
n

∂n

∂z
)
∂Hy

∂z
− 2
rm

1
n

∂n

∂z
Hy = 0 (66)

where we know that ∂n
∂z = ∂n

∂r
∂r
∂z = η ∂n∂r and near r = rm , approxi-

mately, 1
n
∂n
∂z = η 1

n
∂n
∂r � − 1

rm
, giving approximately,

∂2Hy

∂z2
+
∂2Hy

∂x2
+ k2

0η
2n2Hy +

3
rm

∂Hy

∂z
+

2
r2
m

Hy = 0 (67)

Neglecting the last two small terms, we have approximately

∂2Hy

∂z2
+
∂2Hy

∂x2
+ k2

0η
2n2Hy = 0 (68)

Let us take Case 2 for example. In order to be able to solve the wave

equation analytically, we assume that η2n2 = η2

(
1− e2N

mε0ω2

)
satisfies

the Epstein distribution [3] , namely

η2n2 = η2

(
1− e2N

mε0ω2

)
= 1−K1

exp (αz)
1 + exp (αz)

− 4K2
exp (αz)

(1 + exp (αz))2
(69)

where α, K1 , and K2 are constants which are free to choose. If K1 �= 0
and K2 = 0, 1 − η2n2 gives a transition layer and if K1 = 0 and
K2 �= 0 , it gives a symmetric layer, as shown in Figure 5. If K1 and
K2 are both not zero, by adjusting the values of K1 and K2 and
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also of α , we have different shapes of intermediate layers. The wave
equation becomes

∂2

∂z2
Hy+

∂2

∂x2
Hy+k2

0

[
1−K1

exp (αz)
1 + exp (αz)

−4K2
exp (αz)

(1 + exp (αz))2

]
Hy = 0

(70)
Let

Hy = X(x)Z(z) (71)

then

1
Z

d2Z

dz2
+

1
X

d2X

dx2
+ k2

0

[
1−K1

exp (αz)
1 + exp (αz)

− 4K2
exp (αz)

(1 + exp (αz))2

]
= 0

(72)
Let

d2X

dx2
+ k2

0 cos2 βX = 0 (73)

where cosβ is a constant. Therefore, we can let

X = exp (ik0x cosβ) (74)

and

d2Z

dz2
+ k2

0

[
sin2 β−K1

exp (αz)
1 + exp (αz)

− 4K2
exp (αz)

(1 + exp (αz))2

]
Z = 0 (75)

Let us introduce
u = − exp (αz) (76)

and
v =

Z

f(u)
(77)

where f(u) is a function to be determined. We have


du

dz
= αu

dZ

dz
=
dZ

du

du

dz
= αu[f(u)

dv

du
+ f ′(u)v]

d2z

dz2
= α2u2f(u)

d2v

du2
+ [2α2u2f ′(u) + α2uf(u)]

dv

du
+ [α2u2f ′′(u) + α2uf ′(u)]v




(78)
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Hence,

d2v

du2
+

[
2
f ′(u)
f(u)

+
1
u

]
dv

du

+
{
f ′′(u)
f(u)

+
1
u

f ′(u)
f(u)

+
k2

0

α2u2

[
sin2 β +K1

u

1− u
+ 4K2

u

(1− u)2

]}
v = 0

(79)

Figure 5. Epstein distribution illustrating forms of transition layer and

symmetric layer

Equation (79) can be transformed into the hypergeometric differential
equation of the form

d2v

du2
+
C − (A+B + 1)u

u(1− u)
dv

du
− AB

u(1− u)
v = 0 (80)

where A,B,C are constants. Comparing equations (79) and (80), we
have

f ′(u)
f(u)

=
C − 1

2
1
u
− A+B − C + 1

2
1

1− u
(81)

so that
f(u) = f0u

C−1
2 (1− u)

A+B−C+1
2 (82)
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where f0 is a constant. Therefore

f ′′(u)
f(u)

+
1
u

f ′(u)
f(u)

+
k2

0

α2u2

[
sin2 β +K1

u

1− u
+ 4K2

u

(1− u)2

]

=
1
4

(
C − 1
u
− A+B − C + 1

1− u

)2

− A+B − C + 1
2

1
u(1− u)2

+
k2

0

α2u2

[
sin2 β +K1

u

1− u
+ 4K2

u

(1− u)2

]
= − AB

u(1− u)
(83)

By reducing to common denominator and equating the coefficients of
u0, u1, and u2 in the numerator on both sides of the equal sign, we
have


(C − 1)2 + 4
k2

0

α2
sin2 β = 0

(A−B)2 + 4
k2

0

α2
(sin2 β −K1) = 0

(A+B)2 − 2C(A+B) + 2C(C − 1) + 4
k2

0

α2
(− sin2 β + 4K2) = 0




(84)
Solving, we get



C = 1 + i2
k0

α
sinβ

A =
1
2
[1 + i2

k0

α
sinβ + (1− 16

k2
0

α2
K2)

1
2 − i2

k0

α
(sin2 β −K1)

1
2 ]

B =
1
2
[1 + i2

k0

α
sinβ + (1− 16

k2
0

α2
K2)

1
2 + i2

k0

α
(sin2 β −K1)

1
2 ]



(85)

Hence
Z = f0u

C−1
2 (1− u)

A+B−C+1
2 v (86)

where v is the hypergeometric function. The hypergeometric differen-
tial equation has three singular points 0, 1, and ∞ . For each of these
points, there are two fundamental series expansions convergent in its
neighborhood, namely,

(i) about u = 0 ,

v1 = C1F (A,B,C, u)

v2 = C2u
1−CF (A− C + 1, B − C + 1, 2− C, u)

(87)
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(ii) about u = 1 ,

v3 = C3F (A,B,A+B − C + 1, 1− u)

v4 = C4(1− u)C−A−BF (C −A,C −B,C −A−B + 1, 1− u)
(88)

(iii) about u =∞ ,

v5 = C5u
−AF (A,A− C + 1, A−B + 1, u−1)

v6 = C6u
−BF (B,B − C + 1, B −A+ 1, u−1)

(89)

where C1, C2, C3, C4, C5, and C6 are constants, and

F (A,B,C, u) =
Γ(C)

Γ(A)Γ(B)

∞∑
k=0

Γ(A+ k)Γ(B + k)
k!Γ(C + k)

uk (90)

which is convergent for |u| < 1 . Although the functions are given in
the forms of series expansions which are convergent only within their
appropriate definite intervals, each of these series expansions defines
an analytic function by analytic continuation which is a solution of the
hypergeometric differential equation extending beyond the convergent
interval of these series. Since any three solutions of a linear differential
equation of the second order are linearly dependent, there is a linear
relation which holds for the analytic functions obtained by analytic
continuation and therefore it is valid for all values which can be as-
signed to the three functions. Therefore, it is legitimate and for our
purpose more convenient to write the u’s in (77), (81), (82) and (83)
as -u’s, then v1, v2, v3, v4, v5, and v6 are expressed as

(i) about u = 0 ,

v1 = C1F (A,B,C,−u)

v2 = C2(−u)1−CF (A− C + 1, B − C + 1, 2− C,−u)
(91)

(ii) about u = −1 ,

v3 = C3F (A,B,A+B − C + 1, 1 + u)

v4 = C4(1 + u)C−A−BF (C −A,C −B,C −A−B + 1, 1 + u)
(92)
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(iii) about u = −∞

v5 = C5(−u)−AF (A,A− C + 1, A−B + 1,−u−1)

v6 = C6(−u)−BF (B,B − C + 1, B −A+ 1,−u−1)
(93)

where

F (A,B,C, u) =
Γ(C)

Γ(A)Γ(B)

∞∑
k=0

Γ(A+ k)Γ(B + k)
k!Γ(C + k)

(−u)k (94)

We are interested in knowing the relations among the v ’s. It can be
proved that

(−1)A
Γ(1−B)Γ(A− C + 1)
Γ(1− C)Γ(A−B + 1)

(−u)−A

F (A,A− C + 1, A−B + 1,−u−1)

= F (A,B,C,−u) + (−1)1−C
Γ(C − 1)Γ(1−B)Γ(A− C + 1)

Γ(1− C)Γ(C −B)Γ(A)

(−u)1−CF (A− C + 1, B − C + 1, 2− C,−u)

(95)

As z → −∞, u→ 0− and




Z → f0e
ik0z sinβ

+ f0(−1)1−C
Γ(C − 1)Γ(1−B)Γ(A− C + 1)

Γ(1− C)Γ(C −B)Γ(A)
e−ik0z sinβ

Hy → f0e
ik0(x cosβ+z sinβ)

+ f0(−1)1−C
Γ(C − 1)Γ(1−B)Γ(A− C + 1)

Γ(1− C)Γ(C −B)Γ(A)
eik0(x cosβ−2 sinβ)



(96)

As z →∞, u→ −∞ and




Z = f0(−1)(−u)
B−A

2 F (A,A− C + 1, A−B + 1,−u−1)

→ f0(−1)eik0z(sin
2 β−K1)

1
2

Hy → f0(−1)eik0[x cosβ+z(sin2 β−K1)
1
2 ]

= f0(−1)eik0(x cosβ′+z sinβ′)




(97)
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where 


k = k0(1−K1)
1
2

cosβ′ =
cosβ

(1−K1)
1
2

sinβ′ =
(sin2 β −K1)

1
2

(1−K1)
1
2




(98)

The first term of the second equation of (96) corresponds to the incident
wave and the second term corresponds to the “reflected” wave. The
second equation of (97) corresponds to the transmitted wave. From
(96), the “reflection” coefficient is

R = (−1)1−C
Γ(C − 1)Γ(1−B)Γ(A− C + 1)

Γ(1− C)Γ(C −B)Γ(A)
(99)

and from (97), the transmission coefficient is

T = (−1)
3A+B−C+1

2
Γ(1−B)Γ(A− C + 1)
Γ(1− C)Γ(A−B + 1)

(100)

Let us suppose that the incident wave is generated by a source
located at x = 0 and z = z0 where |z0| = −z0 < rm . Neglecting
the spread of the beam perpendicular to the plane of incidence, we can
approximately write the incident beam before entering the ionosphere
as

H inc
y =

∫ β2

β1

F (β)eik0[x cosβ+(z−z0) sinβ]dβ (101)

where F (β) as a function of β is assumed to be known. Comparing the
first term of the second equation of (96) with F (β)eik0[x cosβ+(z−z0) sinβ]

we have
f0 = F (β)e−ik0z0 sinβ (102)

Therefore, below the altitude of (nr)min the field of the “reflected”
wave is approximately given by

Hrefl
y (x, z) =

∫ β2

β1

dβF (β)eik0z0 sinβ(−u)
C−1

2 (1 + u)
A+B+−C+1

2

Γ(C − 1)Γ(1−B)Γ(A− C + 1)
Γ(1− C)Γ(C −B)Γ(A)

u1−C

F (A− C + 1, B − C + 1, 2− C,−u) (103)
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and above the altitude of (nr)min , the field of the transmitted wave
is approximately give by

Htrans
y (x, z) =

∫ β2

β1

dβF (β)e−ik0z0 sinβ(−u)
C−1

2 (1 + u)
A+B−C+1

2

Γ(1−B)Γ(A− C + 1)
Γ(1− C)Γ(A−B + 1)

u−A

F (A,A− C + 1, A−B + 1,−u) (104)

From (96), (97), and (59), the field in the whole region both below
and above the altitude of (nr)min can be computed numerically if
η2(1− e2N

mε0ω2 ) profile as an Epstein distribution is given.

4. Conclusions and Discussions

Practice has shown that multiple-hop propagation can neither be the
only mode nor be the predominant mode of long-distance short radio-
wave ionospheric propagation between two points on the ground. Prac-
tice has also shown the feasibility of long-distance short radio-wave
ionospheric propagation between a point on the ground and an or-
biting satellite. Both of these two categories of propagation can be
achieved by solely utilizing the refraction of the ionosphere, without
considering the presence of the earth. We established a unified theory
of short radio-wave ionospheric propagation, with special emphasis on
long-distance propagation, which is an important special case both
practically and theoretically. Once we assumed that the transmitting
point was situated on the ground, we discussed the ray treatment and
derived the expressions for the angles subtended by the propagation
path at the earth’s center for the three cases mentioned before. The
integral expressions for the angles subtended at the earth’s center has
the integrand with

√
n2r2 − a2 sin2 i0 as its denominator. The angles

of incidence i0 is a very critical parameter such that if i0 approaches
i0m , where n(rm)rm − a sin i0m = 0 with r = rm equal to the radial
distance of (nr)min the values of the integral expressions approach
infinity and the distribution of the field becomes chaotic and reaches
essentially the whole space of the plane of the incidence both below
and above r = rm . This is the so-called gliding mode propagation. It
is then proved that to ensure gliding mode propagation, the assump-
tion that n is a function of r alone can be relaxed, and n can be a
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slowly varying function of Θ and the azimuthal angle ϕ as well. To
be complete, a full-wave treatment is introduced. Experience seems to
indicate that echo phenomenon does not cause serious problem. Exper-
iments designed to test the different qualities of communications using
the gliding mode propagation are suggested.

Acknowledgment

This project is supported by the National Natural Scientific Foun-
dation of China.

References

1. Lu, B. W. “A unified theory of short radio-wave ionospheric prop-
agation with special emphasis on long-distance propagation,” Pre-
sented at PIERS, California, USA, July 1993.

2. Lu, B. W. “On the problem of radio-wave propagation between a
point on the ground and a spacecraft, document of the Sixth Sym-
posium on Astronautics,” Bureau of New Technology, Academia
sinica, December 23, 1961 (in Chinese).

3. Kerr, D. E, Propagation of Radio Waves, New York, McGraw-Hill
Book Co., 1951.

4. Epstein, P. S., “Reflection of waves in an inhomogeneous absorb-
ing medium,” Proceedings of the National Academy of Sciences,
Vol. 16, No. 10, 1930.


