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1. Introduction

Recently, the interaction of electromagnetic waves with bian-
isotropic and bi-isotropic media have been examined by many authors,
due to their wide applications in the fields of integrated optical devices
as well as in the microwave and millimeter wave regimes. Bianisotropic
materials are characterized by linear constitutive relations that couple
the electric-and the magnetic-field vectors by four independent ten-
sors, when these tensors reduce to scalar quantities, the bianisotropic
media become bi-isotropic. Until now, certain properties of these com-
plex media have been found and several interesting phenomena have
been reported in the literature. For example, charged particles in bian-
isotropic media [1, 2], radiation and scattering in homogeneous general
bi-isotropic regions [3], dispersion relation for bianisotropic material
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and its symmetry properties [4], reflection and transmission for planar
structures of bianisotropic media [5], the interaction of electromagnetic
waves with general bianisotropic slabs [6], vector transmission-line and
circuit theory for bi-isotropic layered structures and a bi-isotropic layer
as a polarization transformer |7, 8]. As a special case of the most gen-
eral bi-isotropic medium, reciprocal chiral media are characterized by
only three scalar parameters, and they have attracted much attention
in the electromagnetics community recently [9-12].

We know, spectral DGF combining Fourier transform with ma-
trix analysis methods can be used in a much more expedient way to
investigate the radiation behavior of planar integrated structures [13].
However, the technique of eigenfunction expansion of DGF in con-
junction with the numerical method is also very useful for the study
of electromagnetic problems in multilayered media, waveguides, etc
[14-16]. In this paper, the methods of eigenfunction expansion and
scattering superposition are adopted for the constructing of DGF in
unbounded and multilayered bi-isotropic media. Then, the influences of
different parameters, especially, the cross electric and magnetic coeffi-
cients on the radiation patterns of dipole antenna in various bi-isotropic
superstrate-substrate structures are examined carefully.

2. The Extended Eigenfunction Expansions of DGF
in Unbounded Bi-isotropic Media

Bi-isotropic medium is electromagnetically characterized by the
following set of constitutive relations for the time harmonic excitation
(1),

D=c¢E+¢&H (1a)

B =uH +{E (1b)

where €, u, &, and &, are the medium’s permittivity, permeabil-
ity, cross electric and magnetic coupling coefficients; the dimensions of
& and &, are inverse to that of speed. The bi-isotropic constitutive
relations are obviously more general than that of reciprocal and non-
reciprocal chiral media. For the case of nonreciprocal chiral media, &
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and &, may be given by

e = (X + iK)\/1oE0, Em = (x— i")vuoé'o (2)

where the chirality parameter k stands for the rate of polarization
rotation of a propagating linearly polarized plane wave, relative to the
rate of phase change of the wave in air: at a distance A the rotation
angle ¢ = 2wk, and the Tellegen parameter x causes polarization
rotation for a plane wave normally incident from air, in reflection from
a bi-isotropic interface.

Using (1) together with Maxwell equations, the electric field in a
bi-isotropic medium should satisfy

VXVXE —iwém —£&)V X E —w?(ue — bm)E = iwpd.  (3)

and
ER) = iwp / GEE)-T®)d' (4)

in which the DGF of E(_Rm') is determined by

V x V x GRE) - iw(ém = &)V x G(R|R) — w*(ue — ££m)C(RIR)
~T5(R-R) NG

Eq. (5) can be solved in terms of normalized cylindrical vector wave
functions {Zenr(h), Venr(h), Wena(h)} in a circular cylinder coordi-
nate system (r,¢,2) , which have been defined in [12] and [17]. The
orthogonal properties of these functions are stated as follows:

J T oms® - Vguore (k)0 =0, [ Toaa(W) - W g (~H)dv = 0
v v

(6a,b)

1 no
(1+8no)

/Z;n)‘(h) . Z;nf)\/(—h’)dv =2'/T2k2

(6¢)
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/V;n,\(h,) -v;nIAI(—h,)d’U :/W;"A(h) .—W‘;n’)\’(_h/)dv

=22 \(1 4 610)8(A — N)6(h — B )bpnr

(6d,e)
where the domain of integration encloses the entire space, h is the

longitudinal wave number h% = k? — A2, §(e) is Dirac delta function,
and 6,, and &, are the Kronecker delta, given by

1 n=0
Ono = )
0 n#0
1 n=n
St = 0 n#n @

Using the Ohm-Rayleigh method, the right-hand side of (5) is expressed
by
T6(R-R)

“+00 —+00
=/ d,\/ dhz 47r2/\

A2 - — — — —
: [ngm—m;m(h) + Ve a(—)V ena(h) + We pa (—R)W e na(R)

(8)

and

= +o00 +00 et
GEE) / dx / dh

4
| A(/\)Vlgn,\(—h)vgn,\(h) + BOY s a (—) T 2 (1)

OV Ts (- h)Lenm)} )
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and substituting (9) and (8) into (5), we find

AN 1
{B(»} G R’ (102)

1

cN) =-
w?pe(l - §‘;‘7§5ﬂ)

(10b)

: 2
where ki = iﬂé’l‘g—ﬁ +w \/ ep — ﬁ&n_':QL are the wave numbers

corresponding to the two circularly polarized modes propagating in
unbounded bi-isotropic medium; the RCP mode propagates with wave
number k. , and the LCP modes with k_ . In (9), the integration with
respect to h can be calculated using the method of contour integration,
it is given by

G(RR)

=— + d\y e
k31— Stm) o 2m(ky + k=) Jo ,;) A

ks
h

b | W) Wem(=h) | | 22 2
he | Wea(~h)Wena(ho) | [ 257

_V_;n)\(h‘+)vl;n)\(—h’+)
vgm\('—h+)v/gn,\(h+)

(11)

Also, we can perform the integration with respect to A in (9), given
by

G(RIR)

e,e.6(R—R) i /+°° ©
- + dh » (2 — bno)
kg(l _ ézéém) 47T(k+ +k_) —00 'n.z:;)
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{lc__t [_(lr)r.n+(h)venn+( h‘)}

773' V;nm. (—h)—_(glr)m+ (h)
+I_C__- W_(’l'r)t _(h‘)—”n'r; (’—h) r> ’r' (12)
N2\ W sy (— h)W“’ | [rsr

where ny = ,/k% — h%. (11) and (12) are the extended eigenfunction
expansions of DGF in unbounded bi-isotropic media, which are similar
to the DGF of reciprocal chiral media [12]. However, the singular term
of (11) and (12) in the source region is different from the chiral case [9)].

Following the similar procedure used above, the eigenfunction ex-
pansion of DGF in the unbounded bi-isotropic medium can be also
obtained using normalized elliptical cylinder vector wave functions (ap-
pendix). Unfortunately, the technique of eigenfunction expansion is not
valid for the bianisotropic case, and the spectral-domain DGF may be
derived using Fourier transform method.

3. The Formulations of DGF for the Stratified
Bi-isotropic Media

The problem of multilayered reciprocal cylindrical chiral media,
excited by an arbitrarily electric or magnetic source, has been treated
by us in [12] and lead to compact closed-form expressions of DGF.
The extension of the analysis to multilayered bi-isotropic media will
be carried out here.

The geometrical configuration of n-layer bi-isotropic medium is
shown in Fig. 1. For any layer (j), the constitutive relations are given
as (1):

EJ' = EJ'FJ' + fejﬁj, (13a)
Bj = ujH; + émjE; (13b)

1=12,...,n
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Figure 1. The multilayered bi-isotropic media.

and the wave numbers corresponding to RCP and LCP modes in layer

(j) are

1 ot . 32
kjx = ii‘i(—g%——éﬂl + w\/ e juy — e T oma)” +4£’"’ ) (14)

Supposing the impressed source 7(171_)_ is electric and is located inside
the layer (q) of bi-isotropic media, Go(R|R’) can be expressed as a
superposition of the unbounded qu (R/R') that is due to the primary-
source excitation and the scattered DGF, thus

G,(RIR) = Cpo(RIR) + Co(BIE) (15)

where
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Go(RIR)
kgo(l — E—;"%’-) 2m(kg+ +kq-) Jo = A

kg | Vemhat)Vona(—hat)

hat |V enr(=ho)V snalhias)
e Wena(hg ) Wemn(=he-) | | 2/ <2
hom | W snr(~ha-)Wenr(ha-) | |

(16)
and

- i +00 b 2 —6110
Gqs(RiR) - T(kq‘:-i-k—q_)‘/O d)\; A

k _ —_ —
. {ﬁ{[A%Vgn,\(—hﬂ) + A,,an;nA(—hlI—)]V,;’n)\(_h(I+)
q

+ [A313V;m\(—hq+) + AgvAW;n/\(—hq—)]V/;n)\(h4+)}

b f 0 v _ _,
#3087 jr () + AL o= W ()

UL jua(=het) + AT gur (o)W s |

k Y7 ——
+ ﬁ{[BﬁlV;m(hH) + Bgzwgm(hq_)]v’;n NEN
q

+ 1BV sunlho ) + BT r IV 3alle) |

kq_ — — —
+ 1= {IBET o) + BT s (a7 (-
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— — -/
BV juallgs) + BT e )W sma P ||
(17)

where k%) = w?luq€g, hgx = 1/k2, — X2. The DGF in layer (1), layer
(j) (j # ¢q) and layer (n) must have the following forms, given by

= 1 +oo 2 - 611.0
Gi(RR) = o TR / d/\nz_;)

?r

{wj—{[Anlven)\(h1+)+A 2W°nA(h1 )]Ven)\( htH')

D“

AT o) + ALY s (V) |
k

+ 12 ALV g (112) + AL g (1)
q—

T a(ha ) 4 A7 sa) + ALY s (10 W s ||
(18)

=

Gi(

1

AV gl i) + AT s (i s a) |

b o _
* h_zf{[Anst( hj+) + AizswSHA(“hj“)]WIS"'\(_h"‘)

-/ +oo 002_671.0
’) = 27r(k++k )/ d/\; A

P A () + ATV r gV ()

;"??‘

UV gua(—hs) + AT g (= W s re-) |
k- . R, —_
q+ {[BJ 1V sna(hyie) + BlaW e na(hi=) Ve s (—hqy)

+ (BT guahs) + BoaT¥ s [V s () |
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+7;t{l 25V sna(hs) + BrgW sma (s )W gor(~ha-)
-

+ BV son(34) + BloWW s 1y W sl }
j=23,....q-1,g+1....,n—1

(19)
= e oo 2 — bno
Gn(RR) = / dA =
n(RIR) = 27r(k:q+ + kg-) ,;,
k g — —
B { AT s o) + AT r BV (i)
+ AT gor (o) + AT (I i)}
kq-
+ = AR a =l + AT s W sr ()
+ ARV cna(—hnt) + Aﬁswgn,\("hn—)]wlgm\(hq-)}}
(20)
In (17)-(20), A7, —Ajg, Bi—Bls, A —Agzg, A Als s BJ B?*;B’
1 — Ang, are the unknown coefﬁments by the bounda,ry condmons
at z = Hy, Hy,...,Hyn2,0. Since the transverse electric and magnetic

fields across the interfaces are continuous, with the help of (13) and
Maxwell’s equations, we easily find

2. X G(RR) =%, x Gu(RR), 2=H, (21)

ZE ey

Gq(RIE)

X [iV x G4(RIR)] -2, x Wwema s
Hq Hq

V x Ggr1(BIR)] - 8 x %—‘- n@®E), @

=€, X |
Hg+1 Hg+1
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On the other hand, when the impressed source in layer (q) is a magnetic
current Tm(R), G4(R|R), and Ggy1(R|R) should satisfy

2, X Gq(BIR) =2, x G4 (R|R),
z=H, (23)

g, % [E.v x *"éq(ﬁm’)] +7, x YT R/R)
&g £q

=€, X [w—l—-v X ﬁq-}-l(ﬁl—ﬁl)] + 8, X M—ﬁq-{wl(ﬁlﬁ), (24)
€g9+1 €q+1 ‘
z=H,

Substituting (15)—(20) into (21)—(22), yields four sets of 4(n—1) linear
equations. When the (n — 1)— layer bi-isotropic media are bounded
by a perfectly conducting plane at z =0 in Fig. 1, we have

22 X Grne1(BIR )220 =0 (25)

and the unknown coefficients in (17)-(20) are determined by four sets
of 2(2n — 1) linear equations.

In numerically solving the four sets of 4(n — 1) linear equations,
the computer time required becomes cumbersome as the number of
layers increases. An efficient method for calculating the unknown coef-
ficients for an arbitrary number of layers can be utilized based on trans-
mission matrix technique. With respect to the structure of Fig. 1, if
the electromagnetic parameters of inhomogeneous bi-isotropic layer are
described by € = &(2), p = p(2),€e = £e(2),&m = &m(2), (0 < z < Hy),
an approximate DGF can also be found in this case by artificially divid-
ing the whole region (0 < z < H;) into n—2 sublayers. For sufficiently
small AHy(q =1,2,...,n— 1) one may assume a constant value for
each of the scalar quantities (gq, ig, €eq, Emq) inside each sublayer, thus
the field distributions excited by an arbitrary source embedded in the
inhomogeneous bi-isotropic slab can be obtained in terms of the ex-
pressions of DGF derived above.
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Figure 2. Dipole antenna in a bi-isotropic four-layer geometry.
4. The Radiation Patterns of a Dipole Antenna in
Stratified Bi-isotropic Media

In microstrip antenna technology, it is often necessary to exam-
ine the radiation characteristics of dipoles printed in a superstrate-
substrate structure. The geometry of interest is shown in Fig. 2, and
the electric current density of dipole antenna is given by

J(R) =2, 1o6(z)6(y)6(z — Ho), Hs3<Ho<H»  (26)

Then, the electric field in layer (1) is determined by
B\(®) = v | Cu(ER)-TE)i (27)
v’
where Gy (R/R) has been shown by (18)(q=3). Noticing that
+00 +00
f TnOr) VA = / HO (r) F(0)dA (28)
4] —~00

where J,(Ar) and H,(f)()\r) are the first kind of Bessel and Hankel
function with order n, respectively. In the far zone (Ar >> 1),
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L 7A%)
[ aa(P14) ] %(“i)n%-%_")‘__ei(/\r'”‘liz) €5 (1)

W{I)A(hl ) VmAr sin
: (—g'ap 3 2o = Mgt ;fm) (29)

and by taking advantage of the stationary phase asymptotic integra-
tion, we obtain

wpslo
4m R(ks+ + k3-)

. ) k ‘
— A%2k1.-61'k1'R(59 - i€¢)]e“k3+H° (-}fi - z)
3+
+ [AL kR B, 4 i) — Alky_e®-R (g — iE,)]

eik3+H° (.{gﬁ + Z)
has

+ Ak B(@ + i8,) — Alghi-c™-F(eo - i2,)

k3—
—ikg..
¢ (hS— * z)

+ [Alke®+ B (gg + igy) — Algki-e™~F(eg — igy)]

eike-Ho (:Z: + z> }
(30)

where hzy = \/ k2, — k2, sin?0,and Al,—A}; are determined by four
sets of 14 linear equations. In (30), the sums (€p+i€,) and (€y —1€y)
indicate RCP and LCP modes; it is worth noting that the radiated
field emitted by dipole antenna is in general elliptically polarized.
The far-field behavior of dipole antennas in various composite bi-
isotropic superstrate-substrate configurations are presented in Figs. 3,
4, and 5. Since the properties of a bi-isotropic medium have never been
completely characterized either at optical or microwave frequencies,
we had to assume the material properties used in the calculations.
The values used for the constitutive parameter are close to what are

E1(R) = -

cos0 %o () { [Ahkre™+ (@ + 2,)
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Figure 3. The radiation pattern of dipole antenna in a bi-isotropic three-
layer geometry. H; = 0.03m, Hy = 0.02m, H3 = 0.0lm, Hg/A = 0.5,¢ =
0,90% py = pg = py = pg,€3 = 26,64 = 23, (1) L2 = §ng = 3.0 x
10 11t =En = 10532, 534 = &4 = 1083 (reciprocal chiral). (2) &2 =
o = (2.5 +13.0) x 1071 €3 = £45 = (5.0 +16.0) x 10710 £, = &y =
(8.0 + £10) x 10~ (nonreciprocal chiral). (3) &e2 = 2€},, = (2.5 + 13. O) X
1071 g3 = 2883 = (5.0 +16.0) x 10710, &, = 2£5,, = (8.0 4+ i10) x 1079,
* standards for the complex conjugate.
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Figure 4. The radiation pattern of dipole antenna in a bi-isotropic two-
layer geometry. H, = 0.03m, Hy = 0.01m, Ho/A = 0.3333,¢ = 0,90, =
2¢; = 2.5¢; (1) €4 = 5.0y, Eez = Le3 = 2615 = 254 = i3.0 x 10711 &4
26,4 = 3.0 x 1010~1°. (2) €4 = 5.0¢p,&n = €3 = 01§, = 0.1&4
3.0 x 10711 £,y = 0.1&},, = 3.0 x 1010710, (3) €4 = €g,6ex = €y = 3.0 X
10_11;534 = 5;;4 = 0.
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'f90 °

Figure 5. The radiation pattern of dipole antenna in a grounded bi-
isotropic slab. ¢ = 0,90° u, = pg, Hy = 0.02m, Ho/A = 0.3333,¢, =
2.5€g, €ea = £y = 13.0 x 10711 (reciprocal chiral slab).

reported in the literature {7,8] and in all the examples, it is assumed
that the top layer (1) is air and the operating frequency is taken to be
f =10GHz.

The numerical results have shown, in the case of an electric -
oriented point source, that the radiation patterns present a symmetry
with respect to vertical axis (8 = 0°), and suitable pattern resharping
are made by choosing the cross electric and magnetic coupling coeffi-
cients of bi-isotropic media. In order to demonstrate the effects of &
and &, reciprocal (§ = &, = ik) and nonreciprocal chiral media
(&e = &, = x +ik) are also taken into consideration. Fig. 5 shows
the special case of a grounded reciprocal chiral slab, which has been
studied by Engheta and Vegni [11], however, the source is embedded
inside the chiral slab and is not placed on the surface.

5. Conclusion

The general formulation of DGF for the electric or magnetic
sources embedded inside multilayered bi-isotropic media has been given
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and the radiation characteristics of dipole antennas in bi-isotropic
superstrate-substrate structure have been investigated in detail. An
important point to note is that the radiation behavior of the dipole
antenna is a function of several different factors: superstrate and sub-
strate thickness, permittivity, permeability, cross electric and magnetic
couple coefficients, and operating frequency. The different appearance
of the radiation patterns shown above depends on the combination of
all of these factors.

Appendix

The vector wave functions {Lemr(h), M emr(h), Nemar(h)} are
. o » 0 » . 0 0
orthogonal and normalized to each other in an elliptical cylinder coor-
dinate system. Also, we introduce normalized elliptical cylinder vector
wave functions:

V;mA(h) _ 1 — —
T (h)] = 75 [Mom®) £ N (1) (A1)

Thus, the right-hand side of (5) is expressed by
15(R - R) =/ d,\/ th{A;m,\(h)V;m,\(h)
0 —00 m

+B2ma(WW sma(h) + Tma(W) I ema(h) } (42)

and
Aepr(h Vema(=h
[_o A( )] :_2__1_____ i a(=h) (A3a,b)
BemA(h) ™ /\I;m)‘ ng)\(_h)
Tepn(h) =T\ (—h) (A3¢)

where I emx 18 the normalized factor which may be calculated using
series expansion method [17], and
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—_ +00 +o0 i
G@RR) / dX / th = Ie
(AT s mr(—)V gma(h) + B(/\)W,;m,\(—h)wgm,\(h)] (44)

[cw Tima(~H) D gma (1)

The integrations with respect to A and h are calculated, respectively,
given as:

etub(R-FR) i /+°° 1
SRR Ty ————
k(1 —tetm) 7 o ; (ky +k-)

ke [Vomn 7 5, (<)
77.2;.70m77+ Vemn+(—— )_(el) (h)

o™+

W (Wey_(—h /
st | W ("( ) MU (4s)
TLimn | W o (~WW oy (h) usu

where 7+ = 1/k% — h?,€, is the unit vector, and
G(ER)

== —_—I . +00
_ €,€:6(R R)_l_g_z_ dAZ 1
K(1—%k=) 7w Jo o Mg+ k)T ey

ks V;mz\(h+)V‘m)s( —hy)
hy V; A(= h+)V;m,\(h+)

+— (A6)
he | Wema (=)Wl ()| [ 257

k- rW’mA(h—)—W—zmA(—h_):l } 2> 2
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This is the eigenfunction expansions of DGF in an elliptical cylinder
coordinate system for the unbounded bi-isotropic medium.
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