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1. Introduction

1.1 Prologue

In this chapter we show mainly how to find the propagation con-
stants 3 of buried or channel waveguide structures speedily and ef-
ficiently. This might be found useful when an active device solver is
needed for iterative use in the simulation of lasers, amplifiers and ac-
tive couplers. We advocate the Effective Index method (EI) [1-7], the
Weighted Index method (WI) [8-15] and the Variational method (di-
rect) (VM) [16-22], which appear to have much in common. EI and WI
include the variational principle in their own internal analysis, whereas
VM is here called “direct” because the variational expression is mini-
mized numerically. The formulation of method VM prior to the actual
computation is similar to that of WI in many ways. However, skilful
formulation is necessary in order to determine the parameters appro-
priate to each structure. Accordingly, the reader is referred to the many
recent papers of the Waterloo University group on this topic. For EI
and WI, for every case, sometimes after a brief introduction, formu-
lae are given for computer implementation. A short proof then follows
immediately.

Noting that there is no single variable variational principle avail-
able for the polarized problem, we advocate carrying out a scalar anal-
ysis, followed by a Polarization Correction (PC) [16-25]. This is equiv-
alent to the so called perturbation technique.

An important precursor to WI and VM was the CEVAR method
(Cosine Exponential Variational) [26-29] for solving the scalar wave
equation. Other methods referenced later in this chapter are of consid-
erable theoretical interest. The list is not exhaustive, and space pre-
cludes much analysis.
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The structure of the chapter is as follows. The scalar and polarized
effective index methods are first introduced as computing techniques.
Systematic improvements to EI are then considered based upon the
scalar wave equation as follows. By the weighted index method [11]
or, if preferred the (direct) variational method [17], we first obtain
the best separable solution from which polarized corrections [17,24]
are obtained. Complex valued solutions [15,30] are also referenced. The
upper/lower weighted index method [12] for the stripe waveguide in air
is shown to give excellent accuracy.

1.2 Notation

In all cases only the cross-section of the waveguide will be referred
to. This is taken to be the the zg-plane, namely the plane of each di-
agram. The refractive index n(z,y) is a function of the coordinates
z and y only. The z-axis is the direction of propagation, 8 is the
propagation constant and the factor exp(—j3z) is suppressed. Gener-
ally we let n(z,y) denote the refractive index, ¢ = n? the dielectric
constant, g the permittivity of free space, w the frequency, u the
permeability, ko = w(egou)'/? the propagation constant of free space,
and k = kon the local plane wave propagation constant.

2. Scalar Effective Index Method

2.1 Introduction

Figure 1 shows some typical buried planar structures, namely the
buried channel and buried rib waveguides fabricated in III-V semicon-
ducting compounds, which might form part of a number of active de-
vices in optoelectronics. The interface with air, which is always present,
is taken to lie at such a great distance that its effect can be ignored.
The internal refractive index of structures fabricated from III-V com-
pounds may be assumed to be of low contrast. In optical fiber theory
this is termed the weak guidance approximation; however, our view is
that the guidance may be strong within the context of a low contrast
index profile, and that in our case, weak guidance would mean that
the waveguide is being run close to cut-off.
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Figure 1. (a) A buried channel waveguide (b) A buried rib waveguide.
The refractive indices n in the various regions are shown.

2.2 Preliminary Theory

For the present, we follow earlier workers, notably Marcatili [6], in
using the scalar wave equation as a good first approximation for both
TE and TM modes. Then if k& = kon(z,y)
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where E is the principal electric field component, with E and 0E/0n
continuous everywhere. This is a very attractive proposition, as many
techniques are available for the classical wave equation. For example, it
is conceptually easy to solve slowly varying continuous problems such
as the trapezoidal rib waveguide of small slope shown in Figure 3. As
Marcatili has emphasized, the solution is basically one in which k(z,y)
in the wave equation (1) is slowly varying along the z-direction. This
makes it possible to obtain an approignate solution through a function
G(z,y) which satisfies vertical slab waveguide equation with a local
propagation constant 3,. Both G(z,y) and (. are assumed to vary
slowly with . Then as the slab waveguide equation for G is

o0’G
-8—:(72" + (k2 - ,33)6' =0 2)
we can nearly separate the variables by writing
E = F(z)G(z,y) (3)
where F satisfies
&F
2t (B2-B)F =0 (4)

This finds an approximate eigenvalue for any slowly varying configura-
tion, but it requires the solution of the problem prescribed by equation
(4), which although one-dimensional has a graded index. So, in the end,
some discretization method will be needed to complete the solution.
From now on we therefore consider only piecewise continuous distribu-
tions in which the refractive index is uniform over rectangles such as
those shown in the buried channel waveguide of Figure 1(a).
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Figure 2. (a) The composition of the buried rib waveguide from two
layered regions, labeled I (inner) II (outer). (b) The directions of the
axes. (c) The three uniform regions are equivalent to the three layered

regions in (a).
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Figure 3. A slowly varying trapezium waveguide.

2.8 Formulae and Computational Approach for the Effective
Index Method

The Effective Index method in the case when there are disconti-
nuities was discovered by Knox and Toulios [3] and Ramaswamy [4]. It
had been suspected [1,2] that there is an average value for the refractive
index which would reduce a layered slab waveguide to an equivalent
uniform one. The average turned out to be 3/ko where § is the largest
propagation constant. Thus nmede = B/ko is called the effective index
or mode index of a layered slab. To apply this result, we proceed as
follows.

To simplify the explanation we use the simple case of the rib
waveguide shown in Figure 2(a). After finding the slab propagation
- constants By, Brr in the inner and outer regions of the rib waveguide
of Figure 2(a), the layered regions I, and II are replaced by uniform
regions I, and II with effective indices n;y = Br/ko and n;; = Brr/ko
as in Figure 2(c). Finding S for this new symmetric slab waveguide
approximates quite accurately the overall propagation constant .

The computing method in the above paragraph does not say what
to do if any of the regions I, II is neither a waveguide nor uniform.
Clearly some other average is then required. If the regions were uni-
form, then the uniform value itself will obviously be taken as the index.
Thus for the fundamental TE mode of the buried rectangle shown in
Figure 4(a), we proceed as follows. In the first instance the vertical
transcendental equation for symmetric modes is solved for the central
region I. This gives the transcendental equation for Gy:



8 Benson and Kendall

n,= 1.45
1
n1= 1.5 t
N9
€ w >
(a)
II I II
(b)
n.,= 1.45 n, n = 1.45
€ w >

Figure 4. (a) The buried rectangle: a numerical example (b) reduction
to a slab waveguide by means of the effective index method. The value
of n; depends on the thickness ¢ and the wavelength of operation \. For
example if A = 1.15um and ¢ = 0.8um then ny = 1.47.

T 'tan(mt) = v
where

m = (kK — BHY?
and

T2 = (67 — k)2
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The central slab waveguide of thickness ¢ has an effective index n; =
Br/ko for region I, which depends upon its structure, see Figure 4,
while the effective index of the cladding is taken to be unchanged from
its uniform value of n;; = 1.45 for region II. With a slab width w, as
in Figure 4(b) the transcendental equation for 3 becomes:

/

v tan(yjw) = g
where now

v = (k] = %)
and

vir = (8° — k3n)'/?

Finally, the mode index is nmode = 5/ko- It should be noted that the
scalar mode of a numerical slab waveguide solver (scalar is the same
as TE for the uniformly plane layered slab) has been used for both
transcendental equations merely as an introduction. The next section
shows how to allow for polarization. An accurate measure of 3 is the
Kogelnik normalized form b [31]. Also, a dimensionless parameter V
is used [32], where

PR

=Bk V =wk? - k)2 (5)

b

with ks = kons and k; = koni. Figure 5(a) shows b plotted as a
function of V for n; = 1.5 and ng = 1.45 and aspect ratio w/t = 2.0
(solid) compared with scalar finite difference calculations (broken).
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Figure 5. Propagation constants for buried waveguide structure with
aspect ratio w/t = 2.0. (a) scalar effective index and finite difference
calculations (b) scalar, TE and TM effective index calculations.
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3. Polarized Effective Index Method

8.1 Nomenclature

The z-axis will be taken to be horizontal and the y-axis vertical
as shown in Figure 2(b). We assume that there are approximate solu-
tions corresponding to two polarizations, which may be described in
terms of separate polarized wave equations. Let E; and E, denote
the £ and y components of the electric field as shown in Figure 6
and B, 3, denote the propagation constants of the complete waveg-
uide in either case. Designate the z -polarized mode as TE (Transverse
Electric); then the TM (Transverse Magnetic) results will follow by in-
terchanging 2 and y.
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Figure 6. The directions of the principal electric field components for
the (a) TE and (b) TM modes.

3.2 Computing Method for the Polarized Effective Index Method

The basic computing method is simple; it is the analysis of its
accuracy, and the means of improving it that are less so. Thus in an-
alyzing the buried rib waveguide in Figure 6, we use the notation of
Figure 2. We solve the slab waveguide equations in the three regions II,
I and II using TE mode boundary conditions, as would be correct for
slabs with the electric field horizontal. This gives the same values of the
slab propagation constants B, B as before. However, after forming



12 Benson and Kendall

the slabs of Figure 2(c) with the equivalent effective indices ny,nyy,
the electric field will now be seen to lie at right angles to the slab.
Thus the TM mode boundary conditions must be used giving rise to
the equation 7y tan(yrw) = (er/err)yu for obtaining the overall value
of B. This produces slightly different results from the non-polarized
approach.

By way of illustration we show the TE and TM results in Figure
5(Db) for the rectangular buried waveguide used there. For the TM mode
overall, the procedure is the same as for the TE mode overall, but with
z and y interchanged.

3.8 Theory of the Polarized Effective Index Method

The Effective Index methods can all be interpreted as the first
terms of an important mode matching approach known as the Trans-
verse Resonance method [5] studied from 1947 onwards {33-36] in re-
lation to equivalent network analysis. Unfortunately, the first order
terms of the modal expansion couple to the higher order terms, so
that the full analysis is algebraically complicated. This has led to con-
siderable work on improvements, notably the Generalized Transverse
Resonance Technique [37] (which is identical with the first iteration
of the Weighted Index method below), and the Diffractive Transverse
Resonance Technique [38-40]. Since these advances replace the higher
order terms in the modal expansion by a single function, we adopt a
similar approach, but use a non-standard variational principle to re-
duce the algebra.

We therefore now propose to establish the polarized Effective In-
dex method as quickly as possible, but in a satisfactory way. Thus the
graded index wave equation will be considered. Eventually, the gradi-
ents will be allowed to become infinite, thereby reproducing a piecewise
constant planar structure. Only the TE case is considered as the TM
case is somewhat similar. Suppressing the suffixes therefore, for conve-
nience, the polarized TE mode wave equation is

0 [1 J(eE) O°E
or e Oz } 9y?
The actual details of the derivation of the wave equation (6) lie outside
the scope of this chapter; however, this equation is simply the z-
component of 7 X 7 x E = k2E after using 7.(¢E) = 0 to eliminate
E, and then omitting the term which couples the equation to FE,.

+(k*-BHE=0 TE (6)
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Adapting the slowly varying approach [15] by using a variational
technique, we assume that there is a local TE mode whose vertical pro-
file G(z,y) is mainly a function of y and changes only slowly with z.
Let G satisfy the slowly changing wave ation 9%°G/ay? + (k? —
B2)G = 0. Then we may use a non—stafx?;rd variational principle
known as the local potential method [71]. What this means in con-
text is that we can take the moment of equation (6) with respect to
G. What we sacrifice is the minimum principle. All we can say is that
the value of 3 obtained in the end will be accurate. We may also sim-
plify the local slab mode by using the standard variational principle
[9,32,41] in Eq. (7) below, where in all integrals throughout, the limits
are —oo and +oo; also [ F2dz = [G%dy = 1.

2
2 = / G (%-g + k%:) dy 7

Writing E = F(z)G(z,y) as a convenient separation of variables, then
multiplying equation (6) by G and integrating with respect to y we
obtain a slab wave equation for F(z), containing an extra integral
with respect to y.

Thus,

6L (1L ey gy + (8- $F =0 (8)
e O oz y z -

Finally, we utilize the slow variation of € with respect to z. Making the
approximation € & e; 2 n2 in the slowly varying term, where n, =
Bz/ko is the local effective index and &, is the local effective dielectric
constant, the integration with respect to y may be performed. This
gives the polarized form of the Effective Index method

ai|190

2 (e F 2_BHF =0 9
2 |22 er)+ 62— ©)
Now, allowing the gradient of &, to become infinitely large at the
horizontal discontinuity where the regions connect, it is seen that as
the derivative of €, F exists, then £, F is continuous everywhere. Also,
integrating equation (9) across the discontinuity shows that the jump

in e;'0(e-F)/0 x is zero; therefore equation (9) leads to the boundary
conditions that

10 .
e.F and Z;a_z(st) are continuous (10)
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This establishes the Effective Index method as a non-standard varia-
tional solution. Often e, is uniform on each side of the discontinuity,
then these boundary conditions take the familiar forms that . F and
OF/Bx are continuous.

The above argument can be taken much further and deeper, but
the full details lie outside the aims of the present chapter.

4. General Implementation of the Effective Index
Method

4.1 Introduction

The power of the methods considered here is that a program can
readily be written to cover very general configurations such as the pla-
nar structure shown in Figure 7, where P effective indices will be
needed for each vertical @ -layered slab waveguide, giving a horizontal
slab waveguide consisting of P layers. Since it will help in the imple-
mentation of the other methods, we first describe how to apply the
Effective Index method to these more complicated planar structures.

n
PN N2q Naq PQ
N3 N23 Nas Npa
N2 N2 N3z Np2
N1 N21 a1 Mp1

Figure 7. A general buried channel waveguide with refractive indices ny,
where p and g range from 1 to P and 1 to ) respectively.
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(b) For mode index n_ . = Brk,

Figure 8. (a) The pth TE slab problem yielding the local effective index
Nzp = Brp/ko for each section of the planar structure or staircase ap-
proximation. (b) The use of the effective indices to create a final value
of Tmode = ﬂ/kO
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4.2 General Implementation of the Effective Index Method

The method below can be either a scalar problem in which the
polarization is ignored, or can be made polarized by using either TE or
TM boundary conditions depending on the orientation of the electric
field relative to the layered slabs. There are two sweeps, one in the pre-
ferred initial direction, followed by another in the orthogonal direction.
The choice of initial direction is governed by physical intuition.

(i) For the scalar modes of the slowly varying layered structure,
first divide it up into straight sections, by planes x = constant, us-
ing either the natural planar boundaries for a planar structure, or a
staircase approximation for a structure which varies with z, such as
the trapezoidal buried rib of Figure 3. Then work out the value of 8,
for each section considered as a multislab waveguide. For example in
Figure 7 this would yield P values of Bz = Pap, p=1,2,..., P from
Fig. 8(a). Non-guiding regions must be dealt with on an ad hoc basis.

(if) Then use the effective indices B/ko for each slab shown in
Figure 8(b) to create a multilayered TM slab problem in the orthogonal
direction. This solution yields the final approrimate value of 5. The
notation Mmode = B/ko might be considered appropriate.

5. Weighted Index Method

5.1 Introduction

The Effective Index method [1-7] for low contrast index profiles is
very accurate, and until recently was considered quite accurate enough
for the design of buried laser waveguides. However, the design of more
complicated structures with their reliance upon index guiding seems to
demand even greater accuracy, and there has been considerable recent
interest in systematic improvements. We mention three variational ap-
proaches here, in which a separable variable solution E = F(z)G(y) is
used. The three are in fact equivalent to each other, and will be called
the Weighted Index method (WI) [8-15], the Variational method (di-
rect) (VM) [16-22] and the Cosine Exponential Variational method
(CEVAR) [26-29]. The CEVAR method assumes a separable solu-
tion F(z)G(y) using simple forms containing arbitrary constants in
each region. These are then substituted into the Rayleigh quotient of
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equation (18) below and the integrals evaluated analytically for simple
structures. The value of 3 is then minimized directly by varying the
arbitrary constants. The Weighted Index jgnethod automatically pro-
duces weighted indices for a series of successive slab problems, which
converge to the best separable solution E = F(z)G(y) of the problem
in hand. Later, the Variational method (direct) (VM) was invented,
which in principle is more general than CEVAR and WI. However, the
Weighted Index method iterates to a conclusion without reference to
external optimization schemes, with results very similar to those later
given by VM [16-22]. Accordingly it is suggested that a self contained,
straightforward way of improving on the Effective Index method is to
use either WI or VM to find the best separable solution of F(z)G(y) of
the scalar wave equation, then use this to obtain polarized corrections
along the lines of [16-22].

The (direct) variational method has been exploited further by
using non-separable solutions such as Fi(z)Gi(y) + Fa(x)Ga(y) or
more complicated ones, along the lines of [19]. This is highly successful,
but sacrifices the elegance and simplicity of the original schemes.

5.2 Formulae and Computation for the Weighted Index Method

The computing method is very similar to that of the Effective
Index method discussed previously. However, only one effective index
is ever calculated; the rest are all weighted indices. Moreover, as the
field profile is used to form the weights which appear in the calculation,
its form is supposed to be separable in the coordinates z and y so
that E = F(z2)G(y), where F and G are the best separable functions
which are generated by the computer method. The method generates
F(z) and G(y) as the field profiles of equivalent slab waveguides,
and the theory proves also that the general solution consists only of
slab waveguiding solutions, which is not obvious by other means. The
notation used for the slab wave guide equations is d?F/dz? + (K, —
B2)F = 0 and d’G/dy® + (Ky — B2)G = 0. Here K,(= k2) and
Ky (= k2) will be called Helmholtz constants.
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Figure 9. (a) The slab problem yielding the weighted index n, for the y
direction’s equivalent slab. (b) The slab problem yielding the weighted
index n, for the z direction’s equivalent slab.
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(1) To start the iterative process we choose any central region,
such as the p™* one shown in Figure 8(a) with its layers normal to
the y -direction. This is the first approximation to the equivalent mul-
tilayered y -slab waveguide. We calculate its (3, and store the mode
profile, or any parameters needed to reproduce it simply, depending on
the method being used (see next paragraph).

(2) * From these we calculate the y-weights Wyg which are

Wyg = /:’e Gz(y)dy (11)

q—1

Note that yo = —oo and Yy, = +oo. The numerical values of the
weights can be derived either by using an exact analytical form for G,
which appears in the course of the matrix method (cascade process) or
by storing G as a vector using many components and a short mesh
length. The latter may arguably be faster, and is certainly simpler.

(3) We then form weighted Helmoltz constants Kgp for the or-
thogonal direction, namely, the x -direction, by a formula to be derived
later:

Q
Kap = Z WyeKpq (12)
g=1

This therefore has generated a new equivalent multilayered x -slab waveg-
uide with the layers parallel to the yz -plane. (See Figure 9(b))

(4) Then we find the B, for this new slab waveguide and use it
to calculate the z -direction weights. We also store the mode profile, or
any parameters needed to reproduce it simply, depending on the method
being used. The formula for the weights Wxp is

Wap = / " Pz)dz (13)

Note that o = —o0 and zp = +o0.

(5) We then form the weighted Helmholtz constants Kyq for the
orthogonal direction, namely the y direction, by
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P
Kyq = Z WapKpq (14)
p=1

This has generated a new equivalent multilayered y -slab waveguide with
the layers parallel to the zz -plane. (See Figure 9(a))

(6) Now calculate the B, and use the Rayleigh quotient, i.e. the
variational principle to obiain an approximation to the overall propa-
gation constant B from

P Q
B =B+ ﬁ§ - Z Z WapWya Kpq (15)

p=1g=1

(7) Then we repeat the whole process from the point (2)* onwards
until the value of B converges to the required accuracy. At that stage
the calculation ends.

5.8 Theory of the Weighted Index Method

Suppose that E is some scalar wave field satisfying equation (1).
We can employ the method of moments as the equation has a varia-
tional principle: it is self adjoint [42,73]. Then write E = F(z)G(y),
multiply equation (1) by G(y) and integrate, remembering that all
integrals are from —oo to +o0o. Then we obtain

O*F[oz® + ( / k*G2%dy — BHF =0 (16)
where 82 = (3% — [ GG"dy. Likewise multiply equation (1) by F(z)
and integrate. Then

0°G/0y? + (/ k*F2dz — B2)G =0 (17)

where 82 = % — [ FF"dz. Equations (16) and (17) constitute a pair
of integro-differential equations, which couple together the two orthog-
onal directions. They correspond to the overall value of 3 given by the
Rayleigh variational principle

g2 / / E(6°E/02? + 0°E/8y? + K E)dzdy (18)
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On substituting E = F(z)G(y) using [GG"dy = (2 — 2 and

J FF'dz = 8% — 82, it is found that

R

p=1 g=1

Iteration between the two orthogonal directions until convergence
is achieved minimizes 3, obtaining the best field distribution obtain-
able from a separable solution. Moreover the value of 8 is then an
underestimate of the true value of 8.

As they stand, equations (16) and (17) constitute slab waveguide
problems which may be solved alternately using a starting function
G(y) and a starting value of (3, obtained from the solution of some
central region, as in the case of the Effective Index method. Once
started, the solution of (19) follows from (18) and conversely. It will be
found that B; and B, eventually converge. The original Weighted In-
dex approach was slightly different in practice. The above streamlined
version is due to Gault, Mawsby and Towers [15].

The method was validated for buried waveguides in [13], whose
results are reproduced in Figure 10. It was also applied extensively
to the rib waveguide in air [8-12] under the SERC/DTI U.K. Joint
Optoelectronics Research Scheme.

5.4 Variational Method (Direct)

The Variational method (direct) [16-22] in its simplest form will
produce the same values of § as the Weighted Index method because
it uses a separable solution involving a cosine or exponential separa-
ble solution in each rectangular element of the cross-section, followed
by direct optimization of the overall 8 derived from the above varia-
tional principle (18). In principle, however, it is more general because
non-separable trial solutions can be attempted (see earlier). The trial
function used is usually £ = F(z)G(y), where F and G are slab
waveguides. The solution therefore consists of simple trigonometric or
exponential terms in each subregion of Figure 7. Skilful choice of pa-
rameters exposes the number of degrees of freedom in the trial function.
Thus, after substituting for E into the Rayleigh variational principle
(18) and performing the integrals analytically, the resulting expres-
sion for 32 may be minimized by varying the basic parameters. The
best separable solution is obtained by means of this process, and will
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therefore be the same as the Weighted Index solution. - J

The (direct) Variational method has extended the implementa-
tion of the earlier CEVAR method [26-29], by the addition of a Vector
Correction and by its extension to a wide range of structures. Nev-
ertheless, it operates on the same basic principles. An application to
buried channel problems is shown in Figure 11 [16]. The generality
of this method should not be overlooked. In principle, any number of
constants can be included in the trial functions, in a much more so-
phisticated way than in the Weighted Index method. This is still the
subject of research, but the following generalization is obviously pos-
sible, namely, F = AFi(z)G1(y) + B F2(z)G2(y). This shows that
the (direct) Variational method is in principle more general than the
other methods given in this chapter. In the implementation of the
(non-separable) Upper/Lower Weighted Index method Robertson [12]
pointed out that the pear shaped mode of the rib waveguide in air
indicated a non-separable solution.

5.5 The Rib Waveguide in Air

Much work has also been done on the rib waveguide in air [8-12],
which lies outside our main aim of describing the buried waveguide, and
certainly does not possess a low contrast dielectric profile. However, the
Upper-Lower Weighted Index method can be made to produce excellent
results as shown in Figure 12. The solution is split across the base of
the rib.

04y
035k ny n
03} .

0254
b
02r

05}

weeEf
-~ Stern

e W1
——ROMeEnts

o1k

005{

.
Ofe=e”

Figure 10. From Roberts and Stern [13] ((©1987, IEE). Scalar propaga-
tion curves for channel waveguide structure with aspect ratio a/d = 2.0.
B is the dimensionless parameter a(k? — k?)1/2/x.
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b, or by
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Figure 11. From Haus, Huang and Whittaker [16] (©1987, IEEE). Dis-
persion curves for F;; and E3; modes from scalar variational analysis,
and comparison with the literature. For (a) and (b): effective index
method (—— - —-), circular harmonic (———), perturbation method
(—- ----- —), transcendental equations (Marcatili) (— - —- — ), variational
principle (—-———)
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Figure 12. From Robertson et al. {10] ((©1987, IEEE). Modal refractive
index at wavelength 1.15um plotted as a function of {3 for the structure
shown in the inset, using the four different methods; effective index,
finite difference, modified weighted index and weighted index.

6. Polarization Corrections

6.1 Introduction

In view of the speed which it achieves in modeling, there has been
recent interest in obtaining polarized TE and TM results from a known
scalar solution. This was first suggested in [16] in the context of pla-
nar technology, and the methodology firmly established [17-22]. The
calculations start from a scalar solution E = F(x)G(y). Work done
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in a Sheffield-Nottingham collaboration has also dealt with the stripe
waveguide [24]. In addition it has been shown that the polarized solu-
tions are very accurate indeed [25]. These seem to be five component
solutions [43]; the coupling to the sixth component has only recently
been calculated numerically [44]. The basic Polarization Correction is
quite simple to derive. The results are remarkably accurate and can
be used as a subroutine along with the Weighted Index method, with
a view to replacing much heavier numerical analyses. This is an ex-
tremely useful means of obtaining nmoede for polarized problems.

6.2 Formulae and Implementation for the General Polarization
Correction

The structure allowed for is the very general one shown in Figure
7 in which the cross section of the waveguide is divided into P x Q re-
gions by planes = = z, where p runs from 1 to P and y =y, where
g runs from 1 to Q. It is supposed that the polarized corrections
convert the value of 3 = BscaL derived for the scalar wave equation
to Bre and Brm. The corrections are best calculated as part of the
procedure. In general we have corrections given by equations (29) and
(30) below. These have been validated extensively by comparing the
scalar, TE and TM finite difference solutions [24,25] for the rib waveg-
uide in air: a searching test. However, these expressions simplify for
either the Weighted Index method or the (direct) Variational method.
When these have converged to give an approximation to fBscaL, we
have E = F(z)G(y). Then it is easy to either pick out or calculate
the values of F(z),dF/dz,G(y) and dG/dy on the boundaries. Recall
also that [ F2dz = [ G%dy = 1. The following general expressions will
be derived later in equations (31) and (32): for the TE mode

= _dF
Bhe = Bon, — 3 o5 [IelGPdy (20)
p=1
Likewise, for the TM mode

Bim = BécaL — Z Gq dGq /[quzdﬁC (21)

Using the actual weighted index formulae, and quantities already
calculated as part of the process, equations (20) and (21) will be later
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converted to the forms (33) and (34), namely,

B3e = BicaL — Z Fo—=r 4 — [Kazp) (22)
and
Bim = BcaL — Z Go—gr” 4Gy [qu] (23)

where K, and K, are part of the calculation process given by equa-
tions (14) and (12), also {Kz]p and [Kylq denote the increment in
these quantities across the p*hz-interface or the gty -interface.

6.3 Theory of Polarization Corrections

We first deal with the quasi TE mode with the principal electric
field F lying horizontal, in the x direction. We use a graded index
approach, and when the formula has been finally produced, allow the
gradients to steepen in a way which reproduces the discontinuities in
refractive index, and is consistent with the electromagnetic boundary
conditions. We use the displacement D = gggF as a convenient main
variable. Then we shall eventually be seeking consistency with conti-
nuity of D and OFE/0x when the z direction is normal to a plane of
discontinuity, and continuity of F and 8FE/dy when the y direction
is normal to a plane of discontinuity.

In general, as € is a function of both = and y, the polarized TE
wave equation (6) does not possess a variational principle involving E
alone because it is not self adjoint. So we must start from the scalar
wave equation (1). Replacing 82 by 82,4 , multiplying the equation
by E, and integrating gives

825' 825
Bon. = [[ (S + 57 +0E)doty (20

where the normalization [ [ E2dxdy is assumed. This in itself does
not demonstrate that (24) is variational (but it is, see [41,63]). Then
equation (24) has the property that E does not have to satisfy equa-
tion (1) any longer. Moreover, any reasonable approximation to F
which satisfies the boundary conditions can be used in (24) as a “trial
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solution”, and will give a good approximation to 3 depending on the
closeness of the trial solution to the actual solution. Imagine that we
have solved equation (6) for the TE mode: we do not intend to actually
solve it, since that defeats the purpose of a variational exercise; one
hopes not to have to solve the field equations. Then E now satisfies
equation (6) and we would have on substituting into equation (24) and
rearranging it

BécaL = Bl + / / {gzg [i 8(;5)] } dzdy  (25)

Integrating by parts using the fact that E — 0 at infinity this becomes

OFE (10(eE) OF
BicaL = Bte +/ B (ZW 6a:> drdy (26)
Thus, after minor simplification, we obtain the graded index form
[17,24]
OE 0(e~!
B = Boms + [ [ eBI2 A Lanay e

The form (27) is useful, as it 1mmed1ate1y allows us to proceed di-
rectly to the general piecewise uniform structure of Figure 7. In fact
9(e~1)/8z is zero everywhere, except across any discontinuities of di-
electric constant € in the z-direction. Moreover, as ¢E and 0E/0r
are continuous across any such discontinuity, say z = z,, then in the
neighborhood of the plane z = z, we have 8(e™!)/0z = [e™},é(z —
Tp), where & is a delta function and [}, represents the increment
in e~! across that plane. Thus for a general configuration we obtain
from equation (27)

ity OE
o, 0E, _,
BscaL = Bre p§=l: / eE e (e |pdy (28)

where E is a trial function for the TE mode. However, although e
is discontinuous, its profile is nearly uniform. Thus we may use the
approximation that efe~!], 2 —[e],. Therefore, as we are dealing with
small corrections, we may now obtain E from the scalar wave equation
(1). In general therefore for the low contrast profile piecewise uniform
case,
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Bie = BicaL — / E—[e]pdy (29)

and by interchange of the direction of polarization

Q_.
Bim = BicaL — / E— elqgdz (30)

However, simpler expressions may be used for particular cases. Using
the approximation E = F(z)G(y) already derived in Section 5 of this
chapter by the Weighted Index method gives

= dFR
e = BioaL — ) Fpgx‘?‘ / lel,G?dy (31)

p=1

and by interchange of the direction of polarization

G

Bim = BicaL — Z Go—L [ [e]gFd (32)

Finally, we observe that over the ¢'" interval, [eGZdy is simply
Wyq€pq , namely, the local dielectric constant weighted by W, as given
by equation (11). Thus

dF,
B = B3car — Z Fp dmp Z Wyq(ep+1,g — €pq) (33)
1

=1 g=

and by interchange of the direction of polarization, if W, is given by
equation (13), we have

G
Bim = Bicar — Z Gy dd . E Wap(€p,g+1 — Epq) (34)

p=1

These formulae explicitly give both general and weighted index type
polarized correction formulae for use with either (direct) Variational
solutions, or Weighted Index solutions. They are quoted earlier as equa-
tions (22) and (23) in a suitable form for computation.
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7. Connections Between Various Theories

7.1 The Nature of Separable Solutions

Early analytic work [45,46] on the rectangular dielectric waveg-
uide dates from 1982. Since 1984 various papers have appeared [47,55]
which shed some light on why the Effective Index method sometimes
gives too high an answer, and put forward intended improvements on
its accuracy.

In deriving this mathematically complete version of the argument
we have taken advantage of a private communication [56]. Let E =
F(z)G(y) be a separable trial solution of the scalar wave equation
giving rise to a value B of the propagation constant such that

8%k /0x? + 0°E/oy* + (k* - BHE =0 (35)
where
d?F/dz?® + (k2 - B2)F =0 (36)
and
d*G/dy® + (k2 - 3G =0 (37)
Also
k?2=k2+k2 and Pr=p2+48" (38)

where k; and k, are the equivalent slab distributions of local plane
wave propagation constant, and B and B, are the z and y-slab
propagation constants. Then it is easy to derive the so called pertur-
bation formula

B =B+ / / (k2 — k2) E2dzdy / / / Fdady (39)

In [52] it was pointed out that the fictitious distribution of k& which
gives rise to to the Effective Index value of  is greater in some regions

than in others, and this shows that for the buried channel this causes —

B to be greater than the trial result B7. This enables improvements
to be made to the accuracy of 3. On the other hand, in [54], in effect,
(% — [3? is minimized formally, where
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64 - B = f f (k* - k2 — K2)F*G*dzdy / / j' F?G%dzdy  (40)

This does not lead to new principles, but is convenient for some pur-
poses. In fact, since F and G already satisfy their respective slab
waveguide equations, § is guaranteed always to lie at a minimum
value. Even though the value of 3 can vary, it always does so in such
a way that it lies at a minimum. What this means is that minimizing
the left hand side of equation (40) is equivalent to minimizing Br, as
in the Weighted Index or (direct) Variational methods. Since it proves
necessary to correct the solution iteratively in a very similar way to
the Weighted Index method it is concluded that in the scalar case, the
two solutions would be the same. In the polarized cases, the respective
wave equations are not self adjoint, and therefore possess no true vari-
ational principle. This leaves open some basic questions which we have
answered in this chapter by first working out a mathematically rigorous
solution for the scalar wave equation, followed by a clear mathematical
approximation to the polarized correction.

In summary, the methods of [52] and [54] have proved valuable
as an alternative interpretation of the Effective Index method, but
when taken to a logical conclusion seem to be equivalent to using the
standard variational method of equation (18). In a sense, all stem from
the insight originally obtained by Sharma [26-29].

7.2 Averaging Effective and Weighted Index Results

It will be obvious that the methods given in this chapter are the
subject of current research. Since they are variational methods using
the minimum principle they produce a value of 3 which is lower than
the true value. This always holds good, and may be found useful near
cut off for low contrast index profiles.

We conclude this section by quoting the suggestion of a good “rule
of thumb”: an extremely accurate result may be obtained for nmode
by using the Effective Index method followed by the Weighted Index
method, then averaging the two [15,56]. Figure 13 shows the results
of this calculation [9] for the difficult case of the rib waveguide in air
using the parameters [57].
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Figure 13. Modal refractive index at wavelength 1.15um plotted as a
function of {3 for the structure shown in the inset, using the four different
methods: effective index, weighted index, “rule of thumb” average, and
a variational method (WAVE (72]).

8. Use of Complex Variables in Variational Methods

In view of its usefulness in studying loss, gain and radiation in
waveguides, lasers and traveling wave amplifiers [7,15,30,58-62] it is
appropriate to comment on the validity of the complex dispersion equa-
tion. This chapter has repeatedly used the variational principle in the
form of ref. [63], namely,

i = / / (k*E? — yTE. 7 E)dzdy / / E?dzdy (41)

Another expression is often quoted, namely,

B2 = / / (K*EE* — yrE. v E*)dzdy / / EE*dzdy  (42)

and this should be used when an extra complex variable has been
introduced, for example, as part of a complex Fourier analysis. The
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complex conjugates shown explicitly in equation (42) then apply only
to the extra complex variable. A\

It is allowable in most circumstances to use the above Rayleigh
variational principles when the indices are complex, that is, when the
system is lossy or has gain. This has been analyzed in {41} where ref-
erences [60,61] are quoted; see also reference [62], which uses dyadics.
Provided that the expression of the right hand side of equation (18) is
analytic in a region surrounding the true value of § in the complex
plane, then this will be a stationary value. This will usually be the
case, and may be restated thus: both the real and imaginary part of
B will be stationary simultaneously. Some detailed applications are to
be found in reference [64].

When seeking the stationary values of a variational expression
such as the right hand side of equation (24) with complex k, the
curvature of the search surfaces in terms of the real and imaginary parts
of B = Br+7jB; often varies rapidly along the imaginary axis. Complex
searches can easily jump onto the wrong solution. This behavior can be
improved by making the imaginary part of k, or any other parameter
vary slowly in small steps, as in the classical method of embedding.
This can be made to apply to any structure, especially systems with
loss or gain [65], and there seems to be no reason why leaky modes with
a propagating region which extends to infinity should not be treated in
this elementary way. The process would be initiated by starting from
the non-radiative case and gradually extending the propagating region
inward from infinity. In practice, all complex values of 3 seem to have
a large real part, and a smaller complex part, and this disparity in
magnitude helps to avoid a general search over the complex plane. If
a starting problem can be found, whose solution gives a real value of
B, and a physical parameter whose increase from zero at the start
converts the problem to the complex one in a gradual way, then under
most circumstances the complex root can be approached continuously.

9. Summary

In conclusion, we have shown that the Effective Index Method
and its generalizations are extremely powerful, and may be applied to
quite general configurations.
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We have shown that the accuracy and theory of the Effective
Index method (EI) [3,4] can be improved. Although accurate enough
for many purposes [66] the 3 values obtained using EI tend to be too
large, and there are laser and coupler structures which seem to produce
inaccurate results [15,67,68]. There are also cases where a waveguide
section is layered, but is neither uniform nor propagating. We conclude
therefore that the Effective Index method is mainly applicable to a pla-
nar waveguiding structure with a common guiding region throughout.
Even in this case improvement is possible, at the expense of using a
saddle point variational principle [69,70]. The Effective Index method
can be looked upon as the first term of a modal expansion in each
subregion, and might be called a perturbation problem. In this con-
nection the Transverse Resonance method [5,33-36], Generalized TRM
(37] and Diffractive TRM are referenced [38—40]. However, here we use
a different variational approach which suppresses the extra terms and
displays the slowly varying nature of the apparently abrupt disconti-
nuities in dielectric constant.

Recent progress has been shown to arise from the use of vari-
ational methods and was heralded by the CEVAR method [26-29].
There followed the Waterloo University group’s extensive development
of the Variational (direct) method (VM) [16-2] with Polarization Cor-
rection (PC), which makes the Rayleigh principle [41,63] of equations
(41) or (42) stationary. A Sheffield-Nottingham University collabora-
tion [23-25] has also studied the PC, and shown that the solution of
the polarized wave equation is extremely accurate, giving rise to only
a very small correction [25].

The “work horse” presented here is the Weighted Index method
(WI) [8-15] together with the polarized corrections (PC) already men-
tioned. This solves the scalar wave equation by finding the best sep-
arable solution F(z)G(y). The method iterates between orthogonal
directions, converging rapidly to the solution. Then a PC is applied.
Perturbation methods have been shown to result in the same solution.

Which of the two main methods considered here, namely VM
or WI is the more general is an open question because (i) in VM,
trial functions of the non-separable form A Fi(z)G1(y)+B Fa(z)G2(y),
can be used, as in reference {19], but (ii) in WI the variables can be
separated differently as Fy(z)G:(y) or Fao(z)G2(y) in different regions
as in [12]. Both generalizations are highly successful.
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Finally it is pointed out that these methods work for complex pa-
rameters, and recent work [15,30,60-62,64,65] and its theoretical back-
ground is briefly summarized. Moreover, the best values obtained to
date have been obtained by averaging the Effective and Weighted Index
Methods {15].
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