Progress In Electromagnetics Research, PIER 10, 75-121, 1995

MODE MATCHING TECHNIQUE AS
APPLIED TO OPEN GUIDED-WAVE STRUCTURES

N. Dagli

Introduction
Transmission Line Representation of Waveguides
Determination of the Mode Functions for Open Guided-
Wave Structures
Multilayer Slab Guides
Step Discontinuities
Equivalent Circuit
Other Possible Formulations
7.1 Different Manipulations of the Boundary Conditions
7.2 Variational Formulation of the Eigenvalue Equations
8. Application of the Equivalent Circuit to Different
Structures :
8.1 Rib Guides with no Guided Modes in the Outer Regions
8.2 Rib Guides with Guided Modes in the Inner and Outer
Regions
9. Comparison with other Techniques
9.1 Rectangular Fiber
9.2 Rib Guides with Sloped Rib Sides
10. Conclusion
References

ol i

NS ;o

1. Introduction

The rapid and successful developments in single-mode fibers pro-
vided the motivation to develop practical integrated optical devices
whose properties are optimized with respect to the fiber transmis-
sion characteristics. III-V compound semiconductors have the neces-
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sary properties to realize such devices. Today, many different research
laboratories are at the verge of realizing guided-wave integrated optical
circuitry containing many different components like switches, modula-
tors, power dividers, and combiners in such semiconducting materials.
Computational tools for modeling and simulation are essential for suc-
cessful design, optimization, and realization of such circuitry. For this
purpose several different techniques exist. All of these techniques, so
far, have been tried at the single component level and range from very
approximate, like the effective dielectric constant (EDC) method (1],
to very involved and sophisticated, like beam propagation [2,3] and
finite difference methods [4]. Although sophisticated techniques are
highly accurate, their computational complexity becomes a problem
when the analysis has to be repeated several times to optimize a de-
sign, or needs to be extended to more complicated situations like the
analysis of a circuit containing many components. On the other hand,
approximate techniques are easy to use, but they are not applicable
to all realistic situations and cannot provide the required accuracy.
Keeping in mind that the final objective is to model and analyze an
entire circuit, an equivalent circuit representation for the guided-wave
optical circuitry becomes highly desirable. Such representations have
been tried to solve various problems involving open guided-wave struc-
tures [5-7]. They typically originate from the so-called mode matching
technique. It is the topic of this paper to describe the mode matching
technique as applied to open guided-wave structures encountered in
integrated optical circuits. The basic idea behind the mode matching
technique is first to divide a given geometry into subsections in which
the wave equation is separable. Then in each subsection the method of
separation of variables is used and the field components are expressed
as the product of functions of one coordinate variable only. Then one
of these functions is expanded in terms of a complete set, hence mode
expansions are formed for the field components. Finally these mode
expansions are forced to obey the boundary conditions between the
subsections. Such an approach usually results in an equivalent circuit
representation for the structure under investigation. Such a representa-
tion has significant advantages. In principle an integrated optical struc-
ture can be represented as a cascade of basic building blocks. If one
finds the most basic building blocks and develops a modular equivalent
circuit representation for them, one can cascade the equivalent circuits
representing such blocks and come up with an equivalent circuit rep-
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resenting the entire structure. Then the analysis of the entire circuitry
is reduced to the analysis of an equivalent circuit, which can be done
and repeated many times very easily. In this paper the approach fol-
lowed is based on the work of Peng and Oliner (7] and was previously
reported as a journal article by the author [8]. In the description of the
mode matching method, resulting in the development of an equivalent
circuit, approximations valid for III-V compound semiconductors are
utilized. Hence, the technique presented in this paper is especially suit-
able for integrated optical devices in III-V compound semiconductors.
In the next section an equivalent circuit representation for waveguides
based on mode matching is described. Then, the basic building blocks
are identified and completely modular equivalent circuits representing
them are developed. After comparing various different formulations,
the technique is applied to several different structures to assess the
accuracy. Finally, general conclusions are drawn.

2. Transmission Line Representation of Waveguides

In the analysis of waveguides and waveguide-related problems it
is very advantageous to have a transmission line model representing
the structure under examination. In such representations two distinct
directions should be chosen. The first one is the axial direction defined
as the z direction such that all cross sections transverse to it are
identical in size and shape. Wave propagation in the waveguide is also
along this direction. The other one is the transmission line direction,
which is not necessarily coincident with the axial direction. One can
define any other direction as the transmission line direction. In the
following derivation the x direction is chosen as the transmission line
or longitudinal direction and the time dependence is e*7*t.

It is always possible to separate Maxwell’s equations in terms
of transverse and longitudinal components. Since z is defined as the
longitudinal, and y and z as the transverse directions, one can write

and
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The desired modal representations of the transverse fields can be
written as mode expansions, which are

Ei(z,y,2) = Y_ Vi(x)a(y)e 7" (3)

Hy(z,y,2) = Z L(z)hi(y)e™3k== 4)

where €;(y) and h;(y) are the transverse mode functions, which should
form a complete set, and V;(z) and I;(z) are the transverse mode volt-
ages and currents, respectively. Substituting (3) and (4) into Maxwell’s
equations and applying the principle of separation of variables one ob-
tains two sets of differential equations one being a function of = and
the other being functions of y only. These are

dVi(z .

—-a-i—) = ~jkziZ;I;(z) (5)

dIi xr . ’

D) - ikavin) (©)
and

d2—é¢' 2 2\

W‘i"(k -ﬂ,—)eixo (7

d?h; -

'a'yT"‘(k?— )i = 0 (8)
where

B? = kZ; + k2 (9)

where kz;Z; and kz;Y; are simply the separation constants. Equations
(5) and (6) simply suggest that transverse mode voltages and currents
are like voltages and currents on a transmission line of characteristic
impedance Z; = 1/Y; and propagation constant k,;. Equations (7)
and (8) define transverse mode functions. It is possible to obtain two
uncoupled sets of equations by choosing either eiy or hi, zero. The
resulting mode sets are shown in Table I. The choices of separation
constants Z; and Y; are also given in Table L
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Mode Set 1 Mode Set I
e, =0 h, =0

dzeiz dzhix =
i +(k*~pHe, =0 v +(k* =B, =0
K =k =B} K, =k*-p;
hiy = -eiz ef)’ = hi‘
h o= _}..gf.é& e, = —-l—fa_zhﬁ-

“ Bl dzdy B dzdy

B B

hi= wpk, % wek,
g =e,(nZ & =¢,0N¥ +e, (N7
R () = h () + h,(0)Z ) =h, (07

Table 1. Resulting mode sets for the choice of transmission line direction
as explained in the text.

Transverse field components for either set in terms of transverse
mode functions, voltages, and currents are given previously in (3) and
(4). Hence, once the transverse mode functions are determined the rest
of the problem requires the determination of transverse mode voltages
and currents which requires the solution of transmission line equations.
Therefore it is possible to represent the structure as a transmission line
network and solve the problem using powerful and well-established
circuit analysis techniques. These two sets are uncoupled from one
another and in general both of them are needed to represent a general
field distribution. In the presence of discontinuities or obstacles they
may be coupled, i.e., both sets may have to be taken into account at
the same time. The treatment up to this point is quite general and
can be applied to any waveguide problem. This treatment is especially
suitable for open rectangular dielectric waveguides. Its applications to
open structures and determination of the required mode functions are
explained in the next section.



80 Dagli

3. Determination of the Mode Functions for Open
Guided-Wave Structures

In Figure 1, the cross section of an open rectangular waveguide
is shown. Such structures can be viewed in terms of two basic build-
ing blocks. The most suitable building blocks for structures realized
in III-V compound semiconductors are the uniform regions, which are
portions of multilayer slab guides and, the step discontinuities where
uniform regions meet. It is advantageous to analyze and model them
using the results of the previous section. Finally, models obtained can
be put together to model the entire structure. Since the whole struc-
ture is composed of different multilayer slab guides choosing the slab
mode functions as the mode functions of the waveguide problem is very
suitable and advantageous.

Outer [nner Outer
region 1 region— region
Na T
Ne I H
Ng Iy o

-w/2 20 w2

Figure 1. Cross section of an open rectangular waveguide.

At this point it could be advisable to summarize what is done so
far from a slightly different point of view. A given geometry is sub-
divided into subregions. In each region the wave equation is separa-
ble and its solution can be written as a superposition of functions
which are products of functions of one coordinate only, i.e., functions
of the type X(z) Y(y) Z(2). Since the direction of wave propagation
in the geometry considered is in z direction and the solutions that are
guided waves in z direction are the desired solutions, the functions of
z should be taken as e 7¥:* where k, is the unknown propagation
constant. In each region functions of y are expanded using a com-
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plete set as a basis. This is how equations (3) and (4) resulted. The
complete set used in the mode expansions is chosen as the modes of
the dielectric slab guides in that particular region. For the structure
shown in Fig. 1, which is typical in integrated optics, the resulting
field distributions cannot be TE or TM with respect to any given di-
rection. In other words all six field components are present. Therefore,
in the mode expansions the superposition of both TE and TM modes
of the constituent regions should be used. In this example both inner
and outer regions, which are uniform slab guides, have TE to y and
TM to y modes. This results in two mode sets for the expansions,
originating from TE and TM modes of the dielectric slabs. In Table
1 mode set I originates from the TE modes of the slabs. That is why
there is no y component of the electric field associated with it. In the
mode expansion superposition of such dielectric slab guide modes are
used to describe the overall modes of the geometry. This situation is
schematically illustrated in Fig. 2. This figure shows a TE mode of
the inner slab which is just one term in the modal expansion. Clearly
this mode is propagating in a certain direction and will be obliquely
incident on the dielectric discontinuity as shown in the figure. A uvy
coordinate system defines the slab geometry hence the slab mode is
TE to y with r;spect to this coordinate system. The zyz coordinate
system characterizes the waveguide geometry. Obviously the TE mode
of the slab has E, , Hy and H, components. However, with respect to
the waveguide coordinate system the same mode has five components,
namely E;, E,, H;, Hy, and H,. Similarly a TM to y mode of the
slab will have E;, Ey, E,, Hy, and H, components.

For TE modes of the slab
Hy_B

1
E, ~wp (10)

where §; is the propagation constant of the slab mode. Since the trans-
mission line representing this slab mode is set up along z direction its
characteristic admittance, which is the same as the wave impedance of
this mode in z direction, is given as

V; H, Yy Hy 5&

‘" I, E, Eycos6; wpcosb; (11)

But k;; and k., which is the propagation constant of the rib mode,
are components of §; as shown in Fig. 2, hence
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Figure 2. A TE mode of a slab guide incident obliquely on a dielectric
step discontinuity.

kZ; + k2 = B¢ | (12)
and
k:ci
0; = — 13
cos B (13)

Substituting (13) into (11) one obtains
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B2
Y, = i 1
P wpkai (14)
One can go through a similar analysis for TM modes and find that the

characteristic impedance for TM mode functions is

__ B
C weEkn (15)
The presence of E, and H, components of the TE mode will in-
evitably excite a TM wave upon scattering from the discontinuity.
Therefore, TE TM mode coupling or mode conversion will occur be-
cause of the discontinuity. That is why there are not any TE or TM
modes in this geometry. In other words even if only a superposition
of the TE modes of the slabs is used as an input excitation to the
rib waveguide, at the discontinuity they will couple into TM modes.
Therefore, the resulting field distribution can only be described as a
mode expansion in terms of both TE and TM modes of the slab, or
in other words as a superposition of mode sets I and II in Table 1. In
realistic geometries, however, the magnitude of this effect is very small
and neglecting it is very well justified [11].

t1

At this point the advantage of using the well known modes of the
constituent regions in the mode expansion becomes obvious. Consider
equations (3) and (4). Clearly these expansions satisfy the wave equa-
tion and the boundary conditions at any cross sectional point except at
z = +w/2, since at any z other than 2 = +w/2 they reduce to a su-
perposition of the modes of that particular geometry. The only points
where they are not the solutions are the discontinuities where subre-
gions meet. If the mode expansions are required to satisfy the boundary
conditions at the discontinuities, a solution that satisfies boundary con-
ditions and the Maxwell’s equations everywhere is found. In principle
a mode expansion can be written for the fields in each one of these sub-
sections in terms of any complete set. But choosing the complete set
used in the expansion as the complete set formed by the modes of one
particular region has the advantage of satisfying the boundary condi-
tions in that region. Therefore, one does not have to enforce boundary
conditions within each subregion. As a result the analysis is simplified
and the computational effort is reduced. In the next section multilayer
slab guide modes are examined and transformed in a form which can
be used in the treatment of the previous section.
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4.  Multilayer Slab Guides

In Figure 3 an asymmetric three-layer slab guide and its possible
modes are shown [9]. Treatment of the multilayer slab guide problem is
quite general and is given in textbooks. Therefore only a brief summary
will be given. For a slab guide there are two uncoupled mode sets. The
equations defining the slab mode functions are exactly the same as the
equations (7) and (8) defining the mode functions of the two uncoupled
mode sets defined in the previous section. Therefore it is possible and
quite advantageous to use slab mode functions in the modal expansions
as described earlier. The first set very much resembles the TE modes of
the slab guide. Therefore it is called the TE-like mode of the structure.
Similarly the second set is called the TM-like mode.

Figure 3. An asymmetric three-layer slab guide, and its possible modes.
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At this point it is advantageous to normalize dimensions and in-
dexes and work with normalized variables. According to this standard
normalization, dimensions are normalized as

X = g;-z\/ng —n2 (16)

and effective indexes for guided slab modes as

n? —n?

b= =2 17
n2 —n2 (17)
Indexes for continuum slab modes are normalized as
2 2
2 ng — N
= ———— 18
I (18)
where
_ B
n= 2w/ (19)

B is the propagation constant of the slab mode. Then the normalized
equation for the mode functions becomes

d’¢i(Y) _
L+ (P —)(¥) =0 (20)
for guided modes and
@9(Y, f) -
o (B + ey, ) =0 (21)

for the continuum modes. ¢ is either e;, of mode set I or h;, of
mode set II. The mode functions are normalized and orthogonal to one
another, i.e.,

+00
[ H(Ng(NaY =& (22)
+00

BN, Nay =0 (23)

and
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400
oY, f)o(Y, f)aY = 8(f - f'). (24)
—00

Figure 3 shows the possible modes of a three-layer asymmetric slab
guide for different B or b? values. Solutions for 8 > kgn. or b* >
1 shown in Fig. 3(a) are not physically realizable. For k,ns, < 8 <
kone or 0 < b? < 1 guided modes exist. They are finite in number
and are bound to the epilayer, i.e., they decay exponentially in the
substrate and air regions as shown in Fig. 3(b) and (c). Discrete 3 or
b2 values are calculated as a solution of an eigenvalue equation. For
kona < B < kons or 0 < f% < a, where a = (n? —n2)/(n2 —n?), so-
called substrate or type 1 continuum modes shown in Fig. 3(d) exist.
They have sinusoidal behavior in the substrate. For 0 < 8 < kgng,
or a < f? < ¢, where ¢ = n2/(n2 — n?), modes have sinusoidal
behavior everywhere as shown in Fig. 3(e) and are called air, or type 2
continuum modes. As the transverse variation of the continuum set gets
more and more rapid, i.e., for f2 > ¢ propagation constant values, i.e.,
B values become imaginary. Such modes are known as the continuum
set showing cutoff behavior. Their transverse variations are similar to
the set shown in Fig. 3(e) except that they are cutoff due to their
rapid transverse variation. Such modes can be excited in the presence
of sharp discontinuities and obstacles. For continuum modes there is
no eigenvalue equation and 8 or f2? values vary continuously between
the indicated limits.

There is one problem, however, in using the normalized slab mode
functions in the modal expansions of the waveguide problem as given
by (3) and (4). Those equations are discrete summations whereas slab
mode sets have both discrete and continuum components. The summa-
tions over the continuous spectra can be represented as an integration.
Then the modal expansion for TE-like waveguide modes becomes

m 400
B=Y U6+ [ o peving @9
]
m +00
o= K06+ [Ny @)
%
Although this representation is correct, it is not suitable for a modular
transmission line representation. In other mode-matching techniques
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given in [7], and [10] this difficulty was overcome by discretizing the
continuous spectra by artificially bounding the structure with conduct-
ing planes. In this paper, however, the integration over the continuous

spectrum is converted into a summation using a basis function expan-
sion. One can expand the continuum set as

oo
$(Y, ) =Y _wu(V)W(S) (27)
i=1
where W;(f) can be any orthonormal basis. Then

w0 = | " oY, HW()df (28)

and is called the discretized continuum set. Substituting (27) into (25)
one obtains

E, =) Vi(X)$i(Y) + Y Ci(X)%(Y) (29)
i=1 i=1
where
/ " u(X, )W(f)df = Ci(X) (30)

This representation is suitable for a transmission line representation
but one still has to know the eigenvalues or normalized effective index
values of discretized continuum modes. Substituting (27) into (21) and
manipulating one obtains

d’r
m+b2F+EI‘=O (31)
where
LT = {n(Y), %(Y), -} (32)
and
By = I PPU(0) (). (33)

E;; is the ij th element of E which is a real symmetric matrix. One
can always factorize E as
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E = NPNT (34)

where P is the diagonal matrix with diagonal entries being the eigen-
values of E,i.e., p; isthe ith eigenvalue of E. Substituting (34) into
(31) and manipulating one obtains

d?e

et (b*'U+P)O =0 (35)
or
d26;
m + (b2 + pi)9£ =0 (36)
where
NTT =@, (37)

and U is the identity matrix. Equation (36) is the eigenvalue equation
for the transformed discretized continuum set defined by the trans-
formation shown in (37). The eigenvalues, or normalized effective in-
dexes of this set are p; , i.e., the ith eigenvalue of E matrix. The
guided modes and the transformed discretized continuum modes, i.e.,
{¢1,01,"*+, dm, 01,82, --, }, form an orthonormal mode set. Now one
can utilize Table 1 and (3) and (4) and obtain a modal expansion
for the field components of the waveguide modes. The resulting rep-
resentation for TE-like modes is shown in Table 2. The longitudinal
components, i.e., £ components, are found from Maxwell’s equations.

According to this formulation determination of &2, F;(X), D;(X),
Vi(X), and I;(X) complete the solution of the problem. Since they
all behave like voltages and currents on a transmission line it is pos-
sible to model uniform regions as a bunch of transmission lines. Each
transmission line will correspond to a particular mode of the multi-
layer slab. There will be m transmission lines corresponding to the m
guided modes of the slab constituting the uniform region and an infi-
nite number of transmission lines corresponding to the continuum set
of the slab guide.
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E =0 wﬂ =}
3 EF(X)de(Y)

in]

E,=0V+O'F

H =-9'1-0'D
H, = J‘ZE'g-I,(X) 4.) wuZﬂl X9,
im} i=]
2
+i3 V”b D(X‘dg ) ~au¥ ED,(X)B(Y)

il il

O ={9,(),6,(Y)...0, ("N} V" ={V(X),1,(X)...V,(X)} TT={r,@)7T@)......... }

C" ={C,(X),C,(X)......... } F=N'C  ©=NT

Table 2. Modal expansion for field components of TE-like modes of an
uniform open guided-wave structure.

5.  Step Discontinuities

The other constituent. of the open guides are the step discontinu-
ities where uniform regions meet. Since the modal expansions of the
fields are known everywhere, step discontinuities can be modeled by
forcing the fields to obey the boundary conditions at the discontinuity.
The boundary conditions require the continuity of the tangential E
and H fields, which in turn means

Ey(w/2) = Ey(w/2) (38)

E.(w/2) = E.(w/2) (39)
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Hy(w/2) = Hy(w/2) (40)

H,(w/2) = H(w/2). (41)

Overbars indicate the field quantities in the outer region, i.e., for z >
w/2.

In the presence of the discontinuity, two mode sets may be coupled
as described earlier. However, mode conversion due to a step discon-
tinuity is very small and for most cases is negligible [11]. Therefore in
the following discussion mode conversion will be neglected and struc-
tures will be examined under TE excitation. Writing (38)(41) explicitly
using the modal expansions given in Table II one obtains

0=0 (42)
TV+OTF=3"V+0'F (43)
3T1+6"D=3"1+0"D (44)

I L E rwn0 +5 S_jv““” (w/20v) } =

i=1 1

{ Z Iz(w/2)¢,(Y)+JZ N D( /2)8; (Y)}

(45)
The last equation can be approximated in the following way. Since the
b?’s are normalized indexes they are between 0 and 1. For semicon-
ducting systems suitable for optical integration n. = 3.5 and 1073 <
An < 0.1. Hence

17<c= "sn < 1700. (46)

s
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Therefore

Ve+b: e+ 1
c+ b c+b Ve

(47)

Estimation of

Vz2 ”

depends on the p; values. Values of p; depend on the basis chosen
in the expansion of the continuum set but they range from very small
to very large. Usually field expansions converge with only a few terms
of the infinite summation. Furthermore, values of the important eigen-
values, i.e., the eigenvalues corresponding to the eigenfunctions that
contribute significantly to the modal expansion, are small. This point
will be shown both qualitatively and quantitatively in the next sec-
tion. Hence for almost all practical structures (42) is also very close
to 1/+4/c or when it is not almost equal to 1/+/¢ that particular term
contributes very little to the summation in (45). Then (45) reduces to

d T T __ d =1z =T=
T3 {271+ 6™D} = —{F"'1+8"D}. (49)

But under these conditions satisfying (44) will automatically satisfy
(49). Therefore, under these approximations there is no need to con-
sider (44) and (45) individually and it is sufficient to consider (44)
only.

These remaining equations can be manipulated to relate the trans-
mission line voltages on both sides of the discontinuity in the following
way. Multiplying (43) by ® and © and (44) by ® and © , integrat-
ing over Y, and using the fact that {®, ©} and {®, ©} form an
orthonormal set one obtains

V =QV +RF (50)

F=SV+TF (51)
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I1=Q*1+S™D

D=RTI+T™D

where

Q = (3|87T) = f ~ $oTay

—co
R = (@I'")N
S = MT(T|a7)

T = MT(T|IT)N.

Dagli

(52)

(53)

(54)

(55)

(56)

(57)

Definitions of N and M are the same except that their orders may
be different depending on how many terms of the infinite summation
are retained in the inner and outer regions. One can further combine

(50)(57) to obtain

V=GV
I1=GTT
where
_1Q R
o=[$ 1]
and
vl ={VT, FT}

(58)

(59)

(60)

(61)

(62)
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6. Equivalent Circuit

Equations (58) and (59) immediately suggest that of a trans-
former. Therefore a transformer network is enough to model the dis-
continuity. At this point one can combine the transmission line model
of the uniform regions and the transformer model of the discontinu-
ity to model an entire structure. Figure 4 shows a rib guide and its
equivalent circuit. Since the structure is symmetric only half of it has
to be considered. Both uniform regions are represented as a collection
of transmission lines. There are a finite number of transmission lines
representing the guided modes of the uniform slab regions. In Figure
4 it is assumed that inner and outer slab regions supports k& and [
guided modes, respectively. The V'’s, I'’s, and Y ’s are the voltages,
currents, and characteristic admittances of these transmission lines,
respectively. The characteristic admittances are defined in Table 1. In
normalized format they are given as

gy ;
}2=_2_7£\/ne n . c+b 63)

where b2 and b2 are the normalized effective indexes of the i th guided
mode and the composite structure, respectively. In addition to these
transmission lines there is an infinite number of transmission lines rep-
resenting the continuum set. Basically these are the terms of the infi-
nite surnmation and each one represents a discretized continuum mode.
Again the F''’s, D’s, and y's are the voltages, currents, and charac-
teristic admittances of these transmission lines, respectively. The way
the discretization is done allows the characteristic admittances to be
defined in the same way. Using the effective index of a discretized con-
tinuum mode defined in the previous section one obtains

LR L R g (64)
A wp Vb2 +pi

A set of transformers represent the discontinuity. The primary and sec-
ondary of a transformer are marked by the turns ratio of that trans-
former. The transformer ratios depend on the overlap integrals of the
modes in the inner and outer regions and are elements of the matrices
defined in (54)(57). Once the equivalent circuit is formed a transverse
resonance analysis yields the propagation constant values.
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Figure 4. A rib guide and its equivalent circuit.
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The equivalent circuit is physically very intuitive. A rib mode can
be visualized as a superposition of the individual slab modes. These
modes are obliquely incident on the discontinuity and are scattered by
the discontinuity as depicted in Fig. 2. This scattering couples a par-
ticular mode to all possible modes in the inner and outer regions. The
degree of coupling depends on how well the modes overlap. Then all
these scattered and incident modes interfere to form the rib mode. The
transformer network represents this scattering and resulting coupling.

As one can see this equivalent circuit is completely modular. Mod-
ularity makes the model very powerful. Since any open guided-wave
structure can either be represented or approximated as a combination
of uniform multilayer structures of various thicknesses and step discon-
tinuities where these uniform regions meet, it is possible to model and
analyze any open guided-wave structure by cascading this basic model.
Therefore, the whole spectrum of integrated optical components from
non ideally-shaped waveguides to non symmetrical multiple coupled
structures can be analyzed. Furthermore, once the equivalent circuit
parameters for the discontinuity are found, extension of the analysis
from one waveguide to multiple coupled waveguides only requires the
solution of a more complicated circuit which slightly increases the com-
putational effort. Changing the widths and gaps modifies the equivalent
circuit only, without the need to calculate the key circuit parameters
again. This is a considerable advantage as compared with other nu-
merical analysis techniques of comparable accuracy. For these other
techniques slight changes in a given geometry or increases in the com-
plexity of the device require the full computational effort rather than
a marginal increase. Computational advantage resulting from modu-
larity was documented in [12]. Modularity of the equivalent circuit is
preserved even when there are no guided modes in a particular uniform
region, because the discretization used results in a transmission line
representation for all uniform regions, even those where there are no
guided modes. This property also makes it possible to analyze struc-
tures where there are no guided modes in the outer regions, which
cannot be analyzed with simple approximate techniques such as the
EDC method. Based on this equivalent circuit a general computer pro-
gram was developed to analyze single or multiple coupled waveguides
with arbitrary widths and spacings. The cross-sectional profile of the
waveguides can also be arbitrary.
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7. Other Possible Formulations

7.1 Different Manipulations of the Boundary Conditions

The equivalent circuit presented in the previous section was ob-
tained after a specific manipulation of equations (43) and (44). But
this manipulation can be done in more than one way. To illustrate this
point and the related discussion define the orthonormal sets {®, ©}
and {3, O} as AT and A" respectively. Then (43) and (44) simply
reduce to

Ez=w/2)=ATV =RA"V (65)
and
Hyz=w/2)=ATI=R"T (66)

Furthermore, in uniform regions modal voltages and currents are
related to one another. For example in outer regions, which are in-
finitely long, V;(w/2)

Vi(w/2) _- _ 1
7,‘('(0/2) =4i= ?i (67)

where Z; is the characteristic impedance corresponding to the it*
mode used in the expansion as defined in Table 1. In other words

V=ZT (68)
or
1=V (69)

where T and Z are diagonal matrices, whose diagonal entries are T;
or Z;.Clearly Z ' =T. Similarly in the inner region

V=-71 (70)
or

I=-TV. (71)
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Again Z and T are diagonal matrices such that (GZ—)“1 =T.
Each one of the diagonal entries is the input impedance of a termi-
nated transmission line whose input is at z = w/2 and extends along
negative z direction. In other words it is the impedance seen by an
observer sitting at the inner region side of the discontinuity, i.e., at
z = w™ /2, and looking at the left. The minus sign arises simply be-
cause the direction of flow of I as defined in Fig. 4 is opposite to the
current flow direction used in determining the input impedance of a
terminated transmission line. For example, for a single rib guide shown
in Fig. 4 these terminations will either be open circuits or short circuits

depending on the symmetry of the mode. So (7),- will be of the form
jZ;tan kxi% or —jZ;cot km'-gl .

Equations (65) (71) can be manipulated more than one way to
obtain an eigenvalue equation for the unknown propagation constant
of the rib guide mode. For example, following what is done earlier one
obtains

V=@@A|AT)=6V (72)
I=GTT. (73)
But
I=GTT=G"T V =GTTGV. (74)
However,
I1=-Tv=6¢TYcv (75)
which yields
(F +GTTG)WV =0 (76)

For this equation to result in a non-trivial solution, i.e., for V #0,

det (7 + GTTG) = 0. @7)

The only unknown in this equation is k, , i.e., the propagation con-
stant of the rib mode. Therefore, equation (77) is the eigenvalue equa-
tion for the waveguide under consideration.
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Equation (76) is the solution of the equivalent circuit shown in
Fig. 4, and equation (77) defines the resonance conditions of this cir-
cuit. In other words at frequencies corresponding to the solution of
(76) one can obtain solutions with no input excitation, which means
that this particular frequency is a natural frequency of the circuit, i.e.,
circuit is resonant. This is the well known transverse resonance anal-
ysis. But it is possible to obtain different equations for the transverse
resonance condition. Equations (65) and (66) can be manipulated to
yield

V=(ARW =GTV (78)
1= (A|ATY =GI (79)
V=GTV=GTZT=GTZGI. (80)
But
= -Z1=G"TZGI (81)
or
(Z +GTZG)I =0 (82)

which requires for a non-trivial solution

det (Z +GTZG) =0 (83)

Equation (82) is another solution of the equivalent circuit given in
Fig. 4 and equation (83) is another transverse resonance condition
which defines the eigenvalue equation for the waveguide under consid-
eration. Similarly different manipulations yield different formulations
for the transverse resonance condition or eigenvalue equation. Indeed
there are eight different possible formulations. These are summarized in
Table 3.



Mode matching technique applied to guided-wave structures 99

1. (T+GTTG)V =0
2. (GTGT+T)V =0
3. (GY+TG)V =0
4. (TGT+GTT)V=0’
5. (Z+GTZe)1=0
6. (GZGT"+Z2)T=0
7. (GZ+ZG)1=0

8. (ZGT +GT2)T=0

Table 3. Different formulations resulting from different manipulations of
the boundary conditions at the step discontinuity. ’

Indeed most of these formulations are identical. This can be shown
using the fact that G is a unitary matrix, i.e.,

Gl=cT | (84)

This simply follows from the fact that the mode sets A and A used in
the mode expansions are complete sets. It is a simple exercise to expand
one complete set, say A , in terms of another complete set, say A,
and show that the matrix transforming one complete set to another,
G in this case, is unitary. This property can be utilized to show that
formulations 1-4 given in Table 3 are equivalent to one another. As a
simple example consider 1 which can be manipulated as shown below
to yield 2. Multiply 1 by G from left and use V = GTV

G(T +GTTG)GTV = (CTGT +T)V (85)
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which is formulation 2. Similarly formulations 5-8 are all equivalent
to one another because of unitarity of G. However, in practice only
a finite number of terms of the complete sets A and A are used in
the expansions, hence G is not exactly unitary. Then various different
formulations given in Table III are not equivalent and as a result they
have different convergence properties. In other words certain formula-
tions could be more advantageous in terms of faster convergence and
accuracy. In the next section an alternate derivation of the problem
is given and a physical argument is presented to identify formulations
that have inherent advantages.

7.2 Variational Formulation of the Eigenvalue Equations

Starting from equations (65) and (66) one can generate an alter-
nate formulation. Call E, (z = w/2) = E and Hy (z = w/2) = H.
One can solve for V and V in terms of E and H as

V = (A|E)

+00 +o0 +00 T
= [Tanemay, Toawpmar, - Tameway, |

(86)
Using equations (70) and (71), equation (66) can be written as
ATV =AY V. (87)
Substituting V and V in terms of E and rearranging
ATY (AIE) + ATT(A|E) = 0. (88)

Multiplying this equation from left by E and integrating over y one
obtains

(E|ATYT (AIE) + (E[ATYT(AJE) = 0. (89)

[ — .
Since T and YT are diagonal matrices this equation can be written
as
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[{f¢1(Y)E(Y)dY12,[m(Y)E(Y)dYJ’,---[fol(Y)E(Y)dYF~~-] C

[U%(Y)E(Y)m’, [f@(Y)E(Y)dY}Z,---[fTv,(Y)Ede]’---] =0

-4 (90)

This equation is an eigenvalue equation for the unknown propagation
constant, k, , of the open guide-wave structure. If the correct E(y)
value, E.(y), is substituted the correct k, value is obtained, that
is equation (90) reduces to an identity. However, in practice E.(y)
is not known a priori and it can only be estimated. But, k, values
obtained using this equation are stationary with respect to first order
variation in E(y) . This can be shown by calculating the variation of
k. obtained from this equation with respect to variations § E(y) of
E(y) around E (y) . This variation can be obtained by calculating
the total variation of equation (90), which is

e

[26E[ATY (A|E) + ATV (A|E)dY + [(AT|E))26

+ATE2| P | =0 (91)
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But the variations in admittances are the result of variations in k.
originating from variations in E(y ). Hence

re v
Y, Y
— -
Yo 5 Y,
6| 1 | === : | 6k, = F(k,)bk,
- Okz | -
Yi Y1
N [
and
Y, (Y]
Yo Yo
sl i =21 | sk = Gk, (92)
_ ok, |
W n

where elements of vectors F(k,) and G(k;) can be calculated using
equations (12), (14), (63), (64) and it can be shown that they are
always negative. As E(y ) approaches E.(y), i.e., as § E goes to zero
the term inside the square brackets inside the integral in equation (91)
goes to zero because of equation (88). Then the first term of equation
(91) goes to zero even faster because it is the product of two terms
each one of them approaching zero as § E approaches to zero. In other
words it becomes the product of two very small terms, hence a second
order term, and can be neglected compared to other first order terms.
Then equation (91) reduces to

{(ATIE)?F(k,) + (A" [E)?G(k.)}6k. = 0. (93)

But the term multiplying 8k, is always negative and the only way
this equation can be satisfied is 6k, = 0. Therefore, the first order
variations in E(y) will not create first order variations in &k, and the
error in the propagation constant will be to second order. That means
k. values obtained using (91) are stationary with respect to the choice
of a trial value for E(y ), hence this equation represents a variational
formulation for the eigenvalue equation. Therefore, using different trial
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values for E one can obtain different approximations to the propaga-
tion constant. If one chooses a series expansion as the trial field, then
Ritz procedure can be used to determine the unknown expansion co-
efficients. In particular, if the complete set A is used in the series
expansion of the trial field and the Ritz procedure is applied to de-
termine the unknown expansion coefficients, the expression given by
Equation (90) can be transformed into formulation 1 shown in Table
3. This result shows that this formulation, which is obtained through
a certain manipulation of the boundary conditions at the discontinu-
ity, is the same as one would obtain from a variational expression in
which the trial field at the discontinuity (which is E, in this case) is
estimated as a series in terms of the complete set used in expanding
the fields in the inner region. Similarly, it can be shown that formula-
tion 2 results from the same variational expression if the trial field is
expanded in terms of the complete set used in expanding the fields in
the outer region. The accuracy of the result will depend on the choice
of the trial field. But since the formulation is variational, a reasonable
approximation to the trial field is sufficient to get good accuracy. Then
the computational efficiency depends on how many terms of the series
expansion is needed to form a reasonable approximation to the trial
field. In the case of a rib waveguide whose upper cladding is air, using
the complete set in the inner region in approximating the trial field
is more advantageous. This is because F, at £ = w/2 has nonzero
values up to y = T. For y > T due to a large index discontinuity
between the semiconductor and air E, value is almost zero. The same
argument also applies to the guided modes of the inner slab guide. So
using only the guided modes of the inner slab guide, a reasonable ap-
proximation for F, can be formed. But this is equivalent to using only
the first one or two terms of the set A in the expansion. Therefore,
formulation 1 is expected to converge very fast. On the other hand if
the set A is used in forming a trial value for E, , it will take more than
the guided modes to get a reasonable approximation. This is because
the guided slab modes in the outer region drop to essentially zero for
y > H, hence part of E, in T >y > H cannot be described using
these modes. Then other terms of the set A , i.e., terms from the
discretized continuum modes, should be included which increases the
required computational effort. Therefore, formulation 1 is expected to
converge faster then formulation 2. Although formulations 1 and 2 are
shown to originate from a variational formulation as described earlier,
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the same cannot be said for formulation 3 and 4 when mode expansions
do not contain infinitely many terms as in any practical calculation.
Therefore, they require considerably more terms for convergence and
are not advantageous. Therefore, among the admittance formulations,
formulation 1 is the most advantageous one.

The same arguments apply to the other four impedance formula-
tions. One can formulate a variational expression for the propagation
constant in terms of Hy(z = w/2) along the lines described earlier.
Then if a trial value for Hy(z = w/2) is formed as a series expansion of
the terms of the set A and the Ritz procedure is applied, formulation
5 results. If, however, the set A is used in forming a trial function then
formulation 6 results. Formulations 7 and 8 cannot be obtained from
the variational formulation if only a finite number of terms are used in
the mode expansions. Therefore, in the light of the previous argument
formulation 5 is the one that should converge faster and is the most
advantageous one among the impedance formulations. Experience in-
dicates that formulation 1 is more advantageous than formulation 5 for
open guided-wave structures, hence that is the one used in formulating
the equivalent circuit.

It is also interesting to see the limiting cases of this approach.
Since the formulations presented are variational, different degrees of
approximations can be obtained by taking into account fewer and fewer
terms. As an example, consider the typical rib waveguide case where
the inner and outer slabs support only one guided mode. In this case
limiting the mode expansions to only one term, i.e., the mode functions
corresponding to the guided modes of the slabs, an approximate analy-
sis can be carried out. Following formulation 1 the eigenvalue equation

becomes T + TQ? =0, where Q = [ > d(Y)d(Y)dY which is the
overlap integral between the guided modes of the inner and outer slabs.
Writing this simple eigenvalue equation explicitly one obtains for sym-
metric TE modes ( E; and Hy even)

(8 (BB unfer-r) -1 o

and for anti symmetric TE modes ( E; and H, odd)

2
_(2122>Q2(b2 :2)cot{(b2—b§)”23§} =1 (95)
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where b%’s are the normalized indices defined earlier. These eigen-
value equations yield cut-off conditions which are exactly the same as
the result of the EDC method. Furthermore, if ¢ = 1 the resulting
eigenvalue equations are the same as those of the TM mode of a sym-
metric slab guide of core index n and cladding index 7, where n and
71 are the effective indices of the TE modes of the inner and outer
slab regions. This, of course, is the same as EDC method. Therefore,
EDC method results from a variational formulation in which the trial
field at the discontinuity is chosen as the guided mode of the inner
slab and the overlap integral of the inner and outer slab modes are
approximated as unity. So it is obvious that EDC method will work
quite accurately if the rib etching is shallow. By introducing the actual
value of the overlap integral into the EDC formulation, the accuracy
of the EDC method can be improved further in cases where rib etching
is deep [12].

8. Application of the Equivalent Circuit to Different
Structures

In this section numerical examples on rib guides of different ge-
ometries will be worked out and contributions of different terms in
the equivalent circuit will be judged. The selection of rib guides is
from practical considerations only. For semiconductors they are very
attractive choices, because horizontal and vertical index steps are eas-
ily controllable. In the calculations it is always assumed that inner and
outer regions are three-layer asymmetric slabs, i.e., there is a single
epilayer on a substrate and the other cladding layer is air. The choice
of a three-layer asymmetric slab is not a limitation of the method.
Any number of layers can be considered, but well-known analytical
expressions for normalized guided and continuum modes exist for the
three-layer asymmetric slab. Furthermore, most structures can be ap-
proximated as a three-layer slab if cladding layers are thick enough.
This choice determines the mode functions to be the normalized guided
and continuum TE modes of a three-layer asymmetric slab guide. La-
guerre polynomials weighed by e=//2 are chosen as the basis used in
the discretization of the continuum set.
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The corresponding E matrix up to the fifth order is given below.
2 -4 2 0 0]

-4 14 -16 6 0
E=|2 -16 38 -36 12 (96)
0 6 -36 74 —64
0 0 12 -64 122

It is a symmetric banded matrix. Eigenvalues corresponding to different
orders of the E matrix are given below.

n 1 P2 P3 P4 Ps
1

2 S _ _ _

2 0.7889 15.211 —-— - ——
3 0.42715 7.2827 46.29 —

4 0.26874 4.3739 24.88 98477 ——
5 0.18493 2.9409  15.989 57.212 173.67

(97)

They are the normalized effective indexes of the discretized con-
tinuum set and range from small to large for all orders. The discretized
continuum set of higher orders reflect the contributions from high f
values of the spectrum. This in turn means transmission lines of higher
order, which correspond to higher order terms of the infinite summa-
tion in the modal expansion, represent the contributions from high f
values of the continuous spectrum. But as explained in Section IV, as f
increases the continuum set becomes more rapidly varying. Obviously
coupling of power in the rib guide mode, which varies smoothly, to
such rapidly varying modes is very small. This situation is depicted in
Figs. 5 and 6. In Figure 5a guided slab mode in the inner region and a
continuum mode of high f value in the outer region are shown. These
two modes do no resemble one another and their overlap is very small.
In Figure 6 two continuum modes of high f value are shown in the in-
ner and outer regions. Their overlap averages out to a very small value
due to their rapid variations. Hence coupling to and between contin-
uum modes becomes very small as f values increase. This coupling is
represented as the transformer ratio in the equivalent circuit. Therefore
coupling being “loose” means contribution from higher order terms is
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smaller and smaller, hence, addition of more terms contributes less and
less and convergence occurs. In other words, from the continuous spec-
trum only the part around f = 0, i.e., substrate radiation modes of
slow variation, contribute significantly to the modal expansion. Hence,
it is possible to represent the structure with a small number of terms
corresponding to small f values. This is especially true for formulation
1 as described earlier. In the next sections quantitative results verifying
this qualitative argument will be given.

Na

Ne

Figure 5. A guided slab mode in the inner region and a continuum mode
of high f value in the outer region.
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Figure 6. Two continuum modes of high f value in the inner and outer

regions.

8.1 Rib Guides with No Guided Modes in the Outer Region

Rib guides with no guided modes in the outer region are used
in practice to increase lateral confinement and decrease the radius of
curvature of bends or increase the angle of separation of Y junctions.
In the following example the rib guide shown in Fig. 7 is chosen. It
is a GaAs homojunction rib guide. The index of the undoped epilayer
is 3.45 at 1.15 pm wavelength. The index step between the epi and
substrate is chosen as 5.25 x10~3. The initial epi thickness is T" =
3.85 pm. It is etched to H = 0.48 pm. There are no guided modes
in the outer region. Using the general computer programs developed
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to analyze open guided-wave structures equivalent circuit parameters
were found, circuit was solved, and normalized effective index values
(b2) were found for a normalized width of W = 6.2369, which corre-
sponds to W =6 pum. b2 values as N and M (the number of dis-
cretized continuum modes in the inner and outer region, respectively)
increase from 1 to 9 and are given in Table 4. As can be seen, the
change in b2 as the number of the terms of the infinite summation
in the modal expansions increase from 1 to 9 is very little. The gen-
eral trend is such that b2 values increase and converge to 0.3873. The
fluctuation in the last digit is due to roundoff errors and is negligible.
b2 values change only 0.15 percent as M and N increase from 1 to
9. This is a direct consequence of the physical argument given in the
previous section. At this point it is also possible to substantiate the
approximation made in satisfying the boundary conditions at the step
discontinuity in Section 5. There the argument was that terms like

Veth (98)

C—Di
can be approximated as 1/4/c . For the case when M = N =9, the E
matrix is a 9 x 9 matrix and p; values keep increasing monotonically
from a very small value, 0.065642, to a very large value, 725.19. In this
example ¢ = 327 and b2 = 0.3913. However, a few terms are enough
for convergence. If one uses the fourth term of the nine-term expansion
as the highest order that needs to be considered ps and for that value

ve+b2 /327 +0.3913

c—pa - 32r—17.04 00588 (99)

whereas

1
— = 0.0553 100
75 =00 (100)
Hence approximating (98) as 1/4/c is still valid. For higher order
terms, the approximation breaks down, but their contribution is neg-
ligible as explained and quantitatively shown before. Hence the basic
approximation in the derivation of the model is quantitatively justified.
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e—W=6.0Lm—»

Nqg = 1

T=3.85um : |
ne=3.45 l H=0.48um
ns =3.44475 T

Figure 7. A GaAs homojunction rib guide with no guided modes in the

outer region.

N 0 1 2 3 4 5 6 7 8 9
M 1 1 2 3 4 5 6 7 8 9
»? 0.3867 0.3866 0.3874 0.3871 0.3874 0.3875 0.3874 0.3874 0.3873 0.3873

Table 4. Variation of the normalized effective index of the rib guide in
Figure 7 as a function of the number of discretized continuum modes in
the inner and outer regions.

8.2 Rib Guides with Guided Modes in the Inner and QOuter
Regions

Rib guides with guided modes in the inner and outer regions are
used in practice for couplers where weak confinement is desired to
obtain short coupling lengths. In the following example the rib guide
shown in Fig. 8 is used. It is the same guide used in the previous exam-
ple except that the epilayer in the outer region is etched to 3.37 pm.
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Hence the outer region supports a guided mode. Normalized effective
index values b? as a function of increasing N and M are shown in
Table 5. Again the same general features are observed. Convergence is
very rapid and the result obtained with up to the nine discretized con-
tinuum modes taken into account in each region, is within 0.5 percent
of the result obtained when the continuous spectra is neglected.

l‘-—w=6.0,u.m——ﬁ
ng=1 T

T=3.85um
ne=3.45um H=3.37um

;

ng= 3.44475

Figure 8. A GaAs homojunction guide with guided modes both in the
inner and outer regions.

N 0 1 2 3 4 5 6 7 8 9
M 0 1 2 3 4 5 6 7 8 9
p? 05767 0.5723 0.5735 0.5733 0.5735 05735 0.5735 0.5735 0.5735 0.5735

Table 5. Variation of the normalized effective index of the rib guide in
Figure 8 as a function of the number of discretized continuum modes in
the inner and outer regions.
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The last two sections illustrate that for practical structures, even
in the extremes of the waveguide geometry convergence is obtained
with limited computational effort. In between the extremes, especially
close to the cutoff of the guided mode in the outer region, more terms
of the circuit may be needed for convergence but usually less than five
terms is enough [12]. These results are representative of the general
properties of the technique and other results for a variety of guides and
index steps demonstrate the same behavior [14]. These results also in-
dicate that the approximations made in (47) and (48) are well justified
for the structures of practical interest. Rapid convergence of the tech-
nique makes it possible to simplify the equivalent circuit considerably,
so that it can be solved by hand using a hand calculator [15].

The other obvious question is the accuracy. Accuracy is checked
by comparing the results of the present analysis with the results of the
other numerical and analytical techniques that exist in the literature
for several different waveguides. ’I‘lis is done in the next section.

9. Comparison with other Techniques

9.1 Rectangular Fiber

The rectangular fiber shown in Figure 9 is analyzed by Goell [16]
extensively. The only practical semiconductor waveguide that can be
approximated as a rectangular fiber is the buried heterostructure guide,
which is not easy to fabricate [17]. Fabrication of this structure either
requires overgrowth [17] or mass transport [18]. But since Goell’s anal-
ysis is verified by independent researchers using different techniques it
is a good choice to check the accuracy of the present method.

In the first example the index step between the core and the
outer region is very small. Actual n. and n, values do not matter
as long as ¢ > 10. In the numerical calculations n. = 1.00142 and
ns = 1.0, which corresponds to ¢ = 350 and a = 0, since slabs are
symmetric. Fig. 10 shows the dispersion diagram for the Ef; mode
for two different aspect ratios, W =T and W = 2T. In this figure
dimensions are normalized slightly differently to be consistent with
Goell’s definitions, which is
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Figure 9. A rectangular fiber.
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Figure 10. Dispersion diagram of the fundamental mode of the rectan-
gular fiber for ¢ = 350.
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TW) = %t(w)\/ng . (101)

This definition lacks a factor of = with respect to the normalization
defined previously and used in this chapter. Continuous curves show
the results of the present analysis and points are the results of the
Goell’s analysis. Agreement for both aspect ratios over the entire spec-
trum is excellent and results agree to better than 1 percent. For the
aspect ratio of two, i.e., W = 2T for T > 1 using only one discretized
continuum mode in the outer region and the guided mode(s) in the in-
ner region gives an accuracy better than 3 percent. This simplifies the
equivalent circuit and numerical calculations considerably. The same
observation is true for larger aspect ratios starting even at smaller T
values. For T < 1, however, one has to take progressively more terms
for convergence and accuracy. For the unity aspect ratio, i.e., W =T,
at least two terms have to be taken into pccount over the entire spec-
trum. For T < 0.5 up to ten terms hacrfo be taken into account to
get convergence. This is because for small aspect ratios and T' val-
ues, fields spread outside the core more and more, hence, the detailed
representation of the fields in the outer region becomes more impor-
tant, which in turn requires more terms in the expansions. Using more
terms, however, gives more accurate results. In Figure 11 the dispersion
diagrams for the E¥; mode of a rectangular fiber with a large index
step for two different aspect ratios are shown. For this case ¢ = 0.8,
which corresponds to n. = 1.5 for ng = 1.0 . This is a very small ¢
value and for such small ¢ values approximations made in Section V in
satisfying the boundary conditions become too approximate. However,
it is interesting to see the results of the method for this case. In Figure
11 continuous lines are the result of the present analysis and the points
are the results of the Goell’s analysis. For W = 2T the two results
agree very well for T' > 1. For W = T, however, very good accuracy is
obtained for T > 2. But that requires at least five terms. For small T
values results of the present analysis are higher than Goell’s analysis.
In this range in order to obtain convergence approximately ten terms
have to be taken into account. Agreement for W = 2T is better. These
results indicate that, even when the basic approximation breaks down,
it is possible to get sufficiently accurate results for large aspect ratios
using a large number of terms. This is because unless ¢ > p; the mode
expansion is in terms of the continuum set showing cutoff behavior,
which cannot express a guided mode. But since ¢ = 0.8, only when a
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high number of terms are considered do the first couple of eigenvalues
become less than 0.8 and does the mode expansion become proper.
But in order to have a sufficient number of terms such as p; < ¢ one
has to go to very high orders. Even for N = 5 only p; < 0.8 , as
shown in (97). Therefore, when a high number of terms, like ten, is
considered sufficient number of terms will have p; << ¢, hence, the
basic assumption will be satisfied and the results will become accu-
rate. This, of course, increases computational complexity and makes
the method comparable to the complexities of other numerical tech-

- niques, but modularity is still preserved and remains as an advantage.
At this point it should be stressed that structures with small ¢ values
and aspect ratios are seldom found in practice. Even for a buried het-
erostructure guide, typical ¢ values and aspect ratios are larger than 7
or 10, [17] hence, the basic assumptions are valid in the vast majority
of practical cases.

1.0 | | I T I ]

O.6e o

041~ —w=T }Presem

----- W =2TJ analysis

0.2 o W=T }Goells —
e W=2T/ analysis
O Sussazzs ] ] |
0 0.5 1.0 1.5 20 2.5 3.0

Figure 11. Dispersion diagram of the fundamental mode of the rectan-
gular fiber for ¢ = 0.8.
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9.2 Rib Guides with Sloped Rib Sides

In practice rib guides fabricated using chemical etching techniques
tend to have sloped rib sides. One has to come up with a technique to
analyze rib guides with sloped rib sides. This is done in this work by
approximating the sloped side as a staircase function [19]. The step-
like sidewall approximated this way can in turn be modeled cascading
the basic building block described in this work.

Pelossi et al. [20] analyzed sloped side rib guides using a finite
element method (FEM) analysis. In the analysis they used triangular
meshes to fit the geometry better. Their analysis was applied to sput-
tered glass films on glass substrates and their theoretical results were
verified experimentally. The structures that are analyzed in [20] were
also analyzed using the present method, in which the sloped side is ap-
proximated as a staircase function. Figures 12(a) and (b) show the two
structures that were analyzed. The guidq in Fig. 12(a) has a sidewall
angle of 21° and the outer region supports a guided mode. For this case
five steps were found to be adequate for the convergence of the normal-
ized index b2. Normalized index values for the Ej; mode calculated
for different W values using only guided modes and three discretized
continuum modes in the inner and outer regions are shown in Table
6 together with the results of the FEM analysis of [20]. Agreement is
excellent demonstrating the accuracy of the staircase approximation
to the sloped side. Another observation is that, as the number of dis-
cretized continuum modes increases from 0 to 3, the normalized index
changes negligibly, indicating that the effect of continuous spectra is
negligible for well-guided modes, as demonstrated in Section 8.2. The
structure in Fig. 12(b) has no guided modes in the outer region and
has a sidewall angle of 32°. For this case seven steps were found to
be adequate for convergence. Results of the present analysis and FEM
analysis for the Fj; mode again are shown in Table 7. The agreement
is excellent, and normalized index values change negligibly as the num-
ber of discretized continuum modes are increased. These comparisons
demonstrate the accuracy of approximating the sloped side as a stair-
case function. This approximation coupled with the modularity and
accuracy of the present method of analysis, makes it a very powerful
tool to analyze and design open waveguides of arbitrary profiles. Mod-
ularity even when there are no guided modes in the outer region is the
key factor. Modularity of other mode-matching techniques that come
up with equivalent circuits [11] breaks when there are no guided modes
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in the outer regions, hence, they cannot be used to analyze structures
like the one in Fig. 12(b).

e W“‘"" na=1.0

7 a=21° T TN
T=O.69,,Lm T‘-O#m Ne=1.568

ns=1.538

e W —>{

@=32°  T=107um N\ "0
H=034um | Ne=1.568
) Ns=1.538

Figure 12. The sloped side rib guides analyzed for comparison with FEM

analysis.
W(um) B} (N=M=0) bI(N=M=3) bH(FEM result)
427 0.4612 0.4610 0.4642
6.61 0.4748 0.4747 0.4716
7.88 0.4786 0.4784 0.4790
10.49 0.4789 0.4786 0.4791

Table 8. Variation of the normalized effective index of the rib guide in
Figure 12(a) as a function of the number of discretized continuum modes
in the inner and outer regions.
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W(um) BAN=0M=1)  bX(N=M=3)  b*(FEM result)
2.66 0.4587 0.4583 0.4531
4.88 0.4912 0.4910 0.5031
7.44 0.5185 0.5183 0.5124
9.49 0.5210 0.5206 0.5180

Table 7. Normalized index values for the E;; mode of the structure in
Figure 12(b) as calculated by the present method and FEM analysis.

In addition to these comparisons experiments were performed on
GaAs rib guides, directional couplers, ahd three-guide couplers [21].
The parameters describing these structures were experimentally de-
termined, and using these parameters structures were simulated us-
ing the present method of analysis. The number of modes supported
by waveguides of different widths and the transfer lengths of direc-
tional and three-guide couplers were determined both experimentally
and through simulations. Agreement between the theoretical and ex-
perimental results were very good, once again verifying the accuracy
of the technique. The accuracy and limitations of the commonly-used
approximate techniques for the analysis of coupled structures were also
assessed [21]. Using this technique universal-design curves for the de-
sign of rib guides were also generated [12]. Simple approximate formu-
las for rib guide design and the device parameter ranges over which
these approximate formulas are valid were also given in [12].

10. Conclusion

In this paper the mode matching technique as applied to open
guided-wave structures is studied. It is shown that this technique can
result in a modular equivalent circuit representation to model and an-
alyze open guided-wave structures. The equivalent circuit developed
takes into account both the guided and continuous spectra. Using a
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basis function expansion the continuous spectra was discretized and
transformed into a form which is suitable for a modular equivalent
circuit representation. In the development of the method, approxima-
tions which are valid for integrated optics in ITII-V semiconductors were
made. The validity of these approximations was demonstrated both
qualitatively based on a physical argument and quantitatively based
on numerical simulations on rib guides. It is also shown that the mode
matching technique can yield many different formulations. Although
in principle all these formulations are equivalent, in practice they all
have different convergence properties. Using a variational formulation,
it is shown that the formulations that will yield faster convergence can
be chosen based on physical arguments. This formulation also shows
that the equivalent circuit representation originated from a variational
analysis and has the potential to yield very accurate results with very
limited number of terms. In order to assess the accuracy of the tech-
nique, comparisons were made with the results of other methods of
analysis for the rectangular fiber and rib guides with sloped rib sides.
These comparisons indicate that present technique yields accurate re-
sults with limited computational effort. Modularity becomes especially
useful to analyze structures with arbitrary cross-sectional profiles or
when the analysis has to be repeated or extended to more complicated
situations.
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