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1. Introduction

Semiconductor laser is an important optoelectronic device as the
light source for optical systems today. Many papers have been written
on two-dimensional (2D) numerical simulations of semiconductor lasers
in the last decade or so ( see, for example, [1-3]. However,the work
on laser simulation is still primitive in terms of volume and depth
compared with its counterparts in simulation of conventional electronic
devices. With the popularity of quantum well and strained quantum
well lasers,the complexity in their design and analysis has increased
significantly and it becomes important to develop or apply accurate
numerical models to the design of modern semicondutor lasers.

A semiconductor laser is a diode and, therefore, also an electronic
device. In this sense all the previous experience [4,5] generated in nu-
merical simulation of VLSI electronic devices can be borrowed directly
to laser simulation. However several important issues must be resolved
before the conventional techniques can be applied. These are discussed
as follows (see also the schematic diagram in Fig. 1 showing the relation
between various processes and governing equations):

e 1) The optical field or optical mode must be solved. A unique fea-
ture for laser simulation is that the optical field is coupled to the
electronic behavior of the device and, therefore,should be solved
in a selfconsistent manner together with the electronic simulation.

e 2) An additional rate equation must be solved. The rate equation
is the link between the optical power and electronic behavior.

e 3) An accurate gain function should be computed for the material
of interest. The need for an accurate gain model is more obvious
in the case of strained quantum well laser since a key incentive
of using a strained quantum well is to improve the gain of the
material.

This chapter details the physical models and numerical techniques
needed to develop a 2D quantum well laser model. By 2D model it is
meant a description of a 2D cross section in the transverse and lateral
directions of a laser, or a small segment of a 2D cross-section in the
longitudinal direction, e.g., one period of a DFB laser (see Figure 2).
The model of longitudinal modal behavior is out of the scope of this
chapter.



Two-dimensional numerical simulation of semiconductor lasers 303

DD model 8 p Jn Jp RepRg Ry
ganmodel |  g(ap)
waveequation | w Ny
l
rate equation s R~ WS

Figure 1. Physical processes and related equations of a quantum well
laser.
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Figure 2. Schematics of different 2D cross sections in a laser.
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The organization of this chapter is as follows. Section 2 presents
the basic equations needed to describe the semiconductor laser be-
havior. Section 3 details the discretization schemes used to solved the
equations. Section 4 discusses the numerical techniques used to solve
the discretized equations. Section 5 gives details in the modeling of
quantum well optical gain in a form suitable for 2D simulations. An
example of 2D simulation is briefly described in Section 6.

2. Basic Equations

2.1 Basic Differential Equations.

The basic equations used to describe the semiconductor laser be-
havior are the Poisson’s equation:

~V. (GOZ@VV) = —n+P+ND(1_fD)“NAfA+JZ Nii (85— fi3), (1)

and the current continuity equations for electrons and holes:
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where the symbols are defined as follows.
e V: electrostatic potential;
e n: electron concentration;
¢ p: hole concentrations;
. Rf{ : recombination rate due to electron trapping;

R,t,j : recombination rate due to hole trapping;

R, : recombination rate due to stimulated emission;
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e Ray: Auger recombination rate;

e f4: occupancy of shallow acceptor;

e fp: occupancy of shallow donor;

e fi;: occupancy of deep level trap (of the j’th level);
e N, : shallow acceptor concentration;

e Np: shallow donor concentration;

e Ny : concentration of deep level trap (of the j’th level);
e J,: electron flux density;

e Jp: hole flux density;

o {:time;

e ¢y : dielectric constant of vacuum;

e ¢4.: relative dielectric constant of a semiconductor at zero
frequency (DC);

q : electron charge;

These equations govern the electrical behavior (e.g., I-V charac-
teristics) of a semiconductor laser. They are also called drift-diffusion
equations and are widely used in the electronic device simulation [4,5].

In addition two more equations must be solved to describe the
optical behavior (i.e., the optical field distribution and photon number
in the laser cavity):

VW + k2(e — BHW =0, (4)

Bc:[gm - Qint — Om]S + cm/Rspdv = %? (5)
where W is the complex wave amplitude and S is the total pho-
ton number. e is the position and concentration dependent dielectric
constant at the optical frequencies, or the square of the local refractive
index. S is the effective refractive index which must be found from the
solution of the wave Eq. (4). ¢y, is the fraction of spontaneous emission
coupled into the lasing mode. g,, is the modal gain and a,; is the
internal loss. Both of these are weighted average of the local material
gain and loss over the 2D segment of interest. Therefore Eq. (5) is an
integral equation. Equation (4) is the complex scalar wave equation and
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can be derived from the Maxwell’s equations for the transverse/lateral
cross section of a laser [6].

Sometimes it is desirable to simulate a small segment of a laser in
the longitudinal direction, e.g., to study the gain distribution within a
period of a gain coupled DFB laser. In this case Eq. (4) is only valid in
the transverse direction (see Figure 2) and the distribution of optical
field in the longitudinal direction should be determined with a suitable
model such as transfer matrix method or coupled mode theory [6].

Another set of basic equations further defines the electron and
hole current in terms of the carrier concentration and the quasi-Fermi
levels [7]:

Jn =npnVEs/q, (6)
Jp = pupVEsp/q, (7)

where u, and p, are mobilities of electrons and holes, respectively.
Efn and Ejy, are the quasi-Fermi levels for electrons and holes, re-
spectively.

The importance of various basic equations in the laser simulation
is schematically described in Fig. 1. For a semiconductor diode to lase,
electrons and holes (J,, and Jp ) are injected into active region (quan-
tum wells). The drift-diffusion (DD) model is used to determine the
electron and hole distribution of the injection process. When the injec-
tion level is high enough to cause population inversion, i.e., to cause
the split of quasi-Fermi levels to be larger than the bandgap,the opti-
cal gain g(n,p) becomes positive and light from spontaneous emission
gets amplification as described by the rate and the wave equations. The
stimulated emission, being proportional to the light intensity in the
cavity, couples to the drift-diffusion equation when the light intensity
is strong enough. These process clearly indicates that a selfconsistent
solution of all the basic equations must be found to describe the laser
operation properly.

The goal of the 2D simulation is to solve for the partial differen-
tial and integral equations over a segment of the laser device. Several
important terms such as the mobility, recombination, and stimulated
emission, are discussed or derived in more detail in the following Sub-
sections.
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2.2 Complex Dielectric Constant and Optical Gain

The complex dielectric constant at the optical frequencies ap-
pearing in Eq. (4) is related to the local optical gain function g by the
following relation:

€ =€ +ieg = [ — ATl — i(g — a)/2ko)?, (8)
AT = (g — a)/2ko, (9)

where 7o is the real part of the refractive index under transparent
condition. An overline is used here to avoid confusion with electron
concentration n. v is the line width enhancement factor relating the
real and imaginary part of the refractive indices. All of 7, ¢ and a
are functions of position. g is dependent on the carrier density in the
system and thus on all the equations.

The imaginary part of € (which is proportional to the energy gain
or loss in a material) is separated into two parts corresponding to the
optical gain g and loss «:

€2 = €3 +€5. (10)

To a good approximation these two terms are proportional to g
and o, respectively.

€5 = [ — Anlg/ko, (11)
¢ = [ — ARja/ko. (12)

2.8 Stimulated Emission and Rate Equation

An excellent derivation of the basic rate equation for the ampli-
tude and phase from the Maxwell’s equations was given in Ref. [6].
In the 2D simulation described here the total light power or the total
number of photons is of concern. To derive a rate equation for the total
photon number, it is necessary to use the integral form of the Maxwell
equation, i.e., the energy conservation relation,over the whole laser cav-
ity. Following Ref. [1] the derivations of the stimulated emission rate
and Eq. (5) are given as follows.
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The optical power generation (because of interband transition,
i.e., local gain) per unit volume can be expressed as:

power gen. = 0F% = —ejeowF>. (13)

where F is the root-mean-square of the electrical field at the opti-
cal frequencies. o is the conductivity at the optical frequencies. The
convention here is that negative ez represents power generation. For
convenience a constant 7 is introduced such that the complex wave
amplitude is related to the electric field by

|FI? =W (14)

To determine < one uses the following basic relation:

Shw = /eoqIF]2dv = 60’)’/61|W|2d’v =¢y<e€ >,  (15)

where the integration is over the whole cavity.
The power generation becomes

power gen. = —Shw?e|W|%/ <€ > . (16)

For the stimulated emission the power generated due to interband tran-
sition converts into recombination of electron-hole pairs accompanied
by the emission of a photon:

Rg: = power gen./hw = —e3w|W|2S/ < &1 >, (17)

The rate equation for the photon number in the laser cavity should
be viewed as a statement of the conservation of energy, i.e.

stimulated emission — internal loss — emitted power
+ spontaneous emission = power increase (18)

where each term is in the unit of photon number per unit time (i.e.
energy per ( hw ) per second).The “power increase” in the above equa-
tion is the rate of photon number (8S/8t). Eq. (18) can be detailed
as follows:
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stimulated emission = / Rgdv = ﬁigms (19)
1
where 0
<€ >
= Brko—2—.
gm =B PP (20)

where f3; is the effective real index of the device (or solution of the
wave equation).

According to Eq. (11), the modal gain defined above [Eq. (20))
can be approximated by

gmz/IWIQde | (21)

Note that the wave function W has been normalized such that the
above integral yields the I' factor if the local gain is uniform in the
active region. Therefore the definition here reduces to the

gm =Tg (22)

In a 2D simulation, there is no need to use the ' factor here because
the optical field distribution is computed and can be directly used in
Eq. (20).

Similarly the internal loss can be written as

Qint = / W 2adv (23)

Define an effective loss coefficient a,, due to emitted power loss
from the facet or from the gratings of a DFB, and the emitted power
in Eq. (18) can be written in the same form as Eq. (19):

emitted power = §~am5 (24)
1

In the special case of a Fabry-Perot cavity,the emitted power loss equals
the facet mirror loss and one has the following familiar formulae:

c1 1
emitted power = S——In{ — ). 25
p 5L (rm) (25)

The power due to spontaneous emission is simply the integration
of the spontaneous emission rate over the cavity:
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spontaneous emission = cm / Rgpdy, (26)

Summation of the above terms yields the rate equation:

é(gm — Qlint — Oem) + S + €m f Ropdv = 8S/0t @7)

The rate equation has averaged out most details of longitudinal
distribution of the optical fields. Since the rate equation is essentially
an average over the whole cavity, it is still valid even if the cross section
of simulation is over the a segment along the longitudinal direction [but
the 2D wave equation Eq. (4) needs to be modified].

The discussion here considers only one dominant longitudinal
mode. The extension to multi-longitudinal mode is out of the scope
of this chapter.

2.4 SRH and Auger Recombination

The most important non-radiative recombination mechanisms are
the Shockley-Read -Hall (SRH) recombination and the Auger recombi-
nation. SRH recombination involves recombination centers (also called
deep level traps) with energy levels located within the energy bandgap
of the semiconductor. The Auger recombination involves high energy
three-particle interactions and is proportional to the third order of the
carrier concentrations [6].

To model the SRH recombination properly, one should use the
following equation for the recombination rate [8]:

RY = cpipNyj frj — cpip1; Niw(L — fij)- (29)

‘where ny; is the electron concentration when the electron quasi-Fermi
level coincides with the energy level, E;; of the jth trap. Similar
definition applies to py; .
Under transient condition the following trap dynamic equation is
valid:
th% =RY — RY. (30)

which is basically a mathematical statement that the change of the trap
occupancy is caused by electron capture and emission from the trap
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center. The capture coefficients cn; and c¢p; for electrons and holes
relates to the life time of the carrier due to the jthe recombination
center by the following relations:

1
— = Cnj Vtj, (31)
Tnj
1
— =0pi V. (32)
)

The capture coefficients can be further expressed as capture cross sec-
tions and thermal velocities:

Cnj = OnjUn, (33)
— 8kT

n - My, H (34)

Cpj = Op;jVp, (35)
8kT

Uy = e 36

b= (30

Under steady state condition Eqs. (28) to (32) results in the more
familiar Schockley-Read-Hall recombination formulae [7]:

2
t _ pti - pn—n; 37
=R Tpi (N + ;) + Tnj (P + P1j) (87
Therefore a trap (or recombination center) is completely specified by
its density Ng;, capture cross sections on; and op;, and energy level
Ej.
The Auger recombination rate is given by [4,6]:

Ray = (Cnn + Cpp)(np — n?), (38)

where the Auger coefficients C,, and C, depends on the type of mate-
rial simulated. A complete microstructural model of Auger recombina-
tion is very complicated [6] and is out of the scope of this chapter. Here
it is assumed that both in the quantum well and in the bulk, Eq. (38)
is valid and the coefficients C, and C, are empirical parameters.
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2.5 Carrier Statistics

A semiconductor laser operates under high injection levels of elec-
trons and holes and therefore the energy distribution of the carriers
are highly degenerate. The Fermi-Dirac statistics should be used in
this case [7]. The electron and hole concentrations with Fermi-Dirac
distributions for a bulk material is given by:

E - Ec

=Mk (P57 ), (59)
E,—FE

p=NyFy)p (-k-f—fe), (40)

where Fj/, is the Fermi integral of order one-half. Here a parabolic
band model is assumed.

For the convenience of numerical evaluation, the approximation
proposed by Bednarczyk and Bednarczyk is used [9]:

Fipa(z) ~ (e +£(2) 7, (41)
(o) = SVl (@), ()

v(z) =z* + 50 + 33.6:1:{1 ~ 0.68exp[—0.17(z + 1)2]}. (43)

This expression is accurate to within 0.4% of error in all ranges.
In the limit of low carrier concentration Egs. (39) and (40) reduce
to the familiar Boltzmann statistics:

E;, — E,

n= N exp(—f%&—), (44)
E,—E

p=N, exp<—-—76~T—i’l> , (45)

In the case of quantum wells the carrier concentration is the sum
of contributions from all subbands as follows.

n= Z pJ’-OIcT In[1 + e(Br»=E3)/kT| 4 ynconfined electrons, (46)
J

p= Z PEkT In[1 + eB—Es)/kT) 4 uncon fined holes, (47)
i
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where the label “” and “i” are used to denote the subbands of the
conduction band the valence band. pf° and p?° are the densities of
states in the plane of the quantum well for the valence band and the
conduction band, respectively.

2.6 Incomplete Ionization of Impurities

A semiconductor laser diode normally uses high density of dopants
to define the pn-junction. Under high doping or high carrier injection
levels, the quasi-Fermi levels are close to the impurity energy levels
near the band edge. The dopants are in a state of partial ionization. To
account for the incomplete ionization of shallow impurities in semicon-
ductors, the occupancies fp and fa are used to describe the degree of
ionization. It is assumed that the shallow impurities are in equilibrium
with the local carriers, i.e., they share the same quasi-Fermi levels.
Therefore the occupancy of the shallow impurities can be described
by [7]:

1
"~ 1+g7" expl(Ep — Efn)/KT)’

1
" 1+ gaexp((Ea — Epp)/kT)

where the subscripts D and A are used to denote shallow donors and
acceptors, respectively.

From the discussions in Subsection 2.4 the occupancy of a deep
level trap can be determined through the trap dynamic equation,
Eq. (30). In general the deep trap is not in equilibrium with the car-
riers (i.e., the trap does not share the same quasi-Fermi level as the
carriers). From Equations (28), (29) and (30), one obtains the following
expression for the trap occupancy under steady state condition:

(48)

Ip

(49)

fa

_ CnjT + CpjP1j
i enj(n +na) +cpi(p +p1y)” (50)

The ionization states of the impurities are important because they
affect the potential or energy band profile through the Poisson’s equa-
tion.In the case of surface states or surface recombination centers, the
treatment is similar. One can treat the surface states as deep levels
traps located near the surface and they should be described in quan-
tities per surface area. One can show that the deep trap models here
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can be used to describe effects due to surface charge states as well as
to surface recombination. For example, Fermi level pinning effect on a
semiconductor surface can be modeled using this approach.

In a transient simulation the trap occupancy is a function of time
depending on the trap capture rates as well as on the local carrier
concentrations. Equation (30) should be used to determine the trap
states in each transient time step.

2.7 Carrier Mobility

Mobility of carriers in a laser affects the following electrical behav-
jor. It directly determines the speed at which the laser can be switched
on and off. It affects the leakage current due to diffusion over the bar-
rier. It also affects the potential drops (or profile) across the diode for
a given current.

An accurate carrier mobility model should account for scattering
mechanism in electrical transport. In general the mobility is a function
of the electrical field and the dopant densities [7]. Excellent analytical
mobility models have been described in Ref. [5]. The models in Ref. [5]
are mainly for Silicon and GaAs but should be valid for other types of
semiconductors with minor modifications.

For the field dependence the following equations can be imple-
mented in a simulator [5]:

= Hor ’ 51
g (1+(ll-0-n,F/’Usn)ﬁ")1/ﬁ" oy
= Fop , 52
(1+(u0pF/'Usp)ﬁp)l/ﬁp o2

where F', vs, and vs, are used to denote the static electric field,
saturation electron and hole velocities, respectively. These formulas
describe a rather simple field dependence for the carrier velocity. The
velocity increases with field linearly at low field with a constant mo-
bility (ton O pop ), but saturates to a fixed velocity (vsn Or vgp) at
the high field limit. The smoothness of this saturation is controlled by
the parameter B3, (or fp).

Many III-V compound semiconductor [(e.g., GaAs) exhibit nega-
tive differential resistance due to transition of carrier into band valleys
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with lower mobility [7]. In such a case the following field dependence
can be used [5):

_ Hon + (vsn/ Fon)(F/ Fon)®
fn = 14 (F/Fon)t '

Experience shows that Eqs. (51) and (52) results in a stable solu-
tion. The field dependence in Eq. (53)can give kinks in the L-I curve
for some devices because of the bistability associated with the negative
differential resistance.

(53)

Besides the field dependence of the mobility, another important
effect is the impurity dependence of the low field mobility [7]. Reference
[5] has proposed the following empirical expression for this dependence:

_ (H2n — pin)
Hon = Hin + Lt (ND+NA+Z.Nu)°’“’ (54)

Nyn

_ (B2p — p1p)
Hop = K1p + No+NATS Vo ol (55)
| ——x

where parameters such as pi, and uon, are fitting parameters from
experimental data. Physically these dependence takes into account the
effect of impurity scattering to mobility.

3. Discretization

To solve the device equations on a computer, one must discretize
them on a simulation grid. That is, the continuous functions of the
PDE’s are represented by vectors of function values at the nodes, and
the differential operators are replaced by suitable difference operators.
Instead of solving for four unknown functions plus the photon num-
ber, one solves for 4N + 1 unknown variables from 4N + 1 unknown
discretized equations, where N is the grid number.

Two methods of discretization are discussed in this section. The
first one is the finite difference method (FDM) and the second is the
finite element method (FEM). The FEM method commonly used in
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electronic simulator is actually a finite box method on a FEM mesh
[10,5]. It will be shown that the two methods are equivalent math-
ematically and physically. FDM is simple to implement and easy to
understand. The key advantage of FEM is that it is capable of han-
dling arbitrary geometry. An additional advantage is that it is more
convenient to save mesh points in 2D simulations.

3.1 Generation of Mesh

To discretize the equations in 2D the first step is to generate a
suitable mesh. For finite difference method the mesh consists of per-
pendicular lines within a rectangular domain. To implement a mesh
generator for FDM one can control each dimension independent of the
other. Therefore from the point of view of mesh generation the 2D
problem is actually two 1D problems in FDM (Figure 3(a)). In FEM
the mesh points are fully 2D in nature and are more difficult to gen-
erate and handle. One practical approach (5] is to start with a FDM
mesh. The triangulation are done after the some of the mesh lines are
terminated in areas where only coarse mesh is required. Similarly one
can start with a coarse FDM mesh and put additional mesh lines in
areas where fine mesh is required (Figure 3).

It is often necessary to refine a mesh at some stage of a simula-
tion. The reason is that to determine an optimal mesh distribution one
needs to know the solution of the equations. But to find the solution
of the equations one needs know the mesh first. Therefore a practical
approach is to start with an initial mesh and proceed with a solution.
The mesh is refined according to the solution and one starts a new
solution based on the new mesh. In practice the criteria to refine a
mesh region is the difference of a physical quantity between adjacent
points [5].

For FDM the refinement is simple because one only needs to add
mesh lines in the two directions separately. For FEM one possible
scheme is to add smaller triangles within an existing triangle. This
method is simple to implement since the refinement procedures do not
disturb the existing elements. However, it is easy to see that such a
simple procedure can generate a large amount of undesirable obtuse
triangles even if the old ones are not obtuse triangles. One solution to
this problem is to shift the mesh points near the refinement area to
minimize the amount of new obtuse triangles [5]. The effect of obtuse
triangles on discretized equations are discussed later in this section.
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(a)

(b)
Figure 3. Schematics of (a) finite difference mesh and (b) finite element
mesh.
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Another method of mesh refinement in FEM is described as fol-
lows. One starts with a coarse FDM mesh, and add mesh lines in the
refinement area when necessary. The triangulation is done after the re-
finement in the FDM environment. When further refinement is needed,
one abandons the FEM and go back to the FDM environment in which
refinement can be done by adding new mesh lines. This method seems
to avoid the generation of new obtuse triangles more easily. The only
draw back is that one has to be able to switch between FDM and FEM
mesh environment constantly, which requires some additional develop-
ment and computation effort.

3.2 Discretization of Equations

Common to all the basic equations (except the rate equation)the
spatial differential operator has the same form as follows:

\% 'J(X, Y) = G(X7Yat) (56)
where J is a vector (e.g., electron current) and G is a scalar function
of position and time. In the finite difference (FDM) approximation
Eq. (56) can be simply approximated by a five-point difference equation
(see also Figure 4):

J:cZ - J:rl Jy2 - Jyl
(dz1 +dz2)/2 * (dy1 +dy2)/2
where J;; is the x-component of vector J evaluated at the mid-point
between (zi,y;) and (2i-1,y;). Similar definition applies to all the
other three components. In the case of FEM Eq. (56) can be discretized
using similar ideas. The first step is to convert Eq. (56) into an integral
equation as follows.

= G(wi; Yi, t) (57)

/ J-ds=/ Gdv (58)
surf volumn

which can be applied to the small volume surrounding point & (see
Figure 5). Then, one obtains the discretized form for FEM:

> ik, = AkG(@x, Yk, 1), (59)
k1
where k; is the neighboring point of k and Ji, is the projection
of J on the axis of dyy, evaluated at the mid-point. A is the area
surrounding point k.
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Figure 4. Schematics of the five point difference.

Figure 5. Schematics of the finite box method.
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Having discretized Eq. (56) the next major task is to find a proper
expression for the components of vector J. For the Poisson’s equation
and the wave equation, the vector can be simply be expressed in terms
of finite difference of the potential and wave amplitude, respectively.
In the case of continuity equation, the carrier fluxes must be evaluated
with care; the classic finite difference formulas are modified as first
demonstrated by Scharfetter and Gummel (SG formulas) in 1969 [11]
for silicon devices. The original SG formulas are not applicable for
lasers since bandgap variation and Fermi statistics are not taken into
account.

A modified SG formulae is given for the z-component of electron
current here (the formulas for hole current are completely analogous).
One starts with the assumption that the semiconductor material under
consideration does not have abrupt junctions (which are to be discussed
later), and the material parameters such as bandgap, effective masses
and doping can only vary slowly from point to point in the mesh (ei-
ther FEM or FDM mesh). Define a coefficient yr to account for the
difference between Fermi statistics and Boltzman statistics as follows.

yp(X) = In[F, 2(X)/ exp(X)]. (60)
Then the electron concentration can be written as
n = exp(Efn/kT +n), (61)

n= %75 In(Ny) — Eo/KT + v, (62)

where 77 is a function of position. One further assumes that 7 varies
linearly from point to point (in the x-direction for example):
N = 1l + . (63)

One obtains an approximate expression for the J, between 2; and
Zi4+1 as follows:

dE;,
dz ~
The basic assumption of the original SG formulae is that the

current flux between two mesh points is constant and that the mobility
is also constant between the points. If the same assumption is applied

I = L2 exp(Egn /KT +1u + ) (64)
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to the above equation that Jy is a constant between two mesh points,
then the single variable differential equation of Eq. (64) is integrable
between the two points. The solution to Eq. (64) can be arranged in
the following form:

KT niy1B(ni+1) — ni B(m)
o —

where B is the Bernouli function defined as follows.
T
B(z) = —~——————,
(=) exp(z) — 1 (66)

This completes the discussion on spatial discretization.

8.8 Boundary Conditions

In a 2D laser simulation, there are two types of boundary con-
ditions solved for the drift-diffusion equations. The first is the Ohmic
contact at the electrodes and the second is the hetero-interface between
different material regions.

The basic assumption for the Ohmic contact is charge neutrality
and infinity surface recombination velocity. The condition of charge
neutrality determines the position of the quasi-Fermi levels at the equi-
librium condition [4]. The condition of infinite recombination velocity
forces the electron and hole quasi-Fermi levels to coincide with each
other and to be fixed at the position at equilibrium. In another word
the Ohmic contact is always at the equilibrium condition [4].

The boundary condition for heterointerface can be simulated with
a thermionic emission model. The electron at one side of the heteroin-
terface emits to the other side of the interface with a thermal velocity.
The current across the interface can be expressed as [12]:

Jhn = YhnToe ™ (np — o), (67)
Jhp = ’th@ﬁem(m — Do), (68)

where ny is the electron density at the barrier side (“b” is used to
label barrier) and ny is its value when the quasi-Fermi levels are the
same on both sides. ynn is a scaling factor to account for effects such
as tunneling. Note that the boundary current is such that the current
flow is zero when the quasi-Fermi levels are flat. The 1-dimensional
thermal velocity is defined as [12]:
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kT
2mpnm’

_ [ kT
Vg™ = o (70)

Note that the boundary condition only applies to abrupt junction. For
graded junction, the usual current expression in Egs. (6) and (7) should
be used.

(69)

o

8.4 Time Domain Discretization

The most simple method to discretize the differential equations
in time is the backward Euler method. Its basic assumption is that for
a differential equation of the form:

a8
5 =G0, (71)

the discretized equation is the following:

S(t+ At) - S(t)
At

This method has the advantage that it is easy to implement and highly
stable. In the limit of infinite time the basic equations simply reduce
to the steady state equations. The backward Euler method is recom-
mended not just because of its simplicity but also because of its com-
patibility with discretization scheme of the trap dynamic equations
[Eq. (30)].

In a transient state the trap occupancy of a deep level trap de-
pends on many factors such as the history of the occupancy, and elec-
tron and hole carrier concentrations. The trap dynamic equation must
be discretized to accurately simulate the trap occupancy as a function
of time. A discretized expression of the trap dynamic equation was
described by Ref. [13]:

= G(t + Ab). (72)

A
Ny frj(t) + (EQ%;—Q + f.—:f—) At

. (1)
th + (n(t+At)+n11‘ + P(t+At)+pli)At

fii(t + At) =

Tnj T
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where At is the time step used in the transient simulation. The above
expression can be obtained from Eq. (30) together with Eq. (72).

Once all the equations are discretized in terms of solution of the
previous time step, one can treat the solution of the present time step
using the same method as for steady state solution, i.e., one can lin-
earize the discretized equations and use Newton’s method to solve
them.

Strictly speaking the trap dynamic equation should be consid-
ered a separate differential equation in addition to the basic equations.
However the trap dynamic equation does not depend on spatial vari-
ables explicitly. After the equation is discretized in the form of Eq. (73)
the trap occupancy appearing in the basic equations can be replaced
in terms of the carrier concentration of the present time step and the
previous trap occupancy. This essentially eliminates the trap dynamic
equation indirectly.

4. Solving the Discretized Equations

4.1 Coupling Between Equations

To determine the optimal numerical approach used for solving the
discretized equations, one has to consider the relation between varies
equations first. The equations should be solved in a decoupled manner
if at all possible since the difficulty or the computation time increases
as the square of the number of equations.

In a realistic semiconductor laser, the coupling between the first
three equations, which govern the electrical behavior, is usually strong
based on experience generated from well established electron device
models used in the electronic industry over the years. Since the stimu-
lated emission, which depends on the photon density, is the dominant
recombination mechanism beyond lasing threshold, the rate equation
is also strongly coupled to the first three equations. In contrast the
wave equation is relatively decoupled from the other equations because
the optical field distribution for a particular lateral mode is relatively
insensitive to the bias conditions of the laser as long as the lasing wave-
length does not change too much as a function of bias. This observation
makes it possible to decouple the solution of the wave equation from
the others.
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From the argument above it is concluded that the Newton’s
method should be used to solve the first three equations plus the rate
equation in a completely self-consistent manner. The wave equation is
solved and updated separately. Experience shows that this approach is
good as long as the updating of the wave equation is frequent enough.

4.2 Newton’s method

In Newton’s method, all of the variables in the problem are al-
lowed to change during each iteration, and all of the coupling between
variables is taken into account. Due to this the Newton algorithm is
very stable, and the solution time is nearly independent of bias condi-
tions. The basic algorithm is the generalization of the Newton-Raphson
method for the root of a single equation. It can be expressed as follows.

Fj(V?', B}, Byy) =0, (74)
Fi(V7', B}, B}, S) =0, (75)
Fi(vi, E},ﬁ,E};, S) =0, (76)
Fs(V?, B}, )y, 8) = (77)

Where j runs from 1 to N, j1 includes j itself plus its surrounding
mesh points. Equations (74) to (77) represent a total number of 3N +1

equations which is sufﬁment to solve for 3N +1 variables: (V!, }n ,

Efp,V2 E?%, fp, oy VN Efn, E 0 15)-

Once t e equamons are dxscremzed in the above form, standard
Newton techniques can be used to solve for them. These involve the
evaluation of the Jacobian matrix to linearize Egs. (74) to (77), linear
solution of the linearized equations (involving LU factorization of the
matrix) and nonlinear iteration to get the final solution. Since the
Jacobian matrix is a sparse matrix, sparse matrix solution techniques
are used to improve the computation speed.

Acceleration of a Newton iteration can be achieved using the
Newton-Richardson method, which only refactors the Jacobian matrix
when necessary. When it is not necessary to factorize, iterative method
using the previous factorization is employed. The iterative method is
extremely fast provided the previous factorization is reasonable. Fre-
quently the Jacobian need only be factorized only once or twice per
bias point using Newton-Richardson method, as opposed to the twenty
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to thirty times required in the conventional Newton method. The de-
cision to refactor is made on the basis of the decrease per step of the
maximum error of both the equation residues and the variable differ-
ences.

Special treatment is needed for the discretized rate equation since
unphysical situation can arise in a Newton procedure [27]. Consider the
rate equation again:

[+
~5FoS+ e / Repdv = 0, Fy = Gtom + Qint — gm. (78)

where e, is the power loss due to emission of light. During a normal
Newton iteration procedure F; could become less or equal to zero be-
fore it converges to a physical solution. This causes the photon number
S to become infinity and interrupt the Newton solver. To overcome this
difficulty, 2 damping function can be used for Fy:

1
Fy = Gem+Qint—gm =~ 3 {\/ (Qem — 9m)2 + 82+ int+Qem—9gm |- (79)

where § is a sufficiently small number. This function well approximates
F, near the physical solution Fg, and prevents the equations from
being trapped in the unphysical infinity.

4.8 Solution for Wave Equation

As soon as the solution from the Newton method described in
the above section is found, one is ready to solve the wave equation,
since the new solution of electron and hole concentrations allows one
to obtain a new dielectric constant distribution to be used in the wave
solution update.

The scalar wave equation needs special treatment since the its
discretized form is a complex eigenvalue problem. After discretization
the wave equation Eq. (4) can be written in the following form (in a
FDM):

Wi; = G(Wi-1j, Wisys, Wij—1, Wijs). (80)

where all variables are treated as complex variables. An adaptive, real
relaxation parameter w, is used in a SOR method:
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WEH = Wi +wa GOVES, Why WL W) - WL (8D)

where k denotes the kth iteration and w, is determined according to
the convergence behavior of W . Similarly for the complex eigenvalue
B, a real parameter wg is introduced in the following SOR relation:

Bir1 = Bi + ws (e + k52 / Wk G2k, — ﬁ,’f) . (82)

where [ and V? are evaluated by sum and five point operator of
finite difference, respectively. This approach normally guarantees the
solution of the fundamental lateral mode.

4.4 Initial Guess

As is common to all Newton’s solvers, the initial guess is impor-
tant for the final solution. Several types of initial guess solutions are
possible. The first is the simple charge neutral assumption used to ob-
tain the first (equilibrium) bias point. For the wave equation, the guess
solution is a delta function at the center of the active region. This is the
starting point of any device simulation. Any later solution with applied
bias needs an initial guess of some type, obtained by modifying one or
two previous solution(s). When only one previous solution is available,
the solution currently loaded is used as the initial guess, modified by
setting the applied bias at the contact points.

When two previous solutions with two different bias are available,
it is possible to obtain a better initial guess by interpolating the two
previous solutions to the present one according to the two previous
bias points and the present bias [5].

In principle the Newton nonlinear iteration should always con-
verge as long as the initial guess is close enough to the solution. The
closer the initial guess is to the solution, the fewer nonlinear itera-
tions are required to reach convergence. One can take this effect as a
way of automatically controlling the bias in a simulation. For example
if the present bias step takes too few number of iterations to reach
convergence, one can increase the bias step; On the other hand, if con-
vergence for the present bias step takes too many iterations or simply
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fail to converge, one can reduce the bias step. In the limit of zero bias
step, no iteration is needed to reach convergence. '

To conclude the discussion on techniques on solving the drift-
diffusion equations, it should be pointed out that good simulation pack-
ages (see, for example, Ref. [5]) of electronic devices using advanced
numerical techniques have generated large amount of experience in
dealing with practical numerical problems. Consultation of previous
works in solving drift-diffusion equations is highly recommended for
semicondutor laser modeling.

5. Quantum Well Gain Function

Optical gain in a semiconductor diode under high forward bias
condition makes it possible to amplify the light in a laser. The optical
gain also makes its modeling unique compared with modeling of other
electronic devices. This section gives a semi-classical derivation of the
gain function for a quantum well system. The effect of strain will also
be discussed.

Throughout this section it is assumed that all the quantum levels
for the sub-bands of I', L, light holes and heavy holes can be com-
puted from well known formulas in quantum mechanics for a square
quantum well [4]. No further details will be discussed regarding the
subband levels in the quantum wells.

5.1 A semi-classical derivation

A rigorous derivation of the optical gain involves theories of in-
teraction of a solid with quantized radiation fields [6,15]. Getting the
algebra right in the derivation is not trivial, since one has to deal with
factors like 47, ¢ and h, depending on which unit system one chooses.
In fact the factor appearing in the gain has caused confusion in the lit-
erature before [16]. For the purpose of getting the correct factor in the
gain expression, a semi-classical derivation (in MKS unit) is given in
this Subsection. The derivation only assumes basic knowledge of el-
ementary quantum mechanics [14] and classical electrodynamics [18].
Therefore, it is easy to follow for those readers who are not familiar
with theories of field quantization.
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The first step is to express the Hamiltonian in terms of the mo-
mentum matrix element. Consider a small volume of solid (i.e., small
compared with the wavelength of the light) under the radiation of a
lightwave with an oscillating electric field F(t):

F(t) = Fyeos(wt). (83)

The Hamiltonian of an electron in the solid can be written as

H(t) = Hpcos(wt) = qrFycos(wt), (84)

where x is the displacement operator of the electron. The radiation
causes the electron to make a transition from state |j > (in the con-
duction band) to |i > (in the valence band). The basic relation:

ihM
aH = T,
fm, H] = 2= (85)
results in
< i|M|j > _ M;;
imow  tmow

zij =< i|z|j >= ) (86)
where M is the momentum operator. Equations (84) and (86) yields
the following:

qFp M;; 2 (87)
-

Ow

|Hoij)* = | < i|Holj > |* = (

The second step is to find the relation between the optical gain and
the interband optical transition probability. Classical electrodynam-
ics gives the power gain (or loss) associated with the light wave as
follows [18]:

power = ~wegea F

Céﬁgij F02 (88)

N3 Bt )

where the relation between gain (g;;) and the imaginary part of the
dielectric constants has been used. On the other hand the optical power
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can be written as the the transition probability per unit volume ( w;; )
times hw:

power = hww;; (89)
Combining Egs. (88) and (89) gives:

_ 2hww;
cenFg’

9ij (90)

The final step is to calculate the transition probability density
w;; which can be obtained from the Golden rules [14] in quantum
mechanics:

wy= [ Bty — F)6(Bs — wpsdBy, O
= o5 Hois (= o (92)

where p;; is the reduced density of states, and f; and f; are the
Fermi functions for the ith and the jth levels, respectively, and f]
and f; are given by

-1
f,{:{l + exp (E?“‘%(E”E%)‘Efp)/kT]} ) (93)

- -1
fi= {1 + exp (E?'*‘mij(E"-E%)“Efﬂ/kT}} . (94)

m;

where E = hw. E and E) are the maximum of the valence sub-
band and the minimum of conduction subband, respectively. E?j is
the difference between them.

Note the factor f;— f; comes from the net probability of transition
from j to i states. The probability of j to i transition is proportional
to fj(1 — fi) while this process is counter balanced by that of the
opposite process (i to j transition) with a probability of fi(1— f;).
Therefore the net transition probability has a factor:

fi—fi=fi(1=fi) = fi(1 = f;). (95)
Finally combination of Egs. (92), (90), and (87) yields the desired
gain expression:
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2 M

MG g (96)

9ij ceom3w

Note that Eq. (96) is rather general. In the case of quantum well one
can use 2D reduced density of states for p;;:

mij
ALY 7
Pij thwq’ (97)
mim;
jj == i 98
Ay m; (98)

while in the case of bulk material, one can replace p;; by the corre-
sponding 3D reduced density of states.

There are several important characteristics one should notice
about the important gain expression of Eq. (96) as a function of fre-
quency.

e 1) For quantum well system, the density of state has a step
function. This gives rise to the sharp steps in the unbroadened
gain spectrum. The gain is zero when the frequency is below the
bandgap.

e 2) The factor f] — f] determines whether the gain is positive
or negative (loss). One can show that the gain is positive only
when the splitting of the quasi-Fermi levels is greater than the
bandgap ( EPJ ). Physically it means that only under high injection
condition, can the material exhibit stimulated emission (or gain).

o 3) The high frequency roll off of the gain spectrum is caused by
the the sensitivity of fi—f; to the frequency. The physical reason
is that in the high frequency limit, the probability of finding an
electron with high energy in the conduction band and a vacancy in
the low energy of the valence band is too small to cause stimulated
emission (or gain).

5.2 Selection Rules

The selection rules for the optical transition from the evaluation
of the momentum matrix element. In general the momentum matrix
element M,2] can be expressed as the bulk material matrix element,
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times the overlap integral of the conduction subband and valence sub-
band states, and times a factor to take into account the polarization
effects in a quantum well environment [19]. For example the matrix
element of TE mode for an unstrained quantum well can be written
as:

3+3EX/E

App = -—--—-‘-—-—'1/——, (99)
4 ;

5—3E%/E
= -————Zﬂ*{-— for E > E%, (100)
Apn =3/2,An=1/2  for E < EJ), | (101)
Myp = AnrOi; Mo, (102)
My, = AjpOi; My, (103)

The selection rules come in because the overlap integral vanish for
many pairs of transition states. For example, all even-to-odd and odd-
to-even overlap integrals vanish. If the effective masses of the valence
band and conduction band are identical, the only non-vanishing inte-
gral is the one with the same subband label in both the conduction
subband and the valence subbands. However in general all transitions
of the same parity should be considered.

5.8 Models of Gain Broadening

The intra-band scattering broadening significantly reduces the the
local gain function and round off the sharp peaks in the gain spectrum.
The most simple model for gain broadening is to use the following
Lorentzian function in a convolution integral:

o(B) = [ (B F(Er - E)dE, (104)

where ¢° is the gain function without broadening. The Lorentzian
function is given by the expression:

1T

27 (To/2)* + (E1 — E)*’

where Ty is the half width of the broadened energy level and is as-
sumed a constant.The assumption of constant 'y means the whole

F(E,-E)= (105)
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gain spectrum is broadened to the same degree across the whole spec-
trum. The advantage of this model is that it is relatively simple to
implement and results in a most stable solution in a 2D simulation.

However the broadening across the spectrum should not be uni-
form according to the Landsberg’s model [20-22]. The half width T’
is a complicated function of the transition energy which has its max-
imum value at the bottom of the band (or band edge) and decreases
to zero as the energy approaches the quasi-Fermi level. Therefore the
half width is a function of both the transition energy and the carrier
density. One can use the following approximation according to Martin
and Stormer [22]:

_ 1 I'(Ey)
T TN

E,
T(E) =T |1 —2.220— 1
Efm — Efp
E 2 E :
4458 —=2 | —0.229( ——21—] |.
(Efn—Efp> <Efn—Efp)

For bulk material a 'y value of 2 meV was found. For quantum wells
the broadening is much larger (up to 30 meV). The implementation
of this model is important for accurate modeling of the gain spectrum
especially for quantum well. Usually the maximum broadening I'y in
the Landsberg model is material and process dependent and therefore,
is treated as a fitting parameter.

Note that Eq. (107) is valid only when the peak gain is positive,
i.e., only when the difference between the quasi-Fermi levels is greater
than the bandgap of the quantum well subbands. The transition energy
must also be between the band gap and the this difference. To extend
the spectrum to other conditions, the formulas proposed by Zielinski
et. al. [23] can be used:

9(E) = Leonv(9°, E) for E < Efn ~ Egp,  (108)
9(E) = Lony(¢°, E) + g°(E) for E > Efn — Epp,  (109)
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with

0 m En=Egp 1 ¢%(E)T(E1)dE:
Icorw(g sE) - Z/ N 2T {F(El)/2]2 + (El _ E)2

forEgm — Egp 2 Eyj, (110)

Iconv(go’E) = .
fOT’EfnwEfp <E§j. (111)

’I‘he two—plece functlon is continuous across the spectrum because

5.4 Strained Quantum Wells

Biaxial strain is introduced into the quantum well when the lat-
tice constant is different from that of the barrier material.Inclusion
of biaxial strain into the design of quantum-well semiconductor lasers
provides an additional degree of freedom and produces some desirable
effects such as a lower threshold current. The effects of strain have
been conventionally investigated theoretically using a k.p description
of the band structure [24]. This type of calculation is usually limited to
the computation of optical gain and has limited capability in analyzing
practical design issues, such as the optimization of the laser geometry.

Strain is known to cause the valence band of a III-V semiconduc-
tor to split into separate light hole (LH) and heavy hole (HH) bands
which are strongly non-parabolic. A rigorous treatment of the strain ef-
fects on the band structure is rather complicated [24]. For example the
gain function involves an integration over k-space. Hence a full treat-
ment of the strain is difficult to include into a 2D model, the major
difficulty being the non-parabolicity of the band structure. The concept
of effective mass is no longer valid because of the non-parabolicity.

Recently a anisotropic effective mass model was proposed [25,26]
in an attempt to revive the concept of effective mass. The basic idea
is to fit the nonparabolic band structure with a parabolic anisotropic
band structure model. The advantage is that once the effective masses
are known from the fitting, all the formulas developed over the years
for unstrained quantum wells can be borrowed directly with minor
modifications. It was demonstrated that such an approach yields rea-
sonable results and that the gain function for strained quantum wells
is efficient and easy to implement.
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To be more specific about the anisotropic effective mass approx-
imation [25,26], the effective of strain is to make the parabolic band
anisotropic, i.e., the effective valence band mass perpendicular to the
quantum well plane is different from that parallel to the plane. The ef-
fective mass perpendicular to the plane ( m,, ) determines the quantum
subband levels (or quantum confinement effects) and the optical tran-
sition energies. The (2D) density of states and joint density of states of
each subband depends on the effective mass in the plane ( my; ). More
details about this approach can be found in Refs. [25,26].

5.5 Implementation of Gain Model in 2D Simulation

For the gain function to be included into the 2D model, it must
be efficient to evaluate at any frequency and at any location in the
device. The broadening integral in Eq. (105) does not have analytical
solution. Numerical evaluation at every mesh point can be rather time
consuming.

Reference [27] has proposed a scheme to obtain an approximate
analytical solution:

Fy(z) = ZA e~ Be=, (112)

1+2

For the gain function the following approximation is made:

4

(1+eq) ' ~14 ZakekA
k=1

for A<O0

4
~ Z ake‘kA
k=1
for A>0 (113)

Equations (112) and (113) allow one to obtain an analytical expression
for the broadened gain function and reduces computation burden.
The gain is a strong function of the wavelength and the question
of what wavelength should be used arises naturally in a simulation. A
simple choice is to locate the wavelength corresponding to the maxi-
mum gain. However in some DFB lasers, the lasing wavelength is forced
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to locate off the gain peak by the DFB grating. In such a case the sim-
ulator should be flexible enough to fix the working wavelength of the
simulator.

Another important term is the spontaneous recombination which
dominates in GaAs/AlGaAs and InGaAs/AlGaAs laser systems below
lasing threshold. The expression for spontaneous emission can be ob-
tained from the gain function through Einstein relation [16,17]. The
result for the unbroadened gain spectrum is given by

2w
() = (3 )il - @Ry, (10
i=j
where D(E) is the optical mode density in the material which has a
refractive index of 7, given by [16,17],

A E?

n2h3cd’
Equation (114) can not be used directly in the continuity equations
because the device experience the total recombination rate integrated

over all possible frequencies. Therefore the integrated spontaneous rate
should be used:

D(E) = (115)

- _
REY = /0 r2%(E)dE. (116)
A quantum well responds to the optical frequency with interband tran-
sitions which is the dominant contribution to the gain or loss. The
secondary but also important loss mechanisms are the free carrier ab-
sorption and/or intervalence band absorption which can be written as
[28-30]:

Qquw = —0falt — O fpD, (117)

Note that these terms do not contribute to the radiation in the optical
frequencies and should not appear in the stimulated recombination
term.

To summarize all the gain/loss terms should be simple to evaluate
and should be expressed in terms of the variables used in the global
Jacobian matrices. For a self-consistent 2D solution all recombinations
terms should be included in the full Newton scheme.
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6. An Example of 2D Simulation

As an example of 2D simulation, the turn-on characteristics of
a strained multiple quantum well is briefly described here. For de-
tailed examples of CW simulation (light-current characteristics) of
other types of laser obtained from a 2D model described in this chapter
the reader is referred to Refs. [1,25,26].

Ridge waveguide structure is used for the 2D cross section. 3 um
is used for the ridge width. The structure and mesh generated are
shown in Figs. 6 and 7, respectively. The structure of the devices is
as follows. The compressively strained device has 5 quantum wells of
thickness 8.7 nm with composition of x= 0.2 and y = 0.85 (4%
compressive strain). The barrier is lattice matched with y = 0.568.
The spacing between wells is 20 nm and the total thickness of the
well/barrier region is 263 nm. A single step of InP is used for the
GRIN confinement.

The gain function is modeled with a Landsberg type of broadening
and the gain spectrum is shown in Fig. 8 together with experimental
results [31]. The agreement with experiment is very reasonable.

The current distribution and optical field distribution is shown in
Figs. 9 and 10 respectively. The band diagrams of the laser in equi-
librium and under high injection condition are shown in Figs. 11 and
12. The distribution of local optical gain at a 1D section before and
after the laser is turned on are shown in Figs. 13 and 14. Here the local
optical gain is assumed to be a constant (loss) in the barrier region
for simplicity. The distributed nature of the local gain is evident from
these results.

For the purpose of illustrating the importance of the 2D simula-
tion, a corresponding 1D simulation is also performed. The difference
in the turn-on delay is shown in Fig. 15. Note that the turn on de-
lay can be simply understood as the time it takes for the well to fill
up to the lasing threshold density under the constant applied current.
The model implemented is capable of producing large amount of useful
simulation data to help understand the operation of of a complex laser
device and to help optimize its design.
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Figure 6. Schematics of a strained multiple quantum well laser.
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Figure 7. Mesh generated for the ridge waveguide laser.



338

NRC laser:

1.4% compressive strain

(wd/1) ured jau

1.74 1.76

1.72
wavelength (micron)

1.70

Figure 8. Experimental and theoretical gain spectrum for the MQW
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Figure 9. 2D current distribution.
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Figure 10. 2D optical field distribution.
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Figure 11. Band diagram at equilibrium.
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Figure 12. Band diagram under high current injection condition.
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Figure 13. Material gain distribution before the laser turn-on.
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Figure 14. Material gain distribution after the laser turn-on.
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Figure 15. Turn-on characteristics of the laster. The solid line corre-
sponds to the 2D simulation and the dash lines is the result of 1D model.
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7.  Summary

This chapter has described the key physical and numerical mod-
els necessary for the development of a 2D quantum well semiconductor
laser simulator. A large part of the model is similar to the drift-diffusion
model used in electronic devices. The major effort required is in com-
bining the electronic device model with the optical model (i.e., rate
equation, gain and wave equation) with efficiency and selfconsistency.

Getting the model developed and start producing reasonable re-
sults are only part of the effort in analysis and optimization of semi-
conductor lasers. Testing and calibration of the model for a specific
device or process is also important in making useful predictions with
the 2D model. It is hoped that the modeling technique described in
this chapter helps the reader understand the basic principles of multi-
ple dimensional semiconductor laser simulation.
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